| 研究生: |
郭懿珊 Guo, Yi-Shan |
|---|---|
| 論文名稱: |
表面增顯拉曼光譜在中分子尿毒症毒素檢測之應用及機器學習輔助分析 Application of Surface-Enhanced Raman Spectroscopy in the Detection of Middle Molecular Uremic Toxins with Machine Learning-Assisted Analysis |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 表面增顯拉曼散射 、銀奈米粒子 、中分子尿毒症毒素 、透析廢液 、機器學習 |
| 外文關鍵詞: | surface-enhanced Raman scattering, silver nanoparticles, middle molecular uremic toxins, spent dialysate, machine learning |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
慢性腎臟病 (chronic kidney disease, CKD) 為全球重要的公共健康議題,患者因腎功能逐漸惡化,而無法有效排除體內各類代謝廢物,長期下來不斷累積之尿毒症毒素將對健康造成危害,進一步影響病患的預後及生活品質。中分子尿毒症毒素如β2-微球蛋白 (β2-microglobulin, β2-m) 與瘦素 (leptin),因其分子量較大而難以有效地藉一般透析療法清除,因此需要具靈敏度之檢測分析技術以掌握其於透析過程中的變化。本研究應用表面增顯拉曼散射光譜 (surface-enhanced Raman scattering, SERS) 技術,結合纖維狀二氧化鋯基板 (Au NPs/fZrO2) 和碗狀二氧化鋯基板 (Au NPs/pZrO2),及以共還原法製備並經化學修飾之銀奈米粒子 (mAg NPs) 膠體溶液的使用,進行β2-m 與 leptin 標準品及臨床透析廢液 (spent dialysate) 樣本之光譜特徵分析。經比較不同檢測系統下之訊號表現,確認 mAg NPs 於目標蛋白質的檢測中,除作為主要訊號增顯效果的貢獻來源之外,也進一步提升訊號的穩定性。並在針對β2-m 與 leptin 標準品光譜進行特徵峰歸納與主成分分析 (principal component analysis, PCA) 後,劃分具代表性之特徵區域,並以加標樣品 (spiked samples) 光譜資料建立判別目標蛋白質之機器學習分類模型。模型訓練策略包含全光譜與特徵區域兩種資料輸入方式,藉全光譜模型初步探討正規化方法、正負樣本比例以及演算法的不同對於模型表現的影響,並進一步觀察不同特徵區域模型之間的表現差異,篩選出具辨識能力之區域以確保判別不受分類表現較差之區域模型影響。研究結果顯示,雖然全光譜模型整體分類表現優於特徵區域模型,然而部分經由分析化學方法與統計分析歸納之特徵區域仍展現良好辨識能力,有助於提升機器學習模型之可解釋性。本研究驗證 SERS 與機器學習結合於目標蛋白質檢測之可行性,並為未來於臨床環境下對目標物進行檢測和分析提供檢測策略與應用基礎。
This study examines the detection of β2-microglobulin (β2-m) and leptin—important middle molecular weight uremic toxins—using Surface-Enhanced Raman Spectroscopy (SERS) paired with machine learning for clinical dialysis fluid analysis. Three SERS substrates were tested, with iodine-modified silver nanoparticles offering the best signal stability. Characteristic spectral peaks were identified through peak fitting and principal component analysis, which informed the classification models. Optimal performance was achieved with z-score normalization and a 2:1 positive-to-negative sample ratio. Models based on full spectra outperformed those from selected spectral regions, although narrower regions improved sensitivity for positive samples. Support vector machines (SVM) and k-nearest neighbors (KNN) yielded the best classification results, and KNN models could match or surpass traditional methods in detecting leptin using external clinical samples. This study highlights the challenges of complex clinical matrices while showing the promise of integrating SERS with machine learning to enhance detection and classification of uremic toxins in practical applications.
[1] K. J. Jager, C. Kovesdy, R. Langham, M. Rosenberg, V. Jha, and C. Zoccali, “A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases,” Nephrology Dialysis Transplantation, vol. 34, no. 11, pp. 1803-1805, 2019.
[2] N. C. Chesnaye, A. Ortiz, C. Zoccali, V. S. Stel, and K. J. Jager, “The impact of population ageing on the burden of chronic kidney disease,” Nature Reviews Nephrology, vol. 20, no. 9, pp. 569-585, 2024.
[3] K. J. Foreman, N. Marquez, A. Dolgert, K. Fukutaki, N. Fullman, M. McGaughey, M. A. Pletcher, A. E. Smith, K. Tang, C. W. Yuan, J. C. Brown, J. Friedman, J. W. He, K. P. Heuton, M. Holmberg, D. J. Patel, P. Reidy, A. Carter, K. Cercy, A. Capin, D. Douwes-Schultz, T. Frank, F. Goettsch, P. Y. Liu, V. Nandakumar, M. B. Reitsma, V. Reuter, N. Sadat, R. J. D. Sorensen, V. Srinivasan, R. L. Updike, H. York, A. D. Lopez, R. Lozano, S. S. Lim, A. H. Mokdad, S. E. Vollset, and C. J. L. Murray, “Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories,” Lancet, vol. 392, no. 10159, pp. 2052-2090, 2018.
[4] P. K. T. Li, G. Garcia-Garcia, S. F. Lui, S. Andreoli, W. W. S. Fung, A. Hradsky, L. Kumaraswami, V. Liakopoulos, Z. Rakhimova, G. Saadi, L. Strani, I. Ulasi, and K. Kalantar-Zadeh, “Kidney Health for Everyone Everywhere - From Prevention to Detection and Equitable Access to Care,” Blood Purification, vol. 50, no. 1, pp. 1-8, 2021.
[5] C. P. Kovesdy, “Epidemiology of chronic kidney disease: an update 2022,” Kidney International Supplements, vol. 12, no. 1, pp. 7-11, 2022.
[6] P. E. Stevens, S. B. Ahmed, J. J. Carrero, B. Foster, A. Francis, R. K. Hall, W. G. Herrington, G. Hill, L. A. Inker, R. Kazancio, E. Lamb, P. Lin, and A. Levin, “KDIGO 2024 CLINICAL PRACTICE GUIDELINE FOR THE EVALUATION AND MANAGEMENT OF CHRONIC KIDNEY DISEASE,” Kidney International, vol. 105, no. 4, pp. S117-S117, 2024.
[7] B. Lisowska-Myjak, “Uremic Toxins and Their Effects on Multiple Organ Systems,” Nephron Clinical Practice, vol. 128, no. 3-4, pp. 303-311, 2014.
[8] S. Sahathevan, B. H. Khor, H. M. Ng, A. H. A. Gafor, Z. A. M. Daud, D. Mafra, and T. Karupaiah, “Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review,” Nutrients, vol. 12, no. 10, pp. 31, 2020.
[9] T. J. Vachharajani, J. J. Taliercio, and E. Anvari, “New Devices and Technologies for Hemodialysis Vascular Access: A Review,” American Journal of Kidney Diseases, vol. 78, no. 1, pp. 116-124, 2021.
[10] U. Eduok, A. Abdelrasoul, A. Shoker, and H. Doan, “Recent developments, current challenges and future perspectives on cellulosic hemodialysis membranes for highly efficient clearance of uremic toxins,” Materials Today Communications, vol. 27, pp. 31, 2021.
[11] D. Roy, R. J. Hogg, P. A. Wilby, N. Matthews, P. H. Henning, and K. F. Jureidini, “Continuous veno-venous hemodiafiltration using bicarbonate dialysate,” Pediatric Nephrology, vol. 11, no. 6, pp. 680-683, 1997.
[12] R. L. McGill, and D. E. Weiner, “Dialysate Composition for Hemodialysis: Changes and Changing Risk,” Seminars in Dialysis, vol. 30, no. 2, pp. 112-120, 2017.
[13] H. N. Murdeshwar, and F. Anjum, Hemodialysis: StatPearls Publishing, Treasure Island (FL), 2025.
[14] H. Lee, K. H. Liu, Y. H. Yang, J. D. Liao, B. S. Lin, Z. Z. Wu, A. C. Chang, C. C. Tseng, M. C. Wang, and Y. S. Tsai, “Advances in uremic toxin detection and monitoring in the management of chronic kidney disease progression to end-stage renal disease,” Analyst, vol. 149, no. 10, pp. 2784-2795, 2024.
[15] F. Yang, K. Griva, T. Lau, A. Vathsala, E. Lee, H. J. Ng, N. Mooppil, M. Foo, S. P. Newman, K. S. Chia, and N. Luo, “Health-related quality of life of Asian patients with end-stage renal disease (ESRD) in Singapore,” Quality of Life Research, vol. 24, no. 9, pp. 2163-2171, 2015.
[16] A. Chuasuwan, S. Pooripussarakul, A. Thakkinstian, A. Ingsathit, and O. Pattanaprateep, “Comparisons of quality of life between patients underwent peritoneal dialysis and hemodialysis: a systematic review and meta-analysis,” Health and Quality of Life Outcomes, vol. 18, no. 1, pp. 11, 2020.
[17] J. J. Carrero, P. Stenvinkel, L. Cuppari, T. A. Ikizler, K. Kalantar-Zadeh, G. Kaysen, W. E. Mitch, S. R. Price, C. Wanner, A. Y. M. Wang, P. ter Wee, and H. A. Franch, “Etiology of the Protein-Energy Wasting Syndrome in Chronic Kidney Disease: A Consensus Statement From the International Society of Renal Nutrition andMetabolism (ISRNM),” Journal of Renal Nutrition, vol. 23, no. 2, pp. 77-90, 2013.
[18] M. Neovius, S. H. Jacobson, J. K. Eriksson, C. G. Elinder, and B. Hylander, “Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study,” BMJ Open, vol. 4, no. 2, pp. 9, 2014.
[19] C. Delrue, and M. M. Speeckaert, “The Potential Applications of Raman Spectroscopy in Kidney Diseases,” Journal of Personalized Medicine, vol. 12, no. 10, pp. 20, 2022.
[20] S. D. Duan, J. Y. Pi, C. H. Wang, Y. C. Hou, C. Y. A. Lee, C. J. Lin, L. Y. Shi, K. C. Young, and H. Y. Sun, “Assessment of ELISA-based method for the routine examination of serum indoxyl sulfate in patients with chronic kidney disease,” Heliyon, vol. 8, no. 12, pp. 7, 2022.
[21] T. Niwa, “UPDATE OF UREMIC TOXIN RESEARCH BY MASS SPECTROMETRY,” Mass Spectrometry Reviews, vol. 30, no. 3, pp. 510-521, 2011.
[22] A. Zhang, K. Rijal, S. K. Ng, K. Ravid, and V. Chitalia, “A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum,” Journal of Biological Methods, vol. 4, no. 3, pp. e75, 2017.
[23] M. Al Za'abi, B. Ali, and M. Al Toubi, “HPLC-fluorescence method for measurement of the uremic toxin indoxyl sulfate in plasma,” Journal of Chromatographic Science, vol. 51, no. 1, pp. 40-43, 2013.
[24] C.-N. Lin, I.-W. Wu, Y.-F. Huang, S.-Y. Peng, Y.-C. Huang, and H.-C. Ning, “Measuring serum total and free indoxyl sulfate and p-cresyl sulfate in chronic kidney disease using UPLC-MS/MS,” Journal of Food and Drug Analysis, vol. 27, no. 2, pp. 502-509, 2019.
[25] D. Zhao, Z. Jia, M. Xie, H.-M. Meng, S. Jin, and Z. Li, “Bimetallic metal organic frameworks-based nanozyme for colorimetry/fluorescence dual-mode uremic toxin detection,” Sensors and Actuators B: Chemical, vol. 423, pp. 136776, 2025.
[26] C. Lin, Y. Li, Y. Peng, S. Zhao, M. Xu, L. Zhang, Z. Huang, J. Shi, and Y. Yang, “Recent development of surface-enhanced Raman scattering for biosensing,” Journal of Nanobiotechnology, vol. 21, no. 1, pp. 149, 2023.
[27] D. Cialla-May, A. Bonifacio, T. Bocklitz, A. Markin, N. Markina, S. Fornasaro, A. Dwivedi, T. Dib, E. Farnesi, C. Liu, A. Ghosh, and J. Popp, “Biomedical SERS - the current state and future trends,” Chemical Society Reviews, vol. 53, no. 18, pp. 8957-8979, 2024.
[28] M. L. B. Figueiredo, C. S. Martin, L. N. Furini, R. J. G. Rubira, A. Batagin-Neto, P. Alessio, and C. J. L. Constantino, “Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species,” Applied Surface Science, vol. 522, pp. 9, 2020.
[29] C. Zong, M. X. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, and B. Ren, “Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges,” Chemical Reviews, vol. 118, no. 10, pp. 4946-4980, 2018.
[30] R. Beeram, K. R. Vepa, and V. R. Soma, “Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques,” Biosensors-Basel, vol. 13, no. 3, pp. 37, 2023.
[31] M. Blanco-Formoso, and R. A. Alvarez-Puebla, “Cancer Diagnosis through SERS and Other Related Techniques,” International Journal of Molecular Sciences, vol. 21, no. 6, pp. 20, 2020.
[32] E. H. Koh, W. C. Lee, Y. J. Choi, J. I. Moon, J. Jang, S. G. Park, J. Choo, D. H. Kim, and H. S. Jung, “A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection,” ACS Applied Materials & Interfaces, vol. 13, no. 2, pp. 3024-3032, 2021.
[33] X. Zhou, Z. W. Hu, D. T. Yang, S. X. Xie, Z. J. Jiang, R. Niessner, C. Haisch, H. B. Zhou, and P. H. Sun, “Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques,” Advanced Science, vol. 7, no. 23, pp. 23, 2020.
[34] M. Ferone, A. Gowen, S. Fanning, and A. G. M. Scannell, “Microbial detection and identification methods: Bench top assays to omics approaches,” Comprehensive Reviews in Food Science and Food Safety, vol. 19, no. 6, pp. 3106-3129, 2020.
[35] M. Paraskevaidi, B. J. Matthew, B. J. Holly, B. J. Hugh, C. P. V. Thulya, C. Loren, C. StJohn, G. Peter, G. Callum, S. G. Kazarian, K. Kamila, K. Maria, L. M. G. Kassio, M. H. L. Pierre, P. Evangelos, P. Savithri, A. A. John, S. Alexandra, S. Marfran, S. S. Josep, T. Gunjan, W. Michael, and W. Bayden, “Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases,” Applied Spectroscopy Reviews, vol. 56, no. 8-10, pp. 804-868, 2021.
[36] C. V. Raman, and K. S. Krishnan, “A new type of secondary radiation,” Nature, vol. 121, pp. 501-502, 1928.
[37] J. Moon, M. Li, A. J. Ramirez-Cuesta, and Z. Wu, "Raman Spectroscopy," Springer Handbook of Advanced Catalyst Characterization, I. E. Wachs and M. A. Bañares, eds., Cham: Springer International Publishing, pp. 75-110, 2023.
[38] L. Long, W. B. Ju, H. Y. Yang, and Z. Y. Li, “Dimensional Design for Surface-Enhanced Raman Spectroscopy,” ACS Materials Au, vol. 2, no. 5, pp. 552-575, 2022.
[39] A. Saletnik, B. Saletnik, and C. Puchalski, “Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues,” Molecules, vol. 26, no. 6, pp. 16, 2021.
[40] L. J. Cai, G. L. Fang, J. P. Tang, Q. M. Cheng, and X. X. Han, “Label-Free Surface-Enhanced Raman Spectroscopic Analysis of Proteins: Advances and Applications,” International Journal of Molecular Sciences, vol. 23, no. 22, pp. 18, 2022.
[41] S. Kumar, P. Kumar, A. Das, and C. S. Pathak, "Surface-Enhanced Raman Scattering: Introduction and Applications," Recent Advances in Nanophotonics - Fundamentals and Applications, M. Kahrizi and P. A. Sohi, eds., Rijeka: IntechOpen, 2020.
[42] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE,” Chemical Physics Letters, vol. 26, no. 2, pp. 163-166, 1974.
[43] M. G. Albrecht, and J. A. Creighton, “ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE,” Journal of the American Chemical Society, vol. 99, no. 15, pp. 5215-5217, 1977.
[44] C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Analytical Chemistry, vol. 77, no. 17, pp. 338 A-346 A, 2005.
[45] M. S. Islam, J. Sultana, R. A. Aoni, M. S. Habib, A. Dinovitser, B. W. H. Ng, and D. Abbott, “Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification,” Optics Letters, vol. 44, no. 5, pp. 1134-1137, 2019.
[46] T. Y. Jeon, D. J. Kim, S. G. Park, S. H. Kim, and D. H. Kim, “Nanostructured plasmonic substrates for use as SERS sensors,” Nano Convergence, vol. 3, pp. 20, 2016.
[47] K. A. Willets, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annual Review of Physical Chemistry, vol. 58, pp. 267-297, 2007.
[48] N. B. Colthup, L. H. Daly, and S. E. Wiberley, "CHAPTER 1 - VIBRATIONAL AND ROTATIONAL SPECTRA," Introduction to Infrared and Raman Spectroscopy (Second Edition), N. B. Colthup, L. H. Daly and S. E. Wiberley, eds., pp. 1-68: Academic Press, 1975.
[49] S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chemical Society Reviews, vol. 46, no. 13, pp. 4042-4076, 2017.
[50] P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annual Review of Analytical Chemistry, vol. 1, no. Volume 1, 2008, pp. 601-626, 2008.
[51] Q. F. He, Y. J. Zhang, Z. L. Yang, J. C. Dong, X. M. Lin, and J. F. Li, “Surface-Enhanced Raman Spectroscopy: Principles, Methods, and Applications in Energy Systems†,” Chinese Journal of Chemistry, vol. 41, no. 3, pp. 355-369, 2023.
[52] Z. Y. Li, “Mesoscopic and Microscopic Strategies for Engineering Plasmon-Enhanced Raman Scattering,” Advanced Optical Materials, vol. 6, no. 16, pp. 37, 2018.
[53] A. Kudelski, “Raman spectroscopy of surfaces,” Surface Science, vol. 603, no. 10-12, pp. 1328-1334, 2009.
[54] S. Aitekenov, A. Sultangaziyev, P. Abdirova, L. Yussupova, A. Gaipov, Z. Utegulov, and R. Bukasov, “Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers,” Critical Reviews in Analytical Chemistry, pp. 30, 2022.
[55] A. I. Pérez-Jiménez, D. Lyu, Z. X. Lu, G. K. Liu, and R. B. Ren, “Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments,” Chemical Science, vol. 11, no. 18, pp. 4563-4577, 2020.
[56] P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, “On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory,” Journal of Chemical Physics, vol. 108, no. 12, pp. 5013-5026, 1998.
[57] J. R. Lombardi, and R. L. Birke, “A Unified View of Surface-Enhanced Raman Scattering,” Accounts of Chemical Research, vol. 42, no. 6, pp. 734-742, 2009.
[58] S. Chandra, and J. Chowdhury, “SERS on all dielectric materials: A brief review,” vol. 28, no. 3, pp. 177-189, 2019.
[59] I. Alessandri, and J. R. Lombardi, “Enhanced Raman Scattering with Dielectrics,” Chemical Reviews, vol. 116, no. 24, pp. 14921-14981, 2016.
[60] P. Ji, Z. Wang, X. H. Shang, Y. Zhang, Y. K. Liu, Z. Mao, and X. M. Shi, “Direct Observation of Enhanced Raman Scattering on Nano-Sized ZrO2 Substrate: Charge-Transfer Contribution,” Frontiers in Chemistry, vol. 7, pp. 8, 2019.
[61] M. Y. Yi, Y. Zhang, J. W. Xu, D. Y. Deng, Z. Mao, X. C. Meng, X. M. Shi, and B. Zhao, “Surface-Enhanced Raman Scattering Activity of ZrO2 Nanoparticles: Effect of Tetragonal and Monoclinic Phases,” Nanomaterials, vol. 11, no. 9, pp. 14, 2021.
[62] H. Lee, J. D. Liao, K. Sivashanmugan, B. H. Liu, W. E. Fu, C. C. Chen, G. D. Chen, and Y. D. Juang, “Gold Nanoparticle-Coated ZrO2-Nanofiber Surface as a SERS-Active Substrate for Trace Detection of Pesticide Residue,” Nanomaterials, vol. 8, no. 6, pp. 11, 2018.
[63] L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” Journal of Physical Chemistry B, vol. 110, no. 47, pp. 23982-23986, 2006.
[64] D. Wu, M. N. Hu, Y. Y. Zhang, J. Zhou, and Z. N. Wang, “Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting,” Applied Surface Science, vol. 505, pp. 7, 2020.
[65] Z. Yi, G. Niu, J. S. Luo, X. L. Kang, W. T. Yao, W. B. Zhang, Y. G. Yi, Y. Yi, X. Ye, T. Duan, and Y. J. Tang, “Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate,” Scientific Reports, vol. 6, pp. 11, 2016.
[66] J. Sitjar, J. D. Liao, H. Lee, B. H. Liu, and W. E. Fu, “SERS-Active Substrate with Collective Amplification Design for Trace Analysis of Pesticides,” Nanomaterials, vol. 9, no. 5, pp. 12, 2019.
[67] R. S. Juang, Y. W. Cheng, W. T. Chen, K. S. Wang, C. C. Fu, S. H. Liu, R. J. Jeng, C. C. Chen, M. C. Yang, and T. Y. Liu, “Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone,” Applied Surface Science, vol. 521, pp. 8, 2020.
[68] M. Ocwieja, Z. Adamczyk, M. Morga, and K. Kubiak, “Silver particle monolayers - Formation, stability, applications,” Advances in Colloid and Interface Science, vol. 222, pp. 530-563, 2015.
[69] K. Mallik, M. Mandal, N. Pradhan, and T. Pal, “Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of "core-shell" type structures,” Nano Letters, vol. 1, no. 6, pp. 319-322, 2001.
[70] L. H. Lu, H. S. Wang, Y. H. Zhou, S. Q. Xi, H. J. Zhang, H. B. W. Jiawen, and B. Zhao, “Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties,” Chemical Communications, no. 2, pp. 144-145, 2002.
[71] S. Agnihotri, S. Mukherji, and S. Mukherji, “Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy,” RSC Advances, vol. 4, no. 8, pp. 3974-3983, 2014.
[72] C. D. Keating, K. K. Kovaleski, and M. J. Natan, “Heightened electromagnetic fields between metal nanoparticles: Surface enhanced Raman scattering from metal-cytochrome c-metal sandwiches,” Journal of Physical Chemistry B, vol. 102, no. 47, pp. 9414-9425, 1998.
[73] H. Z. Yu, J. Zhang, H. L. Zhang, and Z. F. Liu, “Surface-enhanced Raman scattering (SERS) from azobenzene self-assembled "sandwiches",” Langmuir, vol. 15, no. 1, pp. 16-19, 1999.
[74] M. Muniz-Miranda, B. Pergolese, A. Bigotto, and A. Giusti, “Stable and efficient silver substrates for SERS spectroscopy,” Journal of Colloid and Interface Science, vol. 314, no. 2, pp. 540-544, 2007.
[75] Y. C. Liu, “Sandwiched structure of Ag/polypyrrole/Au to improve the surfaced-enhanced Raman scattering,” Electrochemistry Communications, vol. 7, no. 10, pp. 1071-1076, 2005.
[76] L. F. Zhang, R. F. Zhao, Y. Z. Wu, Z. Y. Zhang, Y. Chen, M. C. Liu, N. Zhou, Y. Q. Wang, X. L. Fu, X. M. Zhuang, J. P. Wang, and L. X. Chen, “Ultralow-background SERS substrates for reliable identification of organic pollutants and degradation intermediates,” Journal of Hazardous Materials, vol. 460, pp. 9, 2023.
[77] A. Otto, A. Bruckbauer, and Y. X. Chen, “On the chloride activation in SERS and single molecule SERS,” Journal of Molecular Structure, vol. 661, pp. 501-514, 2003.
[78] L. J. Xu, C. Zong, X. S. Zheng, P. Hu, J. M. Feng, and B. Ren, “Label-Free Detection of Native Proteins by Surface-Enhanced Raman Spectroscopy Using Iodide-Modified Nanoparticles,” Analytical Chemistry, vol. 86, no. 4, pp. 2238-2245, 2014.
[79] D. Li, Z. Zhang, X. T. Wang, Y. P. Wang, X. Gao, and Y. Li, “A direct method for detecting proteins in body fluids by Surface-Enhanced Raman Spectroscopy under native conditions,” Biosensors & Bioelectronics, vol. 200, pp. 7, 2022.
[80] R. Vanholder, S. Van Laecke, and G. Glorieux, “What is new in uremic toxicity?,” Pediatric Nephrology, vol. 23, no. 8, pp. 1211-1221, 2008.
[81] I. Masakane, and K. Sakurai, “Current approaches to middle molecule removal: room for innovation,” Nephrology Dialysis Transplantation, vol. 33, pp. 12-21, 2018.
[82] M. H. Rosner, T. Reis, F. Husain-Syed, R. Vanholder, C. Hutchison, P. Stenvinkel, P. J. Blankestijn, M. Cozzolino, L. Juillard, K. Kashani, M. Kaushik, H. Kawanishi, Z. Massy, T. L. Sirich, L. Zuo, and C. Ronco, “Classification of Uremic Toxins and Their Role in Kidney Failure,” Clinical Journal of the American Society of Nephrology, vol. 16, no. 12, pp. 1918-1928, 2021.
[83] R. Vanholder, R. De Smet, G. Glorieux, A. Argilés, U. Baurmeister, P. Brunet, W. Clark, G. Cohen, P. P. De Deyn, R. Deppisch, B. Descamps-Latscha, T. Henle, A. Jörres, H. D. Lemke, Z. A. Massy, J. Passlick-Deetjen, M. Rodriguez, B. Stegmayr, P. Stenvinkel, C. Tetta, C. Wanner, and W. Zidek, “Review on uremic toxins:: Classification, concentration, and interindividual variability,” Kidney International, vol. 63, no. 5, pp. 1934-1943, 2003.
[84] Y. R. Ma, M. Y. Xin, K. Li, H. Wang, Z. Rao, T. X. Liu, and X. A. Wu, “An LC-MS/MS analytical method for the determination of uremic toxins in patients with end-stage renal disease,” Journal of Pharmaceutical and Biomedical Analysis, vol. 191, pp. 10, 2020.
[85] B. Meijers, W. Zadora, and J. Lowenstein, “A Historical Perspective on Uremia and Uremic Toxins,” Toxins, vol. 16, no. 5, pp. 14, 2024.
[86] H. Kawanishi, “Middle Molecular Uremic Toxin and Blood Purification Therapy,” Journal of Clinical Medicine, vol. 13, no. 3, pp. 8, 2024.
[87] A. L. Babb, S. Ahmad, J. Bergstrom, and B. H. Scribner, “THE MIDDLE MOLECULE HYPOTHESIS IN PERSPECTIVE,” American Journal of Kidney Diseases, vol. 1, no. 1, pp. 46-50, 1981.
[88] P. Ciceri, and M. Cozzolino, “Expanded Haemodialysis as a Current Strategy to Remove Uremic Toxins,” Toxins, vol. 13, no. 6, pp. 14, 2021.
[89] K. Lauri, J. Arund, J. Holmar, R. Tanner, S. Kalle, M. Luman, and I. Fridolin, “Removal of Urea, β2-Microglobulin, and Indoxyl Sulfate Assessed by Absorbance and Fluorescence in the Spent Dialysate During Hemodialysis,” ASAIO Journal, vol. 66, no. 6, pp. 698-705, 2020.
[90] P. C. Sivanathan, K. S. Ooi, M. Haniff, M. Ahmadipour, C. F. Dee, N. M. Mokhtar, A. A. Hamzah, and E. Y. Chang, “Lifting the Veil: Characteristics, Clinical Significance, and Application of β-2-Microglobulin as Biomarkers and Its Detection with Biosensors,” ACS Biomaterials Science & Engineering, vol. 8, no. 8, pp. 3142-3161, 2022.
[91] J. W. Becker, and G. N. Reeke Jr, “Three-dimensional structure of beta 2-microglobulin,” Proceedings of the National Academy of Sciences, vol. 82, no. 12, pp. 4225-4229, 1985.
[92] C. Rosano, S. Zuccotti, and M. Bolognesi, “The three-dimensional structure of β2 microglobulin: Results from X-ray crystallography,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1753, no. 1, pp. 85-91, 2005.
[93] J. L. Zhang, X. X. Lu, Y. Zu, H. Li, and S. X. Wang, “Prognostic value of beta-2 microglobulin on mortality in chronic kidney disease patients: A systematic review and meta-analysis,” Therapeutic Apheresis and Dialysis, vol. 26, no. 2, pp. 267-274, 2022.
[94] C. M. Shi, Y. Zhu, Y. P. Su, L. W. K. Chung, and T. M. Cheng, “β2-Microglobulin: emerging as a promising cancer therapeutic target,” Drug Discovery Today, vol. 14, no. 1-2, pp. 25-30, 2009.
[95] Y. Kambe, K. Kuwahara, M. Sato, T. Nakaoki, and T. Yamaoka, “Enhanced β2-microglobulin binding of a "navigator" molecule bearing a single-chain variable fragment antibody for artificial switching of metabolic processing pathways,” Biomaterials Science, vol. 9, no. 16, pp. 5551-5558, 2021.
[96] Z. Y. Liu, F. Tang, J. Z. Yang, X. Chen, Z. F. Wang, and Z. Q. Li, “The Role of Beta2-Microglobulin in Central Nervous System Disease,” Cellular and Molecular Neurobiology, vol. 44, no. 1, pp. 13, 2024.
[97] S. Yamamoto, “Molecular mechanisms underlying uremic toxin-related systemic disorders in chronic kidney disease: focused on β2-microglobulin-related amyloidosis and indoxyl sulfate-induced atherosclerosis-Oshima Award Address 2016,” Clinical and Experimental Nephrology, vol. 23, no. 2, pp. 151-157, 2019.
[98] H. E. Gong, H. C. Zhang, J. W. Zhu, C. Wang, S. W. Sun, W. M. Zheng, and D. B. Bu, “Improving prediction of burial state of residues by exploiting correlation among residues,” BMC Bioinformatics, vol. 18, pp. 11, 2017.
[99] A. D. Kline, G. W. Becker, L. M. Churgay, B. E. Landen, D. K. Martin, W. L. Muth, R. Rathnachalam, J. M. Richardson, B. Schoner, M. Ulmer, and J. E. Hale, “Leptin is a four-helix bundle: Secondary structure by NMR,” FEBS Letters, vol. 407, no. 2, pp. 239-242, 1997.
[100] F. M. Zhang, Y. Y. Chen, M. Heiman, and R. Dimarchi, "Leptin: Structure, function and biology," Vitamins and Hormones - Advances in Research and Applications, Vol 71, Vitamins and Hormones G. Litwack, ed., pp. 345-+, San Diego: Elsevier Academic Press Inc, 2005.
[101] R. J. Denver, R. M. Bonett, and G. C. Boorse, “Evolution of Leptin Structure and Function,” Neuroendocrinology, vol. 94, no. 1, pp. 21-38, 2011.
[102] K. Tsuji, T. Maeda, T. Kawane, A. Matsunuma, and N. Horiuchi, “Leptin Stimulates Fibroblast Growth Factor 23 Expression in Bone and Suppresses Renal 1α,25-Dihydroxyvitamin D3 Synthesis in Leptin-Deficient Mice,” Journal of Bone and Mineral Research, vol. 25, no. 8, pp. 1711-1723, 2010.
[103] J. F. Briffa, A. J. McAinch, P. Poronnik, and D. H. Hryciw, “Adipokines as a link between obesity and chronic kidney disease,” American Journal of Physiology-Renal Physiology, vol. 305, no. 12, pp. F1629-F1636, 2013.
[104] J. Korczynska, A. Czumaj, M. Chmielewski, J. Swierczynski, and T. Sledzinski, “The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients,” International Journal of Molecular Sciences, vol. 22, no. 9, pp. 11, 2021.
[105] L. D'Marco, M. J. Puchades, J. L. Gorriz, M. Romero-Parra, M. Lima-Martínez, C. Soto, V. Bermúdez, and P. Raggi, “Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease,” International Journal of Molecular Sciences, vol. 21, no. 3, pp. 13, 2020.
[106] S. Coimbra, S. Rocha, M. J. Valente, C. Catarino, E. Bronze-da-Rocha, L. Belo, and A. Santos-Silva, “New Insights into Adiponectin and Leptin Roles in Chronic Kidney Disease,” Biomedicines, vol. 10, no. 10, pp. 19, 2022.
[107] J. W. Lu, P. J. Chi, Y. L. Lin, C. H. Wang, and B. G. E. Hsu, “Serum leptin levels are positively associated with aortic stiffness in patients with chronic kidney disease stage 3-5,” Adipocyte, vol. 9, no. 1, pp. 206-211, 2020.
[108] N. Kuhar, S. Sil, and S. Umapathy, “Potential of Raman spectroscopic techniques to study proteins,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 258, pp. 14, 2021.
[109] N. Feliu, M. Hassan, E. G. Rico, D. X. Cui, W. Parak, and R. Alvarez-Puebla, “SERS Quantification and Characterization of Proteins and Other Biomolecules,” Langmuir, vol. 33, no. 38, pp. 9711-9730, 2017.
[110] A. M. Herrero, “Raman spectroscopy for monitoring protein structure in muscle food systems,” Critical Reviews in Food Science and Nutrition, vol. 48, no. 6, pp. 512-523, 2008.
[111] X. S. Zheng, I. J. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 197, pp. 56-77, 2018.
[112] S. Reymond-Laruinaz, L. Saviot, V. Potin, and M. D. M. de Lucas, “Protein-nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study,” Applied Surface Science, vol. 389, pp. 17-24, 2016.
[113] S. Aitekenov, A. Sultangaziyev, A. Ilyas, A. Dyussupova, A. Boranova, A. Gaipov, and R. Bukasov, “Surface-enhanced Raman spectroscopy (SERS) for protein determination in human urine,” Sensing and Bio-Sensing Research, vol. 38, pp. 10, 2022.
[114] J. Paats, A. Adoberg, J. Arund, I. Fridolin, K. Lauri, L. Leis, M. Luman, and R. Tanner, “Optical Method and Biochemical Source for the Assessment of the Middle-Molecule Uremic Toxin β2-Microglobulin in Spent Dialysate,” Toxins, vol. 13, no. 4, pp. 15, 2021.
[115] D. Kukkar, M. Chhillar, and K. H. Kim, “Application of SERS-based nanobiosensors to metabolite biomarkers of CKD,” Biosensors & Bioelectronics, vol. 232, pp. 12, 2023.
[116] D. Wu, Y. H. Chen, S. Hou, W. J. Fang, and H. W. Duan, “Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures,” Chembiochem, vol. 20, no. 19, pp. 2432-2441, 2019.
[117] R. S. Juang, K. S. Wang, Y. C. Chen, Y. J. Chu, Y. J. Lin, S. H. Liu, D. Z. Lin, and T. Y. Liu, “Electrochemically deposited Au nano-island on laser-scribed graphene substrates as EC-SERS biochips for uremic toxins detection,” Journal of the Taiwan Institute of Chemical Engineers, vol. 163, pp. 9, 2024.
[118] R. S. Juang, K. S. Wang, T. Y. Kuan, Y. J. Chu, R. J. Jeng, A. Hardiansyah, S. H. Liu, and T. Y. Liu, “Electric field-stimulated Raman scattering enhancing biochips fabricated by Au nano-islands deposited on laser-scribed 3D graphene for uremic toxins detection,” Journal of the Taiwan Institute of Chemical Engineers, vol. 154, pp. 6, 2024.
[119] P. Wen, F. Yang, C. Ge, S. B. Li, Y. Xu, and L. Chen, “Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection,” Nanotechnology, vol. 32, no. 39, pp. 11, 2021.
[120] R. S. Senger, M. Sullivan, A. Gouldin, S. Lundgren, K. Merrifield, C. Steen, E. Baker, T. Vu, B. Agnor, G. Martinez, H. Coogan, W. Carswell, V. Kavuru, L. Karageorge, D. Dev, P. Du, A. Sklar, J. Pirkle, S. Guelich, G. Orlando, and J. L. Robertson, “Spectral characteristics of urine from patients with end-stage kidney disease analyzed using Raman Chemometric Urinalysis (Rametrix),” PLoS One, vol. 15, no. 1, pp. 12, 2020.
[121] T. Bocklitz, A. Walter, K. Hartmann, P. Rösch, and J. Popp, “How to pre-process Raman spectra for reliable and stable models?,” Analytica Chimica Acta, vol. 704, no. 1-2, pp. 47-56, 2011.
[122] F. Y. Cui, Y. Yue, Y. Zhang, Z. M. Zhang, and H. S. Zhou, “Advancing Biosensors with Machine Learning,” ACS Sensors, vol. 5, no. 11, pp. 3346-3364, 2020.
[123] F. Lussier, V. Thibault, B. Charron, G. Q. Wallace, and J. F. Masson, “Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering,” TrAC-Trends in Analytical Chemistry, vol. 124, pp. 15, 2020.
[124] F. Duranton, G. Cohen, R. De Smet, M. Rodriguez, J. Jankowski, R. Vanholder, and A. Argiles, “Normal and Pathologic Concentrations of Uremic Toxins,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1258-1270, 2012.
[125] K. N. Clayton, J. W. Salameh, S. T. Wereley, and T. L. Kinzer-Ursem, “Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry,” Biomicrofluidics, vol. 10, no. 5, pp. 14, 2016.
[126] Y. T. Feng, J. X. Dai, C. Y. Wang, H. Y. Zhou, J. H. Li, G. Ni, M. F. Zhang, and Y. J. Huang, “Ag Nanoparticle/Au@Ag Nanorod Sandwich Structures for SERS-Based Detection of Perfluoroalkyl Substances,” ACS Applied Nano Materials, vol. 6, no. 15, pp. 13974-13983, 2023.
[127] M. Gambucci, E. Cambiotti, P. Sassi, and L. Latterini, “Multilayer Gold-Silver Bimetallic Nanostructures to Enhance SERS Detection of Drugs,” Molecules, vol. 25, no. 15, pp. 12, 2020.
[128] I. R. M. Ramos, A. Malkin, and F. M. Lyng, “Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer,” Biomed Research International, vol. 2015, pp. 9, 2015.
[129] D. Nemecek, J. Stepanek, and G. J. Thomas Jr, “Raman Spectroscopy of Proteins and Nucleoproteins,” Current Protocols in Protein Science, vol. Chapter 17, no. 1, pp. 17.8.1-17.8.52, 2013.
[130] G. Y. Zhu, X. Zhu, Q. Fan, and X. L. Wan, “Raman spectra of amino acids and their aqueous solutions,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 78, no. 3, pp. 1187-1195, 2011.
[131] Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Applied Spectroscopy Reviews, vol. 42, no. 5, pp. 493-541, 2007.
[132] S. Lee, J. Oh, K. Lee, M. Cho, B. Paulson, and J. K. Kim, “Diagnosis of Ischemic Renal Failure Using Surface-Enhanced Raman Spectroscopy and a Machine Learning Algorithm,” Analytical Chemistry, vol. 94, no. 50, pp. 17477-17484, 2022.
[133] H. Lee, J. D. Liao, H. P. Tsai, C. H. Chen, J. Sitjar, W. E. Fu, and F. H. Lin, “Label-free SERS method with size-matched selectivity for analytes of varying sizes,” Surfaces and Interfaces, vol. 44, pp. 10, 2024.
[134] P. Wen, F. Yang, L. G. Tang, X. L. Hu, H. X. Zhao, B. Tang, and L. Chen, “Precise regulation and control of hotspots in nanoparticle multilayer SERS substrates,” Microchemical Journal, vol. 187, pp. 6, 2023.
[135] S. Y. Feng, D. Lin, J. Q. Lin, B. H. Li, Z. F. Huang, G. N. Chen, W. Zhang, L. Wang, J. J. Pan, R. Chen, and H. S. Zeng, “Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer,” Analyst, vol. 138, no. 14, pp. 3967-3974, 2013.
[136] J. M. Benevides, S. A. Overman, and G. J. Thomas Jr., “Raman Spectroscopy of Proteins,” Current Protocols in Protein Science, vol. 33, no. 1, pp. 17.8.1-17.8.35, 2003.
[137] Y. M. Lin, J. M. Gao, S. Z. Tang, X. Zhao, M. M. Zheng, W. Gong, S. S. Xie, S. Q. Gao, Y. Yu, and J. Q. Lin, “Label-free diagnosis of breast cancer based on serum protein purification assisted surface-enhanced Raman spectroscopy,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 263, pp. 8, 2021.
[138] R. Xiao, X. H. Zhang, Z. Rong, B. S. Xiu, X. Q. Yang, C. W. Wang, W. D. Hao, Q. Zhang, Z. Q. Liu, C. M. Duan, K. Zhao, X. Guo, Y. W. Fan, Y. F. Zhao, H. Johnson, Y. Huang, X. Y. Feng, X. H. Xu, H. Q. Zhang, and S. Q. Wang, “Non-invasive detection of hepatocellular carcinoma serum metabolic profile through surface-enhanced Raman spectroscopy,” Nanomedicine-Nanotechnology Biology and Medicine, vol. 12, no. 8, pp. 2475-2484, 2016.
[139] J. Guo, Z. Rong, Y. Li, S. Q. Wang, W. X. Zhang, and R. Xiao, “Diagnosis of chronic kidney diseases based on surface-enhanced Raman spectroscopy and multivariate analysis,” Laser Physics, vol. 28, no. 7, pp. 7, 2018.
[140] M. M. Hassan, M. Zareef, T. H. Jiao, S. S. Liu, Y. Xu, A. Viswadevarayalu, H. H. Li, and Q. S. Chen, “Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea,” Food Chemistry, vol. 338, pp. 7, 2021.
[141] X. Y. Cui, T. Liu, X. S. Xu, Z. Y. Zhao, Y. Tian, Y. Zhao, S. Chen, Z. Wang, Y. D. Wang, D. Y. Hu, S. Fu, G. Y. Shan, J. R. Sun, K. X. Song, and Y. Zeng, “Label-free detection of multiple genitourinary cancers from urine by surface-enhanced Raman spectroscopy,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 240, pp. 7, 2020.
[142] X. X. Han, Y. Kitahama, T. Itoh, C. X. Wang, B. Zhao, and Y. Ozaki, “Protein-Mediated Sandwich Strategy for Surface-Enhanced Raman Scattering: Application to Versatile Protein Detection,” Analytical Chemistry, vol. 81, no. 9, pp. 3350-3355, 2009.
[143] J. D. Speed, R. P. Johnson, J. T. Hugall, N. N. Lal, P. N. Bartlett, J. J. Baumberg, and A. E. Russell, “SERS from molecules bridging the gap of particle-in-cavity structures,” Chemical Communications, vol. 47, no. 22, pp. 6335-6337, 2011.
[144] K. Cabello-Solorzano, I. Ortigosa de Araujo, M. Peña, L. Correia, and A. J. Tallón-Ballesteros, "The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis." pp. 344-353.
[145] W. Wang, X. Zhang, S. Gombault, and S. Knapskog, "Attribute Normalization in Network Intrusion Detection." pp. 448-453.
[146] D. Singh, and B. Singh, “Feature wise normalization: An effective way of normalizing data,” Pattern Recognition, vol. 122, pp. 14, 2022.
[147] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
校內:2030-08-03公開