簡易檢索 / 詳目顯示

研究生: 劉承諺
Liu, Chen-Yen
論文名稱: 渦流陣列夾持器動態分析及設計
Dynamic Performance Analysis and Design of Vortex Array Grippers
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: 渦流夾持器無接觸計算流體力學陣列夾持器升力
外文關鍵詞: Vortex gripper, Non-contact, Computational fluid dynamics, Vortex array grippers, Lifting force
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以雷諾應力傳遞紊流模型來分析非接觸式渦流夾持器的氣動升力及工件表面上的壓力分佈,並進行陣列渦流夾持的性能分析。研究首先針對單一夾持器在幾何參數變動下進行升力分析,最後選擇其中一組升力性能較佳的夾持器幾何參數作為陣列夾持器性能分析之基礎。
    將參數確定後之單一夾持器進行兩個與四個的排列建構組合,由於隨著夾持器渦流室數量的增加,底部夾持面的涵蓋面積也隨之增大,因此藉由單位面積升力作為分析各排列情形與間距大小的影響指標(performance index)。雙陣列夾持器在渦流室間距24mm、30mm與36mm下數值模擬各種不同排列的升力,研究各個供氣排列方式的優缺點,並觀察氣流交互作用形成的正壓對升力的影響。在24mm的間距下,不同排列方式的單位面積升力性能比皆在10%內。當彼此間距增大後,雖然個別夾持器升力會上升,但是涵蓋面積也增加而使單位面積升力下降,造成最大有50%的性能比。四陣列夾持器除了分析與雙陣列夾持器相同的目標外,還探討在渦流夾持器上設置洩壓氣孔後對升力產生的變化。當有洩壓孔時陣列夾持器之單位面積升力可增加10%~30%。透過分析洩壓孔對升力的影響,可以得知設置一定大小與數量的洩壓孔能有效提升陣列夾持器之單位面積升力。

    This paper mainly discusses the computational fluid dynamics method with the Reynolds stress transport turbulence model will be applied to analyses the pneumatic lifting force of noncontact vortex grippers and the pressure distribution on the surface of a work piece. The relationships between the lifting force and several geometry parameters are studied for determine the geometry parameters of vortex gripper which generates lifting force per unit area.
    After defining the parameters, a single vortex gripper is combined with two and four groups. As the number of grippers increases, the area of the bottom surface also increases. Therefore, by analyzing lifting force per unit area, discuss the influence of each arrangement and gap clearance. For 2 vortex array grippers, simulate the lifting force of various arrangement at distance from each vortex gripper L is 24mm, 30mm, and 36 mm, then studies the advantages and disadvantages of all kinds of air supply methods. At a distance of 24mm from each vortex gripper, the performance of lifting force per unit area is less than 10%. The lifting force of individual vortex grippers will increase as the distance is added. However, the increased area will also lead to lifting force per unit area greatly reducing result in a performance reduction of 50%.
    In addition to analyzing the same target outcomes as 2 vortex array grippers, study the changes in the lifting after setting exhaust vents for 2 by 2 vortex array grippers. When there are exhaust vents on 2 by 2 vortex array grippers, the performance of lifting force per unit area could be increased by 10%~30%. By analyzing the influence of exhaust vents for the lifting force, it can be know that setting a certain size and number of exhaust vents is able to effectively increase lifting force per unit area of the vortex array grippers.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號表 XIII 第1章 、 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究動機 6 1-4 本文架構 7 第2章 、 理論分析 8 2-1 物裡模型與基本假設 8 2-2 統御方程式及邊界條件 10 2-2-1 統御方程式 10 2-2-2 邊界條件 11 第3章 、 數值方法 12 3-1 數值模擬軟體簡介 12 3-1-1 ANSYS Workbench 12 3-1-2 ANSYS Fluent 12 3-2 有限體積基礎理論 12 3-3 渦流夾持器模型建立 13 3-3-1 模型建立 13 3-3-2 網格生成 14 3-3-3 紊流模型 15 3-4 求解器與後處理 16 3-4-1 求解器 16 3-4-2 收斂判斷 16 3-4-3 後處理 17 3-5 數值模擬流程 18 第4章 、 結果與討論 19 4-1 網格獨立性 19 4-2 單一渦流夾持器在不同幾何參數下之效能分析 20 4-2-1 入口噴嘴角度變數θ對升力的影響 20 4-2-2 渦流室高度H1與渦流室直徑D1對升力的影響 21 4-2-3 升力暫態響應 26 4-3 陣列渦流夾持器 28 4-3-1 雙渦流陣列夾持器 29 4-3-2 四渦流陣列夾持器 35 4-4 洩壓孔對四渦流陣列夾持器升力之影響 43 4-4-1 排列二之四渦流陣列夾持器洩壓孔模型 43 4-4-2 排列五之四渦流陣列夾持器洩壓孔模型 47 第5章 、 結論與未來展望 52 參考文獻 54

    [1]SMC®非接觸吸盤XT661系列。https://reurl.cc/VE4WEb
    [2]Waltham, C., Bendall, S., & Kotlicki, A. (2003). Bernoulli levitation. American Journal of Physics, 71(2), 176-179.
    [3]Brun, X. F., & Melkote, S. N. (2009). Modeling and prediction of the flow, pressure, and holding force generated by a Bernoulli handling device. Journal of manufacturing science and engineering, 131(3).
    [4]Davis, S., Gray, J. O., & Caldwell, D. G. (2008). An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Robotics and Computer-Integrated Manufacturing, 24(2), 249-257.
    [5]Kagaw, T., & Li, X. (2009). Vortex levitation. In Flucome Conference, Moscow, Russia, 2009.
    [6]Li, X., Kawashima, K., & Kagawa, T. (2008). Analysis of Vortex Levitation, Experimental Thermal and Fluid Sciences, 32: 8 1448-1454.
    [7]Harmotec Corporation. http://www.harmotec.com/
    [8]Ma, W., Xu, L., & Yu, H. (2010, March). Study on flow field characteristics of non-contact vortex negative pressure carrier. In 2010 International Conference on Measuring Technology and Mechatronics Automation (Vol. 3, pp. 587-591). IEEE.
    [9]Tzu-Hsuan Feng1, Kuo-Teng Tsai2, Chieh-Li Chen3*. A Study of Geometry Parameters to Non-Contact Vortex Grippers. (2010).
    [10]Iio, S., Umebachi, M., Li, X., Kagawa, T., & Ikeda, T. (2010). Performance of a non-contact handling device using swirling flow with various gap height. Journal of visualization, 13(4), 319-326.
    [11]Li, X., Iio, S., Kawashima, K., & Kagawa, T. (2011). Computational fluid dynamics study of a noncontact handling device using air-swirling flow. Journal of engineering mechanics, 137(6), 400-409.
    [12]Zheng, Z. J., Liang, D. T., Lu, B., & Huang, J. H. (2013). Numerical analysis on the internal flow field and adsorption performance of a non-contact vortex gripper. In Applied Mechanics and Materials (Vol. 433, pp. 1959-1964). Trans Tech Publications Ltd.
    [13]Wu, Q., Ye, Q., & Meng, G. (2013). Particle image velocimetry studies on the swirling flow structure in the vortex gripper. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(9), 1927-1937.
    [14]Li, X., & Kagawa, T. (2013). Development of a new noncontact gripper using swirl vanes. Robotics and Computer-Integrated Manufacturing, 29(1), 63-70.
    [15]Li, X., Li, N., Tao, G., Liu, H., & Kagawa, T. (2015). Experimental comparison of Bernoulli gripper and vortex gripper. International Journal of Precision Engineering and Manufacturing, 16(10), 2081-2090.
    [16]Zhao, J., & Li, X. (2016). Effect of supply flow rate on performance of pneumatic non-contact gripper using vortex flow. Experimental Thermal and Fluid Science, 79, 91-100.
    [17]Nishad, W., & Shamnadh, M. CFD Analysis of a Noncontact Gripper with Rotor. International Journal of Advanced Engineering, Management and Science, 2(7), 239561.
    [18]Fröhlich, A., Gresens, D., Vervoort, B., & Dröder, K. (2020). Design and Evaluation of a Material-adapted Handling System for All-Solid-State Lithium-Ion Battery Production. Procedia CIRP, 93, 143-148.
    [19]智慧型渦流及邊緣夾持晶圓末端執行器。QUARTET MECHANICS INC. https://reurl.cc/KAX8XR
    [20]結構性網格與非結構性網格。https://reurl.cc/ZGa4gA
    [21]ANSYS Fluent Theory Guide. Release 18.0 (2017). https://reurl.cc/9r1LaV

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE