簡易檢索 / 詳目顯示

研究生: 陳美芸
Chen, Mei-Yun
論文名稱: 以溶熱法合成V : ZrSiO4粉末之製程參數研究
Synthesis and characterizations of vanadium doped ZrSiO4 powders via solvothermal reaction
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 溶熱法矽酸鋯膠溶作用釉料
外文關鍵詞: solvothermal, ZrSiO4, vanadium, glaze
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶熱法製備出高純度之釩摻雜於矽酸鋯 ( V : ZrSiO4 ) 粉末。粉末製備主要以兩種方法進行,分別在溶熱反應前有無膠溶作用處理。方法一在不進行膠溶作用情況下,探討溶劑種類對矽酸鋯粉末合成影響。為了進一步控制粉末形貌及大小,因此利用方法二,探討於溶熱反應前,加入HCl進行膠溶處理,對於溶熱反應後產物性質影響,其合成產物之結晶相、形貌分別由XRD、SEM儀器分析觀察。此外探討HCl於溶熱反應中之影響及其用途。在獲得適當反應參數之後,將釩離子摻雜於矽酸鋯晶體結構中,藉由EDS、XRF及ICP分析溶熱過程中釩離子進入結構中的情形,並使用XPS判斷矽酸鋯晶體中釩離子的價數狀態與百分比例。最後將以溶熱法與溶膠凝膠法製得產物,經由1200 ˚C熱處理時間為2小時,比較兩種製程產物之性質差異。以溶熱法製備V:ZrSiO4粉末具有高純度優勢,未來能有效取代溶膠凝膠法並應用作為高溫釉料之用。

    High purity of vanadium-doped zirconium silicate (ZrSiO4) powders were prepared via solvothermal method. Disk-like ZrSiO4 submicron-scaled single crystals were formed when using 1 M of HCl as mineralizer; whereas nanoparticles particles were obtained by using 3 M of HNO3 as mineralizer. The doping limit and the valence of vanadium ions in the ZrSiO4 structure were detected by EDS and XPS analyses. The doped vanadium appeared both V4+ and V5+. As HNO3 participate in the reaction, the content of vanadium and V5+ increased in ZrSiO4 structure. The doped V5+ turned V4+ after doing heat treatment at 1200 ˚C for 2 h. V4+ doped ZrSiO4 blue powders were obtained had high purity.

    摘要 I Abstract II 誌謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 理論基礎與文獻回顧 4 2.1 ZrSiO4晶體結構 4 2.2 ZrSiO4合成 5 2.2.1 溶膠凝膠法 ( Sol – gel Method) 7 2.2.2 共沉澱法 ( Coprecipitation Method) 9 2.2.3 水熱法 ( Hydrothermal Method) 10 2.3 膠溶作用 ( Peptization ) 14 2.4 陶瓷釉料 16 2.4.1 色料之礦物結構類型 17 2.4.1.1 尖晶石型 17 2.4.1.2 鋯石型 17 2.4.2 鋯釩藍色料 19 2.4.3 色料呈色原理 20 第三章 實驗方法及步驟 22 3.1 起始原料 22 3.2 實驗流程 23 3.3 粉末性質分析 26 3.3.1 X-ray 粉末繞射分析 ( X-ray Diffraction, XRD ) 26 3.3.2 掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 27 3.3.3 穿透式電子顯微鏡 ( Transmission Electron Microscopy, TEM ) 27 3.3.4 感應耦合電漿質譜分析儀 ( Inductively Coupled Plasma-Mass Spectrometry, ICP ) 28 3.3.5 能量分散式X射線螢光光譜儀 ( Energy Dispersive X-ray Fluorescence, EDXRF ) 28 3.3.6 X射線光電子能譜儀 ( X-ray Photoelectron Spectrometer, XPS ) 29 3.3.7 紫外線/可見光分光光譜儀 ( UV-Visible Spectrophotometry, UV–Vis ) 30 第四章 實驗結果與討論 32 4.1 以溶熱法製備矽酸鋯粉末 32 4.1.1 溶劑種類影響 32 4.1.2 溶熱反應前驅物型態的影響 35 4.1.3 膠溶作用前處理 36 4.1.4 礦化劑HCl影響 40 4.1.5 溶熱反應時間的影響 41 4.2 摻雜不同種類及比例之釩離子於矽酸鋯晶體結構 44 4.2.1 釩離子種類於前驅物溶液中釩離子價數比例及顏色差異 44 4.2.2 摻雜不同種類及比例之釩離子於矽酸鋯晶體結構之產物性質比較 47 4.2.2.1 產物形貌及結晶性 – SEM與XRD分析 47 4.2.2.2 產物之釩離子固含量及價數變化 – SEM-EDS、XRF、ICP及XPS分析 53 4.3 氧化型礦化劑HNO3影響 61 4.4 釩摻雜矽酸鋯之色料呈色效果 65 4.5 溶熱法與溶膠凝膠法合成粉末之特性比較 71 第五章 結論 76 參考文獻 78

    [1] C. A. Seabright, “Blue turquoise,” Ceramic Pigments, U.S. patent, 2,441,407 (1948)
    [2] G. Cappelletti, S. Ardizzone, P. Fermo, S. Gilardoni, “The influence of iron content on the promotion of the zircon structure and the optical properties of pink coral pigments,” J. Eur. Ceram. Soc., 25, 911-917 (2005)
    [3] T. Demiray, D. K. Nath, F. A. Hummel, “Zircon-vanadium blue pigment,” J. Am. Ceram. Soc., 53, 1-4 (1970)
    [4] J. A. Badenes, J. B.Vicent, M. Llusar, M. A. Tena, G. Monros, “The nature of Pr-ZrSiO4 yellow ceramic pigment,” J. Mater. Sci ., 37, 1413-1420 (2002)
    [5] H. Cui, M. Zayat, D. Levy, “Epoxide assisted sol-gel synthesis of rutile NixTi1−3xSb2xO2 solid solution nanoparticles,” J. Sol-Gel Sci. Technol., 41, 313-317 (2007)
    [6] M. Cannio, F. Bondioli, “Mechanical activation of raw materials in the synthesis of Fe2O3–ZrSiO4 inclusion pigment,” J. Eur. Ceram. Soc., 32, 643-647 (2012)
    [7] M. Llusar, J. B. Vicent, J. Badenes, M. A. Tena, G. Monrós, “ Environmental optimisation of blue vanadium zircon ceramic pigment,” J. Eur. Ceram. Soc., 19, 2647-2657 (1999)
    [8] F. Zhao, W. Li, H. Luo, “Sol-gel modified method for obtention of gray and pink ceramic pigments in zircon matrix,” J. Sol-Gel Sci. Technol., 49, 247–252 (2009)
    [9] G. Monrós, J. Carda, M. A. Tena, P. Escribano, J. Alarcón, “Effects of ZrO2 precursors on the synthesis of V-ZrSiO4 solid solutions by the sol-gel method,” J. Mater. Sci., 27, 351-357 (1992)
    [10] P. Tartaja, L. C. De Jonghe, “Preparation of nanospherical amorphous zircon powders by a microemulsion-mediated process,” J. Mater. Chem., 110, 2786-2790 (2000)
    [11] M. Hirano, H. Morikawa, M. Inagaki, “Direct Synthesis of new zircon-type ZrGeO4 and Zr(Ge,Si)O4 solid solutions,” J. Am. Ceram. Soc., 85, 1915-1920 (2002)
    [12] J. Yang, S. Mei, J. M. F. Ferreira, P. Norby, S. Quaresmâ, “Fabrication of rutile rod-like particle by hydrothermal method : an insight into HNO3 peptization,” J. Coll. Inter. Sci., 283, 102-106 (2005)
    [13] J. H. Kim, B. H. Noh, G. D. Lee, S. S. Hong, “Hydrothermal synthesis of titanium dioxide using acidic peptizing agents and their photocatalytic activity,” Korean. J. Chem. Eng., 22, 370-374 (2005)
    [14] H. Cheng, J. Ma, Z. Zhao, L. Qi, “Hydrothermal preparation of uniform nanosize rutile and anatase particles,” Chem. Mater., 7, 663-671 (1995)
    [15] X. Zhu, J. Ma, Y. Wang, J. Tao, B. Lin, Y. Ren, X. Jiang, J. Liu, “Morphology-controlled synthesis and characterization of bismuth sulfide crystallites via a hydrothermal method,” Ceram. Int., 34, 249-251 (2008)
    [16] W. C. Butterman, W. R. Foster, ”Zircon stability and the ZrO2-SiO2 phase diagram,” J. Am. Mineral., 52, 880-885 (1967).
    [17] R. W. G. Wyckoff, ”Crystal structure (second edition),” 3Wiley, New York, 15 (1963)
    [18] R. Terki, G. Bertrand, H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng., 1, 514-523 (2005)
    [19] R. J. Finch, J. M. Hanchar, “Structure and Chemistry of Zircon and Zircon-Group Minerals,” Rev. Min. Geo., 53, 1-25 (2003)
    [20] M. Shoyama, “Sol–gel synthesis of zircon–effect of addition of lithium ions,” J. Mater. Sci., 33, 4821-4828 (1998)
    [21] H. Kim, P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. App. Phy., 92, 5094-5102 (2002)
    [22] K. Byrappa, M. Yoshimura, “A technology for crystal growth and materials processing,” Hand. Hydro.Tech., 756 (2001)
    [23] J. Livage, M. Henry, C. Sanchez , “Sol-gel chemistry of transition metal oxides,” Prog. Solid Sate Chem., 18, 259-341 (1988)
    [24] T. Mori , H. Yamamura, “Preparation of high-purity ZrSiO4 powder using sol-gel processing and mechanical properties of the sintered body,” J. Am. Ceram. Soc., 75, 2420-26 (1992)
    [25] G. D. Nero , G. Cappelletti , S. Ardizzone, P. Fermo, S. Gilardoni, “Yellow Pr-zircon pigments The role of praseodymium and of the mineralizer,” J. Eur. Ceram. Soc, 24, 3603-3611 (2004)
    [26] N. Montoya, J. Alarcón, ”Microstructural evolution from praseodymium-containing zircon gels to Prx-ZrSiO4 solid solutions,” J. Am. Ceram. Soc., 95, 1255–1260 (2012)
    [27] Z. Li, Q. Zhen, Y. Wang, “Sol-gel synthesis and characterization of ultrafine ZrSiO4 powder,” Adv. Mater. Res., 906, 66-71 (2014)
    [28] T. Itoh, “Formation of polycrystalline zircon (ZrSiO4) from amorphous silica and amorphous zirconia,” J. Cryst. Growth., 125, 223-228 (1992)
    [29] A. Moosavi, A. Aghaei, “Comparison of solution combustion and co-precipitation methods in synthesis of iron zircon coral pigment,” Pigment & Resin Technology, 39, 203-207 (2010)
    [30]戴妤娟,以微波溶熱法製備奈米及二氧化鈦及其光催化性質研究,國立成功大學資源工程研究所,中華民國101年6月。
    [31] R. A. Laudise, “Hydrothermal synthesis of crystals,” J. Chem, Eng, News., 9, 30-43 (1987)
    [32] W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Am. Ceram. Soc. Bull., 67, 1673-1678 (1988)
    [33] V. K. Lamer, R. H. Dinegar, “ Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc., 72, 4847-4854 (1950)
    [34] G. Cao, Y. Wang, “Nanostructures and nanomaterials: synthesis, properties, and applications,” Imperial College Press, London, (2004)
    [35] A. Mosset, P. Baules, P. Lecante, J. C. Trombe, H. Ahamdane, F. Bensamka, “A new solution route to silicates Part 4. -submicronic zircon powders,” J. Mater. Chem., 6, 1527-1532 (1996)
    [36] F. Wang, D. Liu, J. Zhu, D. Li, “Microwave hydrothermal synthesis of ZrSiO4 nano-powders,” Adv. Mater. Res., 295-297, 1485-1488 (2011)
    [37] J. Yang, S. Mei, Jose´ M. F. Ferreira, “Hydrothermal synthesis of nanosized titania powders : influence of peptization and peptizing agents on the crystalline phases and phase transitions,” J. Am. Ceram. Soc., 83, 1361-1368 (2000)
    [38] R. Zhang, L. Gao, "Effect of peptization on phase transformation of TiO2 nanoparticles," Mater. Res. Bull., 36, 1957-1965 (2001)
    [39] V Kattoor, V. S Smitha, A. P. Mohamed, U. N. S. Hareesh, K. G. Warrier, “Temperature assisted acid catalyzed peptization of TiO2; facile sol–gel approach for thermally stable anatase phase,” Roy. Soc. Chem., 4, 21664-21671 (2014)
    [40] S. Atul, “The pearson gide to physical chemistry for the aipmt,” Pearson Education India., 12.12 (2011)
    [41] J, Yang, S, Mei, J. M.F. Ferreira, P. Norby, S. Quaresmâ, “Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization,” J. Coll. Inter. Sci., 283, 102-106 (2005)
    [42] V. Kattoor, V. S. Smitha, A. P. Mohamed, U. N. S. Hareesh, K. G. Warrier, “Temperature assisted acid catalyzed peptization of TiO2;facile sol-gel approach for thermally stable anatase phase,” RSC Adv., 4, 21664-21671 (2014)
    [43] K. Shijina, S. Sankar, M. Midhun, M. Firozkjan, B. N. Nair, K. G. Warrier, U. N. S. Hareesh, “Very low thermal conductivity in lanthanum phosphate–zirconia ceramic nanocomposites processed using a precipitation–peptization synthetic approach,” New J. Chem., 40, 5333-5337 (2016)
    [44] W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc., 54, 3841-3851 (1932)
    [45] 蘇展平, “釉藥原理與實務,” 中華民國陶業研究學會出版, 78-83 (2000)
    [46] Z. Mesíková, P. Śulcová, M. Trojan, “Preparation and practical application of spinel pigment Co0.46Zn0.55(Ti0.064Cr0.91)2O4,” J. Therm. Anal. Calorim., 84, 733-736 (2006)
    [47] L. K. C. De Souza, J. R. Zamian, G. N. Da Rocha Filho, L. E. B. Soledade, I. M. G. Dos Santos, A. G. Souza, T. Scheller, R. S. Angélica, C. E. F. De Costa, ” Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method,” Dyes Pigm., 81, 187-192 (2009)
    [48] 俞康泰, 田高, 胡亞萍, 徐望輝, “ 對包裹型鎘硒紅釉的組成和呈色機理的研究,” 陶瓷, 4, 25-28 (1999)
    [49] H. F. Liu, W. B. Dai, H. Wang, L. K. Zeng, Y. M. Wang, “Study on the preparation of the CdSxSe1-x @ ZrSiO4 red ceramic pigments and its properties,” J. Sol-Gel Sci. Technol., 75,198-205 (2015)
    [50] 俞康泰, 朱志斌, “鋯釩藍色料中釩的價態研究,” 陶瓷學報, 21, 186-189 (2000)
    [51] J. K. Kar, R. Stevens, C. R. Bowen, “Novel terbium-zircon yellow pigment,” J. Mater. Sci., 39, 5755-5763 (2004)
    [52] M. Trojan, “Synthesis of gray zirconium silicate pigments from zircon mineral” J. Am. Ceram. Soc., 73, 2892-2895 (1990)
    [53] M. Trojan, “Synthesis of a yellow zircon pigment,” Dyes and Pigments., 9, 261-273 (1998)
    [54] T. Z. Dimitrov, L. Georgieva, S. Vassilev, “Study of ceramic pigments from the ZrO2- SiO2- Fe2O3 system,” Bol. Soc. Esp. Ceram. Vidrio., 42, 235-237 (2003)
    [55] M. Shoyama, K. Hashimoto, T. Hashimoto, H. Nasu, K. Kamiya, “Iron-zircon pigments prepared by the sol-gel method,” J. Ceram. Soc. Jpn., 107, 534-540 (1999)
    [56] G. Monrós, J. Carda, M. A. Tena, P. Escribano, M. Sales, J. Alarcón, “Synthesis and characterization of V2O5-SiO2-ZrO2 pigments by sol-gel method,” J. Non-Cryst. Solids., 147-148, 588–593 (1992)
    [57] K. R. Pyon, B. H. Lee, “Synthesis of V-ZrSiO4 blue ceramic pigments,” Mater. Sci. Forum., 658, 105-108 (2010)
    [58] A. Niesert, R. Sievers, A. Siggel, K. Langer, M. Jansen, “Preparation and optical absorption of zircons, co-doped with vanadium and rare earth elements,” Solid State Sci., 6, 1149-1154 (2004)
    [59] M. Trojan, “Synthesis of a blue-green pigment from the mineral zircon,” Ceram. Int., 16, 295-299 (1990)
    [60] M. Trojan, “Synthesis of a grey-brown zirconium silicate pigment,” Ceram. Int., 16, 135-141 (1990)
    [61] V. I. Matkovich, P. M. Corbett, “Formation of zircon from zirconium dioxide and silicon dioxide in the presence of vanadium pentoxide,” J. Am. Ceram. Soc., 44, 128–130 (1961).
    [62] G. Monrós, J. Carda, M. A. Tena, P. Escribano, “Different kinds of solid solutions in the V2O5-ZrSiO4-NaF system by sol-gel processes and their characterization,” J. Eur. Ceram. Soc., 11, 77-86 (1993)
    [63] J. Alarcón, “Crystallization behaviour and microstructural development in ZrSiO4 and V-ZrSiO4 solid solutions from colloidal gels,” J. Eur. Ceram. Soc., 20, 1749-1759 (2000)
    [64] S. Ardizzon, G. Cappelletti, P. Fermo, C. Oliva, M. Scavini, F. Scime, “ Structural and spectroscopic investigations of blue, vanadium-doped ZrSiO4 pigments prepared by a sol-gel,” J. Phys. Chem. B., 109, 22112-22119 (2005)
    [65] 林威廷,以快速溶熱反應法合成單一粒徑Ce:YAG球形單晶之製程參數研究,國立成功大學資源工程學系碩士論文,民國101年
    [66] H. Zhu, D. Yang, Z. Xi, L. Zhu, “Hydrothermal synthesis and characterization of zirconia nanocrystallites,” J. Am. Ceram. Soc., 90, 1334-1338 (2007)
    [67] W. J. Li, E. W. Shi, T. Fukuda, “Particle size of powders under hydrothermal conditions,” Cryst. Res. Technol., 38, 847-858 (2003)
    [68] P. Pinceloup, C. Courtois, J. Vicens, A. Leriche, B. Thierry, “Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders,” J. Eur. Ceram. Soc., 19, 973–977 (1999)
    [69] C. R. Peterson, E. B. Slamovich, “Effect of processing parameters on the morphology of hydrothermally derived PbTiO3 powders,” J. Am. Chem. Soc., 82, 1702–1710 (1999)
    [70] A. Annamalai, D. Carvalho, K. C. Wilson, M. J. Lee, “Properties of hydrothermally synthesized Zn2SnO4 nanoparticles using Na2CO3 as a novel mineralizer,” Mater. Charact., 61, 873-881 (2010)
    [71] J. Xu, S. Li, J. Weng, X. Wang, Z. Zhou, K. Yang, M. Liu, X. Chen, Q. Cui, M. Cao, Q. Zhang, “Hydrothermal syntheses of gold nanocrystals:from icosahedral to its truncated form,” Adv. Funct. Mater., 18, 277-284 (2008)
    [72] R. Garg, R. Singh, “Inorganic chemistry,” McGraw-Hill Education (2015)
    [73] M. Reichenbächer, J. Popp, “Challenges in molecular structure determination,” Springer Science & Business Media (2012)
    [74] X. Gao, S. R. Bare, B. M. Weckhuysen, I. E. Wachs, “In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions,” J. Phys. Chem. B., 102, 10842–10852 (1998)
    [75] K. Takahashi, S. J. Limnner, Y. Wang, G. Cao, “Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition,” J. Phys. Chem. B., 108, 9795-9800 (2004)
    [76] F. M. Moore, K. W. Hicks, “Mechanism of the permanganate ion oxidation of Vanadium,” Inorg. Chem., 14, 413-416 (1975)
    [77] J. M. Escriche, A. S. Cabeza, M. D. L. G. Cirugeda, F. B. Reig, “Spectrophotometric determination of vanadium by oxidation of pyrogallol red,” Analyst., 108, 1402-1408 (1983)
    [78] K. W. Kolasinski, W. B. Barclay, ”The stoichiometry of electroless silicon etching in solutions of V2O5 and HF,” Angew. Chem. Int., 52, 6731–6734 (2013)
    [79] C. Valentín, M. C. Muñoz, J. Alarcón, “Synthesis and characterization of vanadium-containing ZrSiO4 solid solutions from gels,” J. Sol-Gel Sci. Technol., 15, 221-230 (1999)
    [80] M. Ocaña, A. R. González-Elipe, V. M. Orera, P. Tartaj, C. Serna, “Spectroscopic studies on the localization of vanadium (IV) in vanadium-doped zircon pigments,” J. Am. Ceram. Soc., 81, 395-400 (1998)
    [81] C. Subrahmanyam, B. Louis, B. Viswanathan, A. Renken, T. K. Varadaraja, “Synthesis, characterization and catalytic properties of vanadium substituted mesoporous aluminophosphates,” Appl. Cata. A-Gen., 282, 67-71 (2005)
    [82] V. Bondarenka, S. Grebinskij, S. Kaciulis, G. Mattogno, S. Mickevicius, “XPS study of vanadium–yttrium hydrates,” J. Electron. Spectrosc. Relat. Phenom., 120, 131–135 (2001)
    [83] A. Annamalai, Y. D. Eo, C. Im, M. J. Lee, “Surface properties and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers,” Mater. Charact., 62, 1007-1015 (2011)
    [84] Y. S. Bae, D. C. Kim, C. H. Ahn. J. H. K, H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal., 42, 978-982 (2010)
    [85] 張建榮, 高濂, “納米晶氧化錫的水熱和成與表徵,” 化學學報, 61, 1965-1968 (2003)
    [89] 薛華, “分析化學,” 清華大學出版 (1994)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE