| 研究生: |
陳美芸 Chen, Mei-Yun |
|---|---|
| 論文名稱: |
以溶熱法合成V : ZrSiO4粉末之製程參數研究 Synthesis and characterizations of vanadium doped ZrSiO4 powders via solvothermal reaction |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 溶熱法 、矽酸鋯 、釩 、膠溶作用 、釉料 |
| 外文關鍵詞: | solvothermal, ZrSiO4, vanadium, glaze |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶熱法製備出高純度之釩摻雜於矽酸鋯 ( V : ZrSiO4 ) 粉末。粉末製備主要以兩種方法進行,分別在溶熱反應前有無膠溶作用處理。方法一在不進行膠溶作用情況下,探討溶劑種類對矽酸鋯粉末合成影響。為了進一步控制粉末形貌及大小,因此利用方法二,探討於溶熱反應前,加入HCl進行膠溶處理,對於溶熱反應後產物性質影響,其合成產物之結晶相、形貌分別由XRD、SEM儀器分析觀察。此外探討HCl於溶熱反應中之影響及其用途。在獲得適當反應參數之後,將釩離子摻雜於矽酸鋯晶體結構中,藉由EDS、XRF及ICP分析溶熱過程中釩離子進入結構中的情形,並使用XPS判斷矽酸鋯晶體中釩離子的價數狀態與百分比例。最後將以溶熱法與溶膠凝膠法製得產物,經由1200 ˚C熱處理時間為2小時,比較兩種製程產物之性質差異。以溶熱法製備V:ZrSiO4粉末具有高純度優勢,未來能有效取代溶膠凝膠法並應用作為高溫釉料之用。
High purity of vanadium-doped zirconium silicate (ZrSiO4) powders were prepared via solvothermal method. Disk-like ZrSiO4 submicron-scaled single crystals were formed when using 1 M of HCl as mineralizer; whereas nanoparticles particles were obtained by using 3 M of HNO3 as mineralizer. The doping limit and the valence of vanadium ions in the ZrSiO4 structure were detected by EDS and XPS analyses. The doped vanadium appeared both V4+ and V5+. As HNO3 participate in the reaction, the content of vanadium and V5+ increased in ZrSiO4 structure. The doped V5+ turned V4+ after doing heat treatment at 1200 ˚C for 2 h. V4+ doped ZrSiO4 blue powders were obtained had high purity.
[1] C. A. Seabright, “Blue turquoise,” Ceramic Pigments, U.S. patent, 2,441,407 (1948)
[2] G. Cappelletti, S. Ardizzone, P. Fermo, S. Gilardoni, “The influence of iron content on the promotion of the zircon structure and the optical properties of pink coral pigments,” J. Eur. Ceram. Soc., 25, 911-917 (2005)
[3] T. Demiray, D. K. Nath, F. A. Hummel, “Zircon-vanadium blue pigment,” J. Am. Ceram. Soc., 53, 1-4 (1970)
[4] J. A. Badenes, J. B.Vicent, M. Llusar, M. A. Tena, G. Monros, “The nature of Pr-ZrSiO4 yellow ceramic pigment,” J. Mater. Sci ., 37, 1413-1420 (2002)
[5] H. Cui, M. Zayat, D. Levy, “Epoxide assisted sol-gel synthesis of rutile NixTi1−3xSb2xO2 solid solution nanoparticles,” J. Sol-Gel Sci. Technol., 41, 313-317 (2007)
[6] M. Cannio, F. Bondioli, “Mechanical activation of raw materials in the synthesis of Fe2O3–ZrSiO4 inclusion pigment,” J. Eur. Ceram. Soc., 32, 643-647 (2012)
[7] M. Llusar, J. B. Vicent, J. Badenes, M. A. Tena, G. Monrós, “ Environmental optimisation of blue vanadium zircon ceramic pigment,” J. Eur. Ceram. Soc., 19, 2647-2657 (1999)
[8] F. Zhao, W. Li, H. Luo, “Sol-gel modified method for obtention of gray and pink ceramic pigments in zircon matrix,” J. Sol-Gel Sci. Technol., 49, 247–252 (2009)
[9] G. Monrós, J. Carda, M. A. Tena, P. Escribano, J. Alarcón, “Effects of ZrO2 precursors on the synthesis of V-ZrSiO4 solid solutions by the sol-gel method,” J. Mater. Sci., 27, 351-357 (1992)
[10] P. Tartaja, L. C. De Jonghe, “Preparation of nanospherical amorphous zircon powders by a microemulsion-mediated process,” J. Mater. Chem., 110, 2786-2790 (2000)
[11] M. Hirano, H. Morikawa, M. Inagaki, “Direct Synthesis of new zircon-type ZrGeO4 and Zr(Ge,Si)O4 solid solutions,” J. Am. Ceram. Soc., 85, 1915-1920 (2002)
[12] J. Yang, S. Mei, J. M. F. Ferreira, P. Norby, S. Quaresmâ, “Fabrication of rutile rod-like particle by hydrothermal method : an insight into HNO3 peptization,” J. Coll. Inter. Sci., 283, 102-106 (2005)
[13] J. H. Kim, B. H. Noh, G. D. Lee, S. S. Hong, “Hydrothermal synthesis of titanium dioxide using acidic peptizing agents and their photocatalytic activity,” Korean. J. Chem. Eng., 22, 370-374 (2005)
[14] H. Cheng, J. Ma, Z. Zhao, L. Qi, “Hydrothermal preparation of uniform nanosize rutile and anatase particles,” Chem. Mater., 7, 663-671 (1995)
[15] X. Zhu, J. Ma, Y. Wang, J. Tao, B. Lin, Y. Ren, X. Jiang, J. Liu, “Morphology-controlled synthesis and characterization of bismuth sulfide crystallites via a hydrothermal method,” Ceram. Int., 34, 249-251 (2008)
[16] W. C. Butterman, W. R. Foster, ”Zircon stability and the ZrO2-SiO2 phase diagram,” J. Am. Mineral., 52, 880-885 (1967).
[17] R. W. G. Wyckoff, ”Crystal structure (second edition),” 3Wiley, New York, 15 (1963)
[18] R. Terki, G. Bertrand, H. Aourag, “Full potential investigations of structural and electronic properties of ZrSiO4,” Microelectron. Eng., 1, 514-523 (2005)
[19] R. J. Finch, J. M. Hanchar, “Structure and Chemistry of Zircon and Zircon-Group Minerals,” Rev. Min. Geo., 53, 1-25 (2003)
[20] M. Shoyama, “Sol–gel synthesis of zircon–effect of addition of lithium ions,” J. Mater. Sci., 33, 4821-4828 (1998)
[21] H. Kim, P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. App. Phy., 92, 5094-5102 (2002)
[22] K. Byrappa, M. Yoshimura, “A technology for crystal growth and materials processing,” Hand. Hydro.Tech., 756 (2001)
[23] J. Livage, M. Henry, C. Sanchez , “Sol-gel chemistry of transition metal oxides,” Prog. Solid Sate Chem., 18, 259-341 (1988)
[24] T. Mori , H. Yamamura, “Preparation of high-purity ZrSiO4 powder using sol-gel processing and mechanical properties of the sintered body,” J. Am. Ceram. Soc., 75, 2420-26 (1992)
[25] G. D. Nero , G. Cappelletti , S. Ardizzone, P. Fermo, S. Gilardoni, “Yellow Pr-zircon pigments The role of praseodymium and of the mineralizer,” J. Eur. Ceram. Soc, 24, 3603-3611 (2004)
[26] N. Montoya, J. Alarcón, ”Microstructural evolution from praseodymium-containing zircon gels to Prx-ZrSiO4 solid solutions,” J. Am. Ceram. Soc., 95, 1255–1260 (2012)
[27] Z. Li, Q. Zhen, Y. Wang, “Sol-gel synthesis and characterization of ultrafine ZrSiO4 powder,” Adv. Mater. Res., 906, 66-71 (2014)
[28] T. Itoh, “Formation of polycrystalline zircon (ZrSiO4) from amorphous silica and amorphous zirconia,” J. Cryst. Growth., 125, 223-228 (1992)
[29] A. Moosavi, A. Aghaei, “Comparison of solution combustion and co-precipitation methods in synthesis of iron zircon coral pigment,” Pigment & Resin Technology, 39, 203-207 (2010)
[30]戴妤娟,以微波溶熱法製備奈米及二氧化鈦及其光催化性質研究,國立成功大學資源工程研究所,中華民國101年6月。
[31] R. A. Laudise, “Hydrothermal synthesis of crystals,” J. Chem, Eng, News., 9, 30-43 (1987)
[32] W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Am. Ceram. Soc. Bull., 67, 1673-1678 (1988)
[33] V. K. Lamer, R. H. Dinegar, “ Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc., 72, 4847-4854 (1950)
[34] G. Cao, Y. Wang, “Nanostructures and nanomaterials: synthesis, properties, and applications,” Imperial College Press, London, (2004)
[35] A. Mosset, P. Baules, P. Lecante, J. C. Trombe, H. Ahamdane, F. Bensamka, “A new solution route to silicates Part 4. -submicronic zircon powders,” J. Mater. Chem., 6, 1527-1532 (1996)
[36] F. Wang, D. Liu, J. Zhu, D. Li, “Microwave hydrothermal synthesis of ZrSiO4 nano-powders,” Adv. Mater. Res., 295-297, 1485-1488 (2011)
[37] J. Yang, S. Mei, Jose´ M. F. Ferreira, “Hydrothermal synthesis of nanosized titania powders : influence of peptization and peptizing agents on the crystalline phases and phase transitions,” J. Am. Ceram. Soc., 83, 1361-1368 (2000)
[38] R. Zhang, L. Gao, "Effect of peptization on phase transformation of TiO2 nanoparticles," Mater. Res. Bull., 36, 1957-1965 (2001)
[39] V Kattoor, V. S Smitha, A. P. Mohamed, U. N. S. Hareesh, K. G. Warrier, “Temperature assisted acid catalyzed peptization of TiO2; facile sol–gel approach for thermally stable anatase phase,” Roy. Soc. Chem., 4, 21664-21671 (2014)
[40] S. Atul, “The pearson gide to physical chemistry for the aipmt,” Pearson Education India., 12.12 (2011)
[41] J, Yang, S, Mei, J. M.F. Ferreira, P. Norby, S. Quaresmâ, “Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization,” J. Coll. Inter. Sci., 283, 102-106 (2005)
[42] V. Kattoor, V. S. Smitha, A. P. Mohamed, U. N. S. Hareesh, K. G. Warrier, “Temperature assisted acid catalyzed peptization of TiO2;facile sol-gel approach for thermally stable anatase phase,” RSC Adv., 4, 21664-21671 (2014)
[43] K. Shijina, S. Sankar, M. Midhun, M. Firozkjan, B. N. Nair, K. G. Warrier, U. N. S. Hareesh, “Very low thermal conductivity in lanthanum phosphate–zirconia ceramic nanocomposites processed using a precipitation–peptization synthetic approach,” New J. Chem., 40, 5333-5337 (2016)
[44] W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc., 54, 3841-3851 (1932)
[45] 蘇展平, “釉藥原理與實務,” 中華民國陶業研究學會出版, 78-83 (2000)
[46] Z. Mesíková, P. Śulcová, M. Trojan, “Preparation and practical application of spinel pigment Co0.46Zn0.55(Ti0.064Cr0.91)2O4,” J. Therm. Anal. Calorim., 84, 733-736 (2006)
[47] L. K. C. De Souza, J. R. Zamian, G. N. Da Rocha Filho, L. E. B. Soledade, I. M. G. Dos Santos, A. G. Souza, T. Scheller, R. S. Angélica, C. E. F. De Costa, ” Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method,” Dyes Pigm., 81, 187-192 (2009)
[48] 俞康泰, 田高, 胡亞萍, 徐望輝, “ 對包裹型鎘硒紅釉的組成和呈色機理的研究,” 陶瓷, 4, 25-28 (1999)
[49] H. F. Liu, W. B. Dai, H. Wang, L. K. Zeng, Y. M. Wang, “Study on the preparation of the CdSxSe1-x @ ZrSiO4 red ceramic pigments and its properties,” J. Sol-Gel Sci. Technol., 75,198-205 (2015)
[50] 俞康泰, 朱志斌, “鋯釩藍色料中釩的價態研究,” 陶瓷學報, 21, 186-189 (2000)
[51] J. K. Kar, R. Stevens, C. R. Bowen, “Novel terbium-zircon yellow pigment,” J. Mater. Sci., 39, 5755-5763 (2004)
[52] M. Trojan, “Synthesis of gray zirconium silicate pigments from zircon mineral” J. Am. Ceram. Soc., 73, 2892-2895 (1990)
[53] M. Trojan, “Synthesis of a yellow zircon pigment,” Dyes and Pigments., 9, 261-273 (1998)
[54] T. Z. Dimitrov, L. Georgieva, S. Vassilev, “Study of ceramic pigments from the ZrO2- SiO2- Fe2O3 system,” Bol. Soc. Esp. Ceram. Vidrio., 42, 235-237 (2003)
[55] M. Shoyama, K. Hashimoto, T. Hashimoto, H. Nasu, K. Kamiya, “Iron-zircon pigments prepared by the sol-gel method,” J. Ceram. Soc. Jpn., 107, 534-540 (1999)
[56] G. Monrós, J. Carda, M. A. Tena, P. Escribano, M. Sales, J. Alarcón, “Synthesis and characterization of V2O5-SiO2-ZrO2 pigments by sol-gel method,” J. Non-Cryst. Solids., 147-148, 588–593 (1992)
[57] K. R. Pyon, B. H. Lee, “Synthesis of V-ZrSiO4 blue ceramic pigments,” Mater. Sci. Forum., 658, 105-108 (2010)
[58] A. Niesert, R. Sievers, A. Siggel, K. Langer, M. Jansen, “Preparation and optical absorption of zircons, co-doped with vanadium and rare earth elements,” Solid State Sci., 6, 1149-1154 (2004)
[59] M. Trojan, “Synthesis of a blue-green pigment from the mineral zircon,” Ceram. Int., 16, 295-299 (1990)
[60] M. Trojan, “Synthesis of a grey-brown zirconium silicate pigment,” Ceram. Int., 16, 135-141 (1990)
[61] V. I. Matkovich, P. M. Corbett, “Formation of zircon from zirconium dioxide and silicon dioxide in the presence of vanadium pentoxide,” J. Am. Ceram. Soc., 44, 128–130 (1961).
[62] G. Monrós, J. Carda, M. A. Tena, P. Escribano, “Different kinds of solid solutions in the V2O5-ZrSiO4-NaF system by sol-gel processes and their characterization,” J. Eur. Ceram. Soc., 11, 77-86 (1993)
[63] J. Alarcón, “Crystallization behaviour and microstructural development in ZrSiO4 and V-ZrSiO4 solid solutions from colloidal gels,” J. Eur. Ceram. Soc., 20, 1749-1759 (2000)
[64] S. Ardizzon, G. Cappelletti, P. Fermo, C. Oliva, M. Scavini, F. Scime, “ Structural and spectroscopic investigations of blue, vanadium-doped ZrSiO4 pigments prepared by a sol-gel,” J. Phys. Chem. B., 109, 22112-22119 (2005)
[65] 林威廷,以快速溶熱反應法合成單一粒徑Ce:YAG球形單晶之製程參數研究,國立成功大學資源工程學系碩士論文,民國101年
[66] H. Zhu, D. Yang, Z. Xi, L. Zhu, “Hydrothermal synthesis and characterization of zirconia nanocrystallites,” J. Am. Ceram. Soc., 90, 1334-1338 (2007)
[67] W. J. Li, E. W. Shi, T. Fukuda, “Particle size of powders under hydrothermal conditions,” Cryst. Res. Technol., 38, 847-858 (2003)
[68] P. Pinceloup, C. Courtois, J. Vicens, A. Leriche, B. Thierry, “Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders,” J. Eur. Ceram. Soc., 19, 973–977 (1999)
[69] C. R. Peterson, E. B. Slamovich, “Effect of processing parameters on the morphology of hydrothermally derived PbTiO3 powders,” J. Am. Chem. Soc., 82, 1702–1710 (1999)
[70] A. Annamalai, D. Carvalho, K. C. Wilson, M. J. Lee, “Properties of hydrothermally synthesized Zn2SnO4 nanoparticles using Na2CO3 as a novel mineralizer,” Mater. Charact., 61, 873-881 (2010)
[71] J. Xu, S. Li, J. Weng, X. Wang, Z. Zhou, K. Yang, M. Liu, X. Chen, Q. Cui, M. Cao, Q. Zhang, “Hydrothermal syntheses of gold nanocrystals:from icosahedral to its truncated form,” Adv. Funct. Mater., 18, 277-284 (2008)
[72] R. Garg, R. Singh, “Inorganic chemistry,” McGraw-Hill Education (2015)
[73] M. Reichenbächer, J. Popp, “Challenges in molecular structure determination,” Springer Science & Business Media (2012)
[74] X. Gao, S. R. Bare, B. M. Weckhuysen, I. E. Wachs, “In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions,” J. Phys. Chem. B., 102, 10842–10852 (1998)
[75] K. Takahashi, S. J. Limnner, Y. Wang, G. Cao, “Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition,” J. Phys. Chem. B., 108, 9795-9800 (2004)
[76] F. M. Moore, K. W. Hicks, “Mechanism of the permanganate ion oxidation of Vanadium,” Inorg. Chem., 14, 413-416 (1975)
[77] J. M. Escriche, A. S. Cabeza, M. D. L. G. Cirugeda, F. B. Reig, “Spectrophotometric determination of vanadium by oxidation of pyrogallol red,” Analyst., 108, 1402-1408 (1983)
[78] K. W. Kolasinski, W. B. Barclay, ”The stoichiometry of electroless silicon etching in solutions of V2O5 and HF,” Angew. Chem. Int., 52, 6731–6734 (2013)
[79] C. Valentín, M. C. Muñoz, J. Alarcón, “Synthesis and characterization of vanadium-containing ZrSiO4 solid solutions from gels,” J. Sol-Gel Sci. Technol., 15, 221-230 (1999)
[80] M. Ocaña, A. R. González-Elipe, V. M. Orera, P. Tartaj, C. Serna, “Spectroscopic studies on the localization of vanadium (IV) in vanadium-doped zircon pigments,” J. Am. Ceram. Soc., 81, 395-400 (1998)
[81] C. Subrahmanyam, B. Louis, B. Viswanathan, A. Renken, T. K. Varadaraja, “Synthesis, characterization and catalytic properties of vanadium substituted mesoporous aluminophosphates,” Appl. Cata. A-Gen., 282, 67-71 (2005)
[82] V. Bondarenka, S. Grebinskij, S. Kaciulis, G. Mattogno, S. Mickevicius, “XPS study of vanadium–yttrium hydrates,” J. Electron. Spectrosc. Relat. Phenom., 120, 131–135 (2001)
[83] A. Annamalai, Y. D. Eo, C. Im, M. J. Lee, “Surface properties and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers,” Mater. Charact., 62, 1007-1015 (2011)
[84] Y. S. Bae, D. C. Kim, C. H. Ahn. J. H. K, H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal., 42, 978-982 (2010)
[85] 張建榮, 高濂, “納米晶氧化錫的水熱和成與表徵,” 化學學報, 61, 1965-1968 (2003)
[89] 薛華, “分析化學,” 清華大學出版 (1994)