簡易檢索 / 詳目顯示

研究生: 林辰岳
Lin, Chen-Yue
論文名稱: 高效率螺槳分析與測試
High Performance Propeller Analysis and Testing
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: SR3葉片先進螺槳計算流體力學
外文關鍵詞: CFD, blade, SR3, advanced propeller
相關次數: 點閱:114下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於石化能源價格高漲的衝擊,如何製造更省油、更有效率的推進系統成為航空業的重要課題。在飛機螺槳的分析設計上,往往只靠經驗與簡單的理論,缺乏對葉片流場整體的了解,所以浪費許多開發的時間與成本,對葉片的技術層次提升有限。
    本研究主要的目的是以計算流體力學方法來模擬分析SR3先進螺槳流場,並建立測試平台,以實驗數據與文獻相比較,以驗證數值方法的準確度,未來將針對國內飛機動力系統未來可能的發展,建立一個螺槳設計、分析、測量的基礎。本研究所採用的計算理論與方法是架構在CFX計算流體力學軟體之上,此軟體結合有限體積法與有限元素法來求解三維Navier-Stokes方程式,利用SIMPLE疊代法和斜上風差分法並加入紊流模型k-ε來模擬,網格則採用ICEM軟體產生自適四面體非結構性網格。模擬計算得到的結果與相關實驗數據比較後的螺槳流場有良好的準確性,其準確度令人滿意。

    As a result of fossil energy impact, how to make an effective propulsion system becomes an important topic in the aviation industry. However, many design and analysis methods for propellers are mostly based on simple theories. The lack understanding of the propeller flowfield results in higher cost and development time with lower performance. The purpose of this study is to establish a test platform of UAV propeller performance with numerical analysis method implemented to compare the accuracy.
    The advanced propeller SR3 developed by NASA is analyzed numerically using CFD method. The result is compared with the data from related experiment to verify the accuracy of the numerical tool. The goal of the study is to gradually build up a design, analysis and test technical procedure for UAV power system. The present computational theory and numerical method is based on the the CFX numerical software, which solves 3-D Navier-Stokes equations with SIMPLE algorithm, skew upwind differencing scheme, finite volume method and finite element approach. The k-εturbulence model is adopted to simulate the turbulent flowfield. The self-adjusted tetrahedral non-structural grid system is constructed based on the ICEM software. The simulated propeller flowfield and performance compared reasonably well with available test data.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 內容簡介 6 第二章 數值方法 8 2.1 統御方程式 8 2.2 紊流模型 9 2.3 有限體積法 11 2.4 數值通量計算 14 2.5 非交錯網格 17 2.6 矩陣解法 18 2.7 物理模型與參數 20 2.8 無因次化參數 22 2.9 網格生成與邊界條件 22 2.9.1 壁面邊界條件 23 2.9.2 可穿透邊界條件 24 2.9.3 開放邊界條件 24 2.9.4 週期性邊界 25 第三章 實驗設備與測試 26 3.1 實驗設備 26 3.1.1風洞 26 3.1.2收縮段 26 3.1.3皮托管 26 3.1.4壓力轉換器 27 3.2 葉片的製作 27 3.3 測試平台 28 3.4 性能測試 29 第四章 結果與討論 31 4.1流場計算與分析 31 4.1.1葉片攻角與前進比之關係 32 4.1.2前進比與推力係數之關係 33 4.1.3前進比與功率係數的關係 34 4.1.4前進比與螺槳效率之關係 34 4.2實驗量測 35 第五章 結論 37 參考文獻 40 圖目錄 圖1.1 各式先進螺槳外型 45 圖1.2 各式先進螺槳效能比較 46 圖1.3 升力線法(上)與升力面法(下) 47 圖1.4 典型利用小板法分析的螺槳 47 圖2.1 螺槳外型 48 圖2.2 原始SR3各截面之堆疊圖 49 圖2.3 SR3外型參數 50 圖2.4 加厚30% SR3各截面之堆疊圖 51 圖2.5 三維流道網格 52 圖2.6 r/R=0.75處網格分布 53 圖2.7 邊界條件設定 54 圖3.1 實驗架構 55 圖3.2 風洞前端與側面 56 圖3.3 皮托管與皮托管的構造 57 圖3.4 微壓差計 58 圖3.5.1 在葉片根部的加厚 59 圖3.5.2 在葉片中段處加厚 59 圖3.5.3 在葉片頂端加厚 60 圖3.6.1 CAD中葉片加工外型 61 圖3.6.2 中鼻錐加工外型 62 圖3.7 CNC加工後的葉片實體 63 圖3.8 測試台 64 圖3.9 馬達各零組件的爆炸圖 65 圖3.10 電子變速器工作原理圖 65 圖3.11 皮托管與風洞出口端相對位置 66 圖3.12 測試台與各儀器的組立 67 圖4.1 三維的流線與壓力分佈圖(1) 68 圖4.2 三維的流線與壓力分佈圖(2) 69 圖4.3.1 J=2.75,r/R=0.25 壓力圖 70 圖4.3.2 J=2.75,r/R=0.5 壓力圖 70 圖4.3.3 J=2.75,r/R=0.75 壓力圖 71 圖4.3.4 J=2.75,r/R=0.95 壓力圖 71 圖4.3.5 J=2.44,r/R=0.25 壓力圖 72 圖4.3.6 J=2.44,r/R=0.5 壓力圖 72 圖4.3.7 J=2.44,r/R=0.75 壓力圖 73 圖4.3.8 J=2.44,r/R=0.95 壓力圖 73 圖4.3.9 J=2.2,r/R=0.25 壓力圖 74 圖4.3.10 J=2.2,r/R=0.5 壓力圖 74 圖4.3.11 J=2.2,r/R=0.75 壓力圖 75 圖4.3.12 J=2.2,r/R=0.95 壓力圖 75 圖4.3.13 J=1.83,r/R=0.25 壓力圖 76 圖4.3.14 J=1.83,r/R=0.5 壓力圖 76 圖4.3.15 J=1.83,r/R=0.75 壓力圖 77 圖4.3.16 J=1.83,r/R=0.95 壓力圖 77 圖4.3.17 J=1.37,r/R=0.25 壓力圖 78 圖4.3.18 J=1.37,r/R=0.5 壓力圖 78 圖4.3.19 J=1.37,r/R=0.75 壓力圖 79 圖4.3.20 J=1.37,r/R=0.95 壓力圖 79 圖4.4.1 J=2.75, r/R =0.25速度向量圖 80 圖4.4.2 J=2.75, r/R =0.5速度向量圖 80 圖4.4.3 J=2.75, r/R =0.75速度向量圖 81 圖4.4.4 J=2.75, r/R =0.95速度向量圖 81 圖4.4.5 J=2.44, r/R =0.25速度向量圖 82 圖4.4.6 J=2.44, r/R =0.5速度向量圖 82 圖4.4.7 J=2.44, r/R =0.75速度向量圖 83 圖4.4.8 J=2.44, r/R =0.95速度向量圖 83 圖4.4.9 J=2.2, r/R =0.25速度向量圖 84 圖4.4.10 J=2.2, r/R =0.5速度向量圖 84 圖4.4.11 J=2.2, r/R =0.75速度向量圖 85 圖4.4.12 J=2.2, r/R =0.95速度向量圖 85 圖4.4.13 J=1.83, r/R =0.25速度向量圖 86 圖4.4.14 J=1.83, r/R =0.5速度向量圖 86 圖4.4.15 J=1.83, r/R =0.75速度向量圖 87 圖4.4.16 J=1.83, r/R =0.95速度向量圖 87 圖4.4.17 J=1.37, r/R =0.25速度向量圖 88 圖4.4.18 J=1.37, r/R =0.5速度向量圖 88 圖4.4.19 J=1.37, r/R =0.75速度向量圖 89 圖4.4.20 J=1.37, r/R =0.95速度向量圖 89 圖4.5.1 r/R =0.05葉片壓力係數圖 90 圖4.5.2 r/R =0.25葉片壓力係數圖 91 圖4.5.3 r/R =0.5葉片壓力係數圖 92 圖4.5.4 r/R =0.75葉片壓力係數圖 93 圖4.6 J=2.44 子午平面速度向量圖 95 圖4.7 前進比、安裝角與攻角之幾何關係圖 96 圖4.8 前進比與推力係數計算結果 97 圖4.9 前進比與功率係數計算結果與文獻比較 98 圖4.10 前進比與螺槳效率計算結果比較 99 圖4.11 計算值與成大流體機械實驗室實測之前進比與螺槳比較 100

    [1]Novid, A. S. and Riffel, R. E., “Propfan Propulsion System Development,” ISABE 87-7060, 1987.

    [2]Mulac, R., Schneider, J., and Adamczyk, J., “Average-Passage Simulation of Counter-Rotating Propfan Propulsion Systems as Applied to Cruise Missiles,” AIAA paper 89-2943, July 1989.

    [3]Wu, C. H., “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed Flow Type,” NACA TN2604, 1952.

    [4]Hanson, D. B., “Compressible Helicoidal Surface Theory for Propeller Aerodynamics and Noise,” AIAA Journal Vo1. 21, No. 6, pp. 881-889, 1983.

    [5]McFarland, E. R., “Solution of Plane Cascade Flow Using Improved Surface Singularity Methods,” Journal of Engineering for Power, Vol. 104, pp. 668- 674, 1982.

    [6]Kobayakawa, M. and Onuma, H., “ Propeller Aerodynamic Performance by Vortex-Lattice Method,” Journal of Aircraft, Vo1. 22, No. 8, pp. 649-654, Aug 1985.

    [7]Chen, S. H. and Williams, M. H., “Panel Method for Counter-Rotating Propfans,” Journal of Propulsion and Power, Vol. 7, No. 4, July-Aug. 1991.

    [8]Ni, R. H., “A Multiple Gride Scheme for Solving the Euler Equations,” AIAA Journal, Vol. 20, No. 11, Nov. 1982.

    [9]Chima, R. V., “Inviscid and Viscous Flows in Cascades with an Explicit Multiple Grid Algorithm,” AIAA Journal, Vol. 23, pp. 1556-1563, 1985.

    [10]Weber, K. F., Thoe, D. W., and Delaney, R. A., “Analysis of Three-Dimensional Turbomachinery Flow on C-Type Grids Using an Implicit Euler Solver,” ASME paper 89-GT-85, June 1989.

    [11]Denton, J. D., “The Calculation of Three-Dimensional Viscous Flow through Multistage Turbomachiners,” Journal of Turbomachinery, Vol. 114, pp. 18-26, Jan. 1992.

    [12]Dawes, W. N., “Toward Improved Through-Flow Capability : The Use of Three-Dimensional Viscous Flow Solvers in a Multistage Environment,” Journa1 of Turbomachinery, Vol. 114, No. 20, pp. 8-17, Jan. 1992.

    [13]Adamczyk, J. J., Celestina, M. L., Beach, T. A., and Barnett, M., “Simulation of Three-Dimensional Viscous Flow within a Multistage Turbine,” Journa1 of Turbomachinery, Vol. 112, No. 3, pp. 370-376, 1990.

    [14]Chen, S. H., “Prediction of Periodic Loadings on Single Rotation Propfan with Off-Axis Inflow,” AIAA Paper 89-2694, July 1989.

    [15]Bober, L. J., Chaussee, D. S., and Kutler, P., “Prediction of High Speed Propeller Flow Field Using a Three-Dimensional Euler Analysis,” NASA TM83065, 1983.

    [16]Barton, J. M., Yamamoto, O. and Bober, L. J., “Inviscid Analysis of Advanced Turboprop Propeller Flows,” AIAA paper 85-1263, 1985.

    [17]Yamamoto, O., Barton, J. M. and Bober, L. J., “Improved Euler Analysis of Advanced Turboprop Propeller Flows,” AIAA paper 86-1521, 1986.

    [18]Kobayakawa, M., Onuma, H., and Shiota, Y., “Calculations of High Speed Propeller Performances Using Finite Difference Methods,” ICAS, Congress, 15 th, London, England, 1986.

    [19]Satio, S., Kobayashi, H., Wada, Y., and Matsuo, Y., “Numerical Approach of Advanced Turboprop with Three-Dimensional Euler Equations,” AIAA paper 87-1889, 1987.

    [20]Jou, W. H., “Finite Volume Calculation of Three-Dimensional Potential Now Around a Propeller,” AIAA Journal Vol. 21, pp. 1360-1365, 1983.

    [21]Hall, E. J., and Delaney, R. A., “Time-Dependent Aerodynamic Analysis of Ducted and Unducted Propfans at Angle of Attack,” ASME paper 91-GT-190, 1991.

    [22]Sullivan, J. P., “The Effect of Blade Sweep on Propeller Performance,” AIAA paper77-716, June, 1977.

    [23]Bober, L. J., and Chang, L. K., “Factors Influencing the Predicted Performance of Advanced Propeller Designs,” AIAA paper 81-1564, 1981.

    [24]Metzget, F. B., and Rohrbach, C., “Aeroacoustic Design of the Propfan,” AIAA paper 79-0610, 1979.

    [25]Kielb, R. E., and Kaza, K. R. V., “Flutter of Swept Fan Blades,” NASA TM- 83547, 1984.

    [26]Mehmed, O., Kaza, K. R. V., Lubomski, J. F., and Kielb, R. E., “Bending-Torsion Flutter of a Highly Swept Advanced Turboprop,” NASA TM-82975, 1982.

    [27]George, L. S., and Robert, J. J., “Wind-Tunnel Results of Advanced High-Speed Propellers in Takeoff, Climb, and Landing Operating Regimes”, TM-87054, AIAA-85_1259, 1985.

    [28]Block, P. J. W., and Gentry, G. L. Jr., “Evaluation of the Langley 4-by 7-Meter Tunnel for Propeller Noise Measurements,” NASA TM-85721, 1984.

    [29]Coe, P. L. Jr., Gentry, G. L. Jr. and Dunham, D. M., “Low-Speed Wind-Tunnel Test of an Advanced Eight-Bladed Propeller,” NASA TM-86364, 1985.

    [30]Dunham, D. M., Gentry, G. L. Jr. and Coe, P. L. Jr., “Low-Speed Wind- Tunnel Tests of Single-and Counter-Rotation Propeller,” NASA TM-87656, 1986

    [31]Black, D. M., Menthe, R. W., and Wainauski, H. S., “Aerodynamic Design and Performance Testing of an Advanced 30°Swept, Eight Bladed Propeller at Mach Numbers From 0.2 to 0.85,” NASA CR-3047, Sep. 1978.

    [32]Rohrbach, C., Metzger, F. B., Black, D. M., and Ladden, R. M., “Evaluation of Wind Tunnel Performance Testing of an Advanced 45°Swept Eight-Bladed Propeller at Mach Numbers From 0.45 to 0.85,” NASA CR-3506, March 1982.

    [33]Poland, D. T., and Bartel, H. W., “PTA Flight Test Overview (Propfan Test Assessment),” AIAA paper 88-2803, 1988.

    [34]Nichols, H. E., “UDF engine/MD80 Flight Test Program,” AIAA paper 88- 2805, 1988.

    [35]“ANSYS CFX-Solver Release 10.0:Theory,” ANSYS, Inc., 2005.

    [36]Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Comp Meth Appl Mech Eng, pp. 269-289, 1974.

    [37]Menter, F.R., “Influence of Free Stream Values on k-ω Turbulence Model Predictions,” AIAA Journal, Vol. 30, No. 6, pp. 1657-1659, 1992.

    [38]Grotjans, H., and Menter, F.R., “Wall Functions for Idustrial Applications,” Computational Fluid Dynamics ’98 Proceedings of the Fourth ECCOMAS Conference, Papailious K. D. et al., eds., John Wiley and Sons Ltd., Chochester, Vol. 1, Part 2, pp. 1112-1117, 1998.

    [39]Raithby, G. D., “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Computational Methods for Applied Mechanical Engineering, Volume 9, Page 153-164, 1976.

    [40]Patankar, S. V., Liu, C. H., and Sparrow, E. M., “Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area,” ASME Journal Heat Transfer, Vol. 99, pp. 180-186, 1977.

    [41]Schneider, G. E. and Raw, M. J., “Control Volume Finite Element Method for Heat Transfer and Fluid Flow Using Colocated Variables Computational Procedure,” Numerical Heat Transfer, Vol. 11, pp. 363-390, 1987.

    [42]江易儒, “導管風扇之流場分析,” 成功大學航太工程學研究所論文, 1996年6月。

    [43]蔡垂儒, “壓縮機葉片葉頂間隙流場之探討,” 成功大學航太工程學研究所論文, 1997年7月。

    [44]施尚融, “葉頂間隙對壓縮機性能之影響,” 成功大學航太工程學研究所論文, 2002年7月。

    [45]謝銘峻, “含對轉螺槳潛體之流場分析,” 成功大學航太工程學研究所論文, 1999年7月。

    [46]黃朝約, “先進螺槳之氣動力分析,” 成功大學航太工程學研究所論文, 1997年7月。

    [47]張柏灝, “流風扇的性能量測,” 成功大學航太工程學研究所論文, 1996年7月。

    [48]劉家焜, “前後掠對風扇性能之影響,” 成功大學航太工程學研究所論文, 1999年6月。

    [49]鄭憲君, “高速螺槳的研究、製作與測試,” 成功大學大專學生參與專題研究, 1999年8月。

    下載圖示 校內:立即公開
    校外:2008-08-05公開
    QR CODE