| 研究生: |
王瑄漫 Wang, Shiuan-Man |
|---|---|
| 論文名稱: |
mPCM鋁蜂巢板建材應用於建築外牆之熱傳性能研究 Thermal performance of the aluminum honeycomb board incorporating mPCM used in building exterior walls |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 相變化材料 、熱能儲存 、建築外牆 |
| 外文關鍵詞: | phase change materials, Heat storage, building exterior walls |
| 相關次數: | 點閱:159 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將微膠囊相變化材料 (microencapsulated phase change materials,mPCM) 結合鋁蜂巢板作為建築外牆結構,透過相變化材料的熱物理性質,將室外環境的熱能轉換為相變化材料的潛熱能,有效降低並延緩太陽日射對於室內環境熱舒適性之影響。本研究針對不同室外與室內邊界條件之組合,以實驗方法探討mPCM 鋁蜂巢板建材應用於建築外牆之熱傳性能。實驗模型為長0.3 公尺,寬為0.3 公尺,厚度為0.03 公尺的壓克力容器,內置總重為1192 公克的mPCM 粉末,並以鋁片覆蓋將其封閉,製成mPCM鋁蜂巢板建材,以模擬建築外牆結構。實驗模型共有兩個邊界條件,分別為室外邊界與室內邊界,以模擬mPCM 鋁蜂巢板建材的室外環境與室內環境。在白天時,室外環境接受太陽日射,故本實驗以兩種室外邊界條件模擬太陽日射,分別為高日射熱得與低日射熱得;在夜晚時,不考慮夜間輻射效應,室外環境停止供熱,故本實驗以兩種室外邊界條件模擬mPCM 鋁蜂巢板建材之散熱方式,分別為緩慢散熱與一般自然對流散熱。mPCM 鋁蜂巢板建材室內側為人居環境,本實驗以兩種室內邊界條件模擬室內環境,第一種為受空調氣流或電扇吹拂,即建材表面以強制對流散熱,第二種為關閉空調和電扇,即指建材表面以自然對流散熱。實驗結果顯示,鋁蜂巢板建材內部含有微膠囊相變化材料時,能降低室內側熱流峰值,並延後峰值出現的時間,有效降低能源使用效率並提高室內環境舒適度;當室外邊界為緩慢散熱、室內邊界為強制對流時,將會使進入至室內環境的熱能最多,降低人居環境的舒適度。
In recent years, environmental awareness gradually rises. Green building issues are valued. Improving energy efficiency and enhancing the indoor environment quality become more important. The main contents of the study use the microcapsule phase change material combined with aluminum honeycomb board as the external structure of the building. Through the thermophysical properties of the phase change material, the thermal energy of the outdoor
environment is converted into the latent heat energy of the phase change material, which effectively reduces and delays the influence of the solar radiation on the indoor environment thermal comfort. In addition, this study discusses the thermal performance of mPCM aluminum honeycomb board used in building exterior wall with different outdoor and indoor boundary conditions. There are two types of outdoor boundary conditions during the daytime such as high heat gain and low heat gain. Similarly, there are two types of outdoor boundary conditions at night such as lentamente heat dissipation and natural heat dissipation. One the other hand, there are two types of indoor boundary conditions during the day and night such as forced convection and natural convection. In these experiment results, the maximum of heat converting into the indoor environment is the combination lentamente heat dissipation outdoor with forced convection indoor boundary condition.
A. K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Felcman, 1997. Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage. Budding and Environment, Vol. 32, No. 5, 405-410.
Eleftherios Bourdakis, Thibault Q.P´ean, Luca Gennari, Bjarne W. Olesen, 2016. Daytime space cooling with phase change material ceiling panels discharged using
rooftop photovoltaic/thermal panels and night-time ventilation. Science and Technology for the Built Environment 22, 902-910.
K. Darkwa, 1999. Evaluation of regenerative phase change drywall: low-energy buildings application. Int. J. Energy Res. 23: 1205-1212.
K. Darkwa, J. S. Kim, 2004. Thermal analysis of composite phase change drywall systems. Energy Eng 127(3), 352-356.
Marwa M. Hassan, Yvan Beliveau. Modeling of an integrated solar system, 2008. Building and Environment 43, 804-810.
Colas Hasse, Manuel Grenet, André Bontemps, Rémy Dendievel, Hébert Sallée, 2011. Realization, test and modelling of honeycomb wallboards containing a Phase Change Material. Energy and Buildings 43, 232-238.
M.N.A. Hawlader, M.S. Uddin, Mya Mya Khin, 2003. Microencapsulated PCM thermal-energy storage system. Applied Energy 74, 195-202.
Simen Edsjø Kalnæs, Bjørn Petter Jelle, 2015. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings 94, 150-176.
Markus Koschenz, Beat Lehmann, 2004. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy and Buildings 36, 567-578.
T. Karlessi, M. Santamouris, A. Synnefa, D. Assimakopoulos, P. Didaskalopoulos, K. Apostolakis, 2011. Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings. Building and Environment 46, 570-576.
T. Lee, D.W. Hawes, D. Banu, D. Feldman, 2000. Control aspects of latent heat storage and recovery in concrete. Solar Energy Materials & Solar Cells 62, 217-237.
Chi-ming Lai, Shuichi Hokoi, 2014. Thermal performance of an aluminum honeycomb wallboard incorporating microencapsulated PCM. Energy and Buildings 73, 37-47.
Shuli Liu, Yongcai Li, 2015. An experimental study on the thermal performance of a solar chimney without and with PCM. Renewable Energy 81, 338-346.
I. Mandilaras, M. Stamatiadou, D. Katsourinis, G. Zannis, M. Founti, 2013. Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Building and Environment 61, 93-103.
Saad Mahmoud, Aaron Tang, Chin Toh, Raya AL-Dadah, Sein Leung Soo, 2013. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Applied Energy 112, 1349-1356.
D. A.Neeper, 2000. Thermal dynamics of wallboard with latent heat storage. Solar Energy Vol. 68, No. 5, 393-403.
N. Soares, A.R. Gaspar, P. Santos, J.J. Costa, 2016. Experimental evaluation of the heat transfer through smallPCM-based thermal energy storage units for building applications. Energy and Buildings 116, 18-34.
Tiago Silvaa, Romeu Vicente, Fernanda Rodrigues, António Samagaio, Claudino Cardoso, 2015. Development of a window shutter with phase change materials: Full scale outdoor experimental approach. Energy and Buildings 88, 110-121.
Qian Wang, C.Y. Zhao, 2015. Parametric investigations of using a PCM curtain for energy efficient buildings. Energy and Buildings 94, 33-42.
Tongyu Zhou, Jo Darkwa, Georgios Kokogiannakis, 2015. Thermal evaluation of laminated composite phase change material gypsum board under dynamic conditions. Renewable Energy 78, 448-456.
Yinping Zhang, Kunping Lin, Yi Jiang, Guobing Zhou, 2008. Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard. Energy and Buildings 40, 1771-1779.
Meng Zhang, Mario A. Medina, Jennifer B. King, 2005. Development of a thermally enhanced frame wall with phase change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. Int. J. Energy Res., 795-809.
Belén Zalba, José M Marín, Luisa F. Cabeza, Harald Mehling, 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 23, 251-283.
Yinping Zhang, Guobing Zhou, Kunping Lin, Qunli Zhang, Hongfa Di, 2007. Application of latent heat thermal energy storage in buildings:State-of-the-art and outlook. Building and Environment 42, 2197-2209.
周琪 (2015),鋁蜂巢板內置微膠囊相變化材料之動態熱傳特性,國立成功大學土木工程學系碩士論文。
施泓銘 (2013),內含微膠囊相變化材料之散熱模組,南台科技大學機械工程學系碩士論文。
校內:2022-06-01公開