簡易檢索 / 詳目顯示

研究生: 徐詠軒
Hsu, Yung-Hsuan
論文名稱: 相容於⾯板級封裝之光波導與低損耦合結構開發
Development of Panel Level RDL Process Compatible Waveguide and Low Loss Coupling Structure
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 97
中文關鍵詞: 矽光子聚合物波導光柵耦合器光互連
外文關鍵詞: Chip-to-board optical interconnect, Backside grating coupler, Polymer waveguide
相關次數: 點閱:39下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高速運算與低功耗通訊需求的提升,矽光子技術已成為先進封裝與光電整合的關鍵平台。為因應 2.5D/3D 光互連架構所需,本論文設計出相容於面板級封裝製程之光波導與低損耗耦合結構,可將矽光子晶片正面朝上貼合於封裝基板,保留元件側功能並支援晶圓堆疊的光耦合方案。
    本論文利用粒子群優化演算法(Particle Swarm Optimization, PSO)與 Lumerical FDTD 模擬工具,在 1310 nm 入射波長下,針對不同功能需求設計三種光柵耦合器,分別為基板方向垂直光柵耦合器、基板方向寬頻光柵耦合器及特定繞射角度光柵耦合器,其最高耦合效率分別為-0.458 dB、-0.605 dB 及-1.266 dB。以及針對面板端聚合物光波導進行材料選擇與幾何結構分析,最後整合前述光柵耦合器與聚合物波導,採用寬頻光柵耦合器建構完整的晶片至面板端耦合封裝架構,其最高耦合效率可達-2.22 dB。此外,亦針對轉向鏡角度的製程限制,設計特定繞射角之光柵並進行整體耦合架構模擬,其耦合效率最高可達 -3 dB。

    Driven by the increasing demands for high-performance computing and low-power communication, silicon photonics has emerged as a key enabling technology for advanced packaging and electro-optic integration. To address the requirements of 2.5D/3D optical interconnect architectures, this work presents the design of waveguides and low-loss coupling structures that are compatible with panel-level packaging processes. The pro-posed approach enables face-up bonding of silicon photonic chips onto the package substrate, thereby preserving front-side device accessibility and supporting optical coupling schemes suitable for wafer stacking.
    In this study, three types of grating couplers were designed to meet various functional requirements at a central wavelength of 1310 nm, using the Particle Swarm Optimization (PSO) algorithm in conjunction with Lumerical FDTD simulations. These include: (1) a backside vertical grating coupler,(2) a backside broadband grating coupler, and (3) a grating coupler with a specific diffraction angle. The peak coupling efficiencies achieved were −0.458 dB, −0.605 dB, and −1.266 dB, respectively. Additionally, material selection and geometrical optimization of the panel-side polymer waveguides were performed. By integrating the optimized broadband grating coupler with the polymer waveguide, a complete chip-to-panel optical interface was realized, achieving a maximum coupling efficiency of −2.22 dB. Furthermore, in view of fabrication constraints associated with the deflection mirror angle, a grating coupler with a tailored diffraction angle was developed and incorporated into the coupling architecture, resulting in a peak coupling efficiency of −3 dB.

    中文摘要 I Abstract II 致謝 XX 目錄 XXI 圖目錄 XXIII Chapter 1 緒論 1 1-1. 簡介 1 1-2. 光纖-晶片耦合器 2 1-3. 光柵耦合器 3 1-4. 邊緣耦合器 4 1-5. 研究動機 5 1-6. 本文結構 7 Chapter 2 理論分析 8 2-1. 光柵耦合器工作原理 8 2-2. 布拉格條件 10 2-3. Effective Index Method 12 2-4. 光柵性能分析 16 2-5. 時域有限差分法 (Finite-Difference Time-Domain, FDTD) 17 Chapter 3 設計與模擬 22 3-1. 光柵耦合器 22 3-1.1 粒子群優化演算法 22 3-1.2 Lumerical FDTD Solution 25 3-1.3 基板方向垂直光柵耦合器 26 3-1.4 基板方向寬頻光柵耦合器 30 3-1.5 特定角度之光柵耦合器 32 3-2. 面板端光波導的材料與規格探討 34 3-2.1 有效折射率 35 3-2.2 繞射光與波導之模態匹配 43 3-2.3 彎曲損耗 51 3-3. 基礎結構之模擬與優化 55 Chapter 4 結論 63 參考文獻 64

    [1]Chao Xiang, Steven M Bowers, Alexis Bjorlin, Robert Blum, and John E Bowers. Perspective on the future of silicon photonics and electronics. Applied Physics Letters,118(22), 2021.
    [2]Zhiping Zhou, Ruixuan Chen, Xinbai Li, and Tiantian Li. Development trends in silicon photonics for data centers. Optical Fiber Technology, 44:13–23, 2018. Special Issue on Data Center Communications.
    [3]Jonathan K Doylend and Sanjeev Gupta. An overview of silicon photonics for lidar.Silicon Photonics XV, 11285:109–115, 2020.
    [4]Kirill Zinoviev, Laura G Carrascosa, José Sánchez del Río, Borja Sepúlveda, Carlos Domínguez, and Laura M Lechuga. Silicon photonic biosensors for lab-on-a-chip applications. Advances in Optical Technologies, 2008(1):383927, 2008.
    [5]R Bergh, H Lefevre, and H Shaw. An overview of fiber-optic gyroscopes. Journal of Lightwave Technology, 2(2):91–107, 1984.
    [6]Zunyue Zhang, Shujiao Zhang, Xingyu Liu, Zhijie Wei, Tarun Sharma, Ganapathy Senthil Murugan, Hon Ki Tsang, Tiegen Liu, and Zhenzhou Cheng. Integrated optical spectrometers on silicon photonics platforms. Laser & Photonics Reviews,19(7):2400155, 2025.
    [7]Riccardo Marchetti, Cosimo Lacava, Lee Carroll, Kamil Gradkowski, and Paolo Minzioni. Coupling strategies for silicon photonics integrated chips. Photonics Research, 7(2):201–239, 2019.
    [8]Xin Mu, Sailong Wu, Lirong Cheng, and HY Fu. Edge couplers in silicon photonic integrated circuits: A review. Applied Sciences, 10(4):1538, 2020.
    [9]Theodor Tamir and Song-Tsuen Peng. Analysis and design of grating couplers. Applied physics, 14:235–254, 1977.
    [10]Robert Halir, Alejandro Ortega-Moñux, Daniel Benedikovic, Goran Z.Mashanovich,J. Gonzalo Wangüemert-Pérez, Jens H. Schmid, Íñigo Molina-Fernández, and Pavel Cheben. Subwavelength-grating metamaterial structures for silicon photonic devices.Proceedings of the IEEE, 106(12):2144–2157, 2018.
    [11]Lirong Cheng, Simei Mao, Zhi Li, Yaqi Han, and HY Fu. Grating couplers on silicon photonics: Design principles, emerging trends and practical issues. Micromachines,11(7):666, 2020.
    [12]Nivesh Mangal, Jeroen Missinne, Geert Van Steenberge, Joris Van Campenhout, and Bradley Snyder. Performance evaluation of backside emitting o-band grating couplers for 100-?m-thick silicon photonics interposers. IEEE Photonics Journal, 11(3):1–11,2019.
    [13]Thomas Van Vaerenbergh, Sean Hooten, Mudit Jain, Peng Sun, Quentin Wilmart,Ashkan Seyedi, Zhihong Huang, Marco Fiorentino, and Ray Beausoleil. Wafer-level testing of inverse-designed and adjoint-inspired dual layer si-sin vertical grating couplers. Journal of Physics: Photonics, 4(4):044001, 2022.
    [14]Bradley Snyder and Peter O’Brien. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(6):954–959, 2013.
    [15]Nivesh Mangal, Jeroen Missinne, Geert Van Steenberge, Joris Van Campenhout, and Brad Snyder. Packaging silicon photonics with polymer waveguides for 3d electro-optical integration. In 2017 IEEE Photonics Conference (IPC), pages 707–708. IEEE,2017.
    [16]Robert Halir, Przemek J Bock, Pavel Cheben, Alejandro Ortega-Moñux, Carlos Alonso-Ramos, Jens H Schmid, Jean Lapointe, Dan-Xia Xu, J Gonzalo Wangüemert-Pérez, Íñigo Molina-Fernández, et al. Waveguide sub-wavelength structures: a review of prin-ciples and applications. Laser & Photonics Reviews, 9(1):25–49, 2015.
    [17]G Benjamin Hocker and William K Burns. Mode dispersion in diffused channel waveguides by the effective index method. Applied optics, 16(1):113–118, 1977.
    [18]MA Davis, AD Kersey, J Sirkis, and EJ Friebele. Shape and vibration mode sensing using a fiber optic bragg grating array. Smart materials and structures, 5(6):759, 1996.
    [19]Kin Seng Chiang. Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory. Journal of lightwave technology, 9(1):62–72, 1991.
    [20]A. Yariv. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 9(9):919–933, 1973.
    [21]Li Yu, Lu Liu, Zhiping Zhou, and Xingjun Wang. High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections. Optics Communications, 355:161–166, 2015.
    [22]Yeyu Tong, Wen Zhou, and Hon Ki Tsang. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm duv lithography. Optics letters, 43(23):5709–5712, 2018.
    [23]Allen Taflove, Susan C Hagness, and Melinda Piket-May. Computational electromag-netics: the finite-difference time-domain method. The Electrical Engineering Hand book, 3(629-670):15, 2005.
    [24]Kane Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation,14(3):302–307, 1966.
    [25]Jacob Robinson and Yahya Rahmat-Samii. Particle swarm optimization in electromagnetics. IEEE transactions on antennas and propagation, 52(2):397–407, 2004.
    [26]Nivesh Mangal, Jeroen Missinne, Joris Van Campenhout, Geert Van Steenberge, and Brad Snyder. Integration of ball lens in through-package via to enable photonic chip-to-board coupling. In 2018 IEEE 68th Electronic Components and Technology Conference(ECTC), pages 1140–1145. IEEE, 2018.
    [27]Katsunari Okamoto. Fundamentals of optical waveguides. Elsevier, 2021.
    [28]SCM Lidgate, P Sewell, and TM Benson. Conformal mapping: limitations for waveguide bend analysis. IEE Proceedings-Science, Measurement and Technology,149(5):262–266, 2002.
    [29]K. S. Chiang. Analysis of optical fibers by the effective-index method. Appl. Opt.,25(3):348–354, Feb 1986.
    [30]Neil V. Sapra, Dries Vercruysse, Logan Su, Ki Youl Yang, Jinhie Skarda, Alexander Y. Piggott, and Jelena Vučković. Inverse design and demonstration of broadband grating couplers. IEEE Journal of Selected Topics in Quantum Electronics, 25(3):1–7, 2019.
    [31]Neil V. Sapra, Dries Vercruysse, Logan Su, Ki Youl Yang, Jinhie Skarda, Alexander Y.Piggott, and Jelena Vučković. Inverse design and demonstration of broadband grating couplers. IEEE Journal of Selected Topics in Quantum Electronics, 25(3):1–7, 2019.
    [32]Takeru Amano, Akihiro Noriki, Isao Tamai, Yasuhiro Ibusuki, Akio Ukita, Satoshi Suda, Takayuki Kurosu, Koichi Takemura, Tsuyoshi Aoki, Daisuke Shimura, et al. Polymer waveguide-coupled co-packaged silicon photonics-die embedded package substrate. In 2021 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3. IEEE, 2021.
    [33]Günther Roelkens, Diedrik Vermeulen, Shankar Selvaraja, Robert Halir, Wim Bogaerts, and Dries Van Thourhout. Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits. IEEE Journal of Selected topics in quantum Electronics, 17(3):571–580, 2010.
    [34]Tatsuhiko Watanabe, Masafumi Ayata, Ueli Koch, Yuriy Fedoryshyn, and Juerg Leuthold. Perpendicular grating coupler based on a blazed antiback-reflection structure. Journal of Lightwave Technology, 35(21):4663–4669, 2017.
    [35]Junbo Yang, Zhiping Zhou, Honghui Jia, Xueao Zhang, and ShiQiao Qin. High-performance and compact binary blazed grating coupler based on an asymmetric subgrating structure and vertical coupling. Optics Letters, 36(14):2614–2617, 2011.
    [36]Ahmed Elmogi, Erwin Bosman, Jeroen Missinne, and Geert Van Steenberge. Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography. Optical Materials, 52:26–31, 2016.
    [37]Xia Chen, Chao Li, and Hon Ki Tsang. Two dimensional silicon waveguide chirped grating couplers for vertical optical fibers. Optics Communications, 283(10):2146–2149,2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE