簡易檢索 / 詳目顯示

研究生: 陳昱維
Chen, Yu-Wei
論文名稱: 有限元素分析與田口方法於板金液壓成型之研究
Finite Element Analysis and Taguchi Method for Analyzing Sheet Hydroforming
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 液壓成型柔性成型流體單元成型有限元素分析田口方法起皺
外文關鍵詞: hydroforming, flexforming, fluid cell forming, finite element analysis, Taguchi method, wrinkle
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液壓成型與傳統加工方法相比,由於液壓成型只具有一個剛性模具或衝頭,變更設計時,因不須考慮公差配合而變得相對容易。也因為只有一個剛性模具或衝頭的緣故,而能製造出更高尺寸精度且更高表面品質的板金件,令液壓成型被廣泛應用於製造航空工業所需之零件。本研究針對液壓成型之板金件材料―鋁合金2024 – T351與2024 – O,及三種參與加工的橡膠材料,根據相對應之拉伸實驗規範分別進行實驗,藉此獲取材料之機械性質。並利用有限元素模擬軟體LS-DYNA進行拉伸實驗模擬,將所獲之結果與拉伸實驗相互比對驗證,以建立材料數值模型。接著以有限元素模擬軟體LS-DYNA建立板金件液壓成型之有限元素模型,進行成型過程與回彈之模擬,並與三個實際案例比對驗證。且針對板金件在進行收縮法蘭折彎時起皺之現象,使用田口方法 直交表進行模擬與分析各因子之貢獻率,得出加壓牆和橡膠墊的最佳相關配置,令板金件起皺之狀況獲得改善。

    Hydroforming has only one rigid punch/mold so the design can be changed with lower cost comparing to traditional sheet metal forming process. In addition, it is possible to manufacture blanks with higher formability and higher surface quality, making hydroforming method widely used in manufacturing mechanical components. This study measures the mechanical properties of aluminum alloys and rubber materials (used in hydroforming process) by tensile tests; the related numerical parameters are identified and verified through finite element simulation for the tensile test condition. Several sheet hydroforming finite element models are developed using LS-DYNA, and the hydroforming process is performed and compared with the experimental results. Taguchi method is used for the analysis case that the blanks are wrinkled in the shrinkage flange-bending process; the L_18 orthogonal array is used for the simulation, and the contribution of each factor is analyzed. An optimal set of parameters for the hydroforming process is obtained, which can minimize the wrinkle of the blanks.

    摘要 i ABSTRACT ii 誌謝 xx 目錄 xxi 表目錄 xxiv 圖目錄 xxv 符號說明 xxviii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 9 1-4 本文架構 9 第二章 基礎理論 11 2-1 前言 11 2-2 金屬塑性行為 11 2-2-1 降伏準則 11 2-2-2 塑流法則 15 2-2-3 回彈理論 16 2-3 超彈性體橡膠材料模型 17 2-4 田口式直交表實驗法與變異數分析 19 2-4-1 田口式直交表實驗法 19 2-4-2 變異數分析 22 第三章 材料數值模型建立 27 3-1 前言 27 3-2 材料拉伸實驗 27 3-3 鋁合金2024 29 3-3-1 實驗架設 29 3-3-2 實驗結果 31 3-3-3 模擬條件與模擬結果 33 3-4 橡膠材料 36 3-4-1 實驗架設 37 3-4-2 實驗結果 40 3-4-3 模擬條件與模擬結果 43 3-5 本章小結 47 第四章 柔性成型模擬案例分析 48 4-1 前言 48 4-2 有限元素模型與邊界條件設定 49 4-3 模擬與實際案例結果比較 50 4-3-1 案例分析―直線法蘭折彎柔性成型1 51 4-3-2 案例分析―直線法蘭折彎柔性成型2 56 4-3-3 案例分析―拉伸法蘭折彎柔性成型 61 4-4 本章小結 66 第五章 收縮法蘭折彎案例之田口方法分析 67 5-1 前言 67 5-2 有限元素模型與因子水準設計 68 5-3 分析結果 79 5-4 最佳推斷與模擬驗證 83 5-5 本章小結 86 第六章 結論與建議 87 6-1 結論 87 6-2 建議 88 參考文獻 89

    [1] K. E. Rossie, "An energy and environmental analysis of aerospace sheet metal part manufacturing," Master Thesis, Massachusetts Institute of Technology, 2015.
    [2] İ. Karaağaç, "The experimental investigation of springback in V-bending using the flexforming process," Arabian Journal for Science and Engineering, journal article vol. 42, no. 5, pp. 1853-1864, May 01 2017, doi: 10.1007/s13369-016-2329-6.
    [3] S. Kulkarni, V. Ruiwale, M. Jadhao, A. Kadam, and S. Kale, "A review on Hydroforming Processes," International Journal of Current Engineering and Technology, pp. 160-163, 2017.
    [4] S. H. Zhang, "Developments in hydroforming," Journal of Materials Processing Technology, vol. 91, no. 1-3, pp. 236-244, 1999.
    [5] L. H. Lang, Z. R. Wang, D. C. Kang, S. J. Yuan, S. H. Zhang, J. Danckert, and K. B. Nielsen, "Hydroforming highlights: sheet hydroforming and tube hydroforming," Journal of materials processing technology, vol. 151, no. 1-3, pp. 165-177, 2004.
    [6] P. Hein and F. Vollertsen, "Hydroforming of sheet metal pairs," Journal of Materials Processing Technology, vol. 87, no. 1-3, pp. 154-164, 1999.
    [7] P. Groche, R. Huber, J. Doerr, and D. Schmoeckel, "Hydromechanical deep-drawing of aluminium-alloys at elevated temperatures," CIRP Annals, vol. 51, no. 1, pp. 215-218, 2002.
    [8] W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy. Cambridge University Press, 2011.
    [9] K. Nakamura and T. Nakagawa, "Reverse deep drawing with hydraulic counter pressure using the peripheral pushing effect," CIRP Annals, vol. 35, no. 1, pp. 173-176, 1986.
    [10] S. Thiruvarudchelvan and H. B. Wang, "Pressure generated in the hydraulic-pressure augmented deep-drawing process," Journal of materials processing technology, vol. 74, no. 1-3, pp. 286-291, 1998.
    [11] J. Danckert and K. B. Nielsen, "Hydromechanical deep drawing with uniform pressure on the flange," Cirp Annals, vol. 49, no. 1, pp. 217-220, 2000.
    [12] F. Vollertsen, R. Breede, and K. Lange, "A method for deep drawing with multiple elastomer membranes," CIRP Annals-Manufacturing Technology, vol. 48, no. 1, pp. 221-226, 1999.
    [13] H. Palaniswamy, G. Ngaile, and T. Altan, "Optimization of blank dimensions to reduce springback in the flexforming process," Journal of Materials Processing Technology, vol. 146, no. 1, pp. 28-34, 2004.
    [14] H. A. Hatipoğlu, N. Polat, A. Koksal, and A. E. Tekkaya, "Modeling flexforming (fluid cell forming) process with finite element method," in Key Engineering Materials, 2007, vol. 344: Trans Tech Publ, pp. 469-476.
    [15] A. Leacock, D. Ling, and M. Bergkvist, "Industrial application and validation of forming simulation in the flexforming process," in Journal of Physics: Conference Series, 2016, vol. 734, no. 3: IOP Publishing, p. 032103.
    [16] "維基百科-塑性變形頁面." https://zh.wikipedia.org/wiki/%E5%A1%91%E6%80%A7%E8%AE%8A%E5%BD%A2.
    [17] D. Banabic, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Springer Science & Business Media, 2010.
    [18] R. Ogden, G. Saccomandi, and I. Sgura, "Fitting hyperelastic models to experimental data," Computational Mechanics, vol. 34, no. 6, pp. 484-502, 2004.
    [19] P. Boulanger and M. Hayes, "Finite-amplitude waves in Mooney-Rivlin and Hadamard materials," Vienna, 2001: Springer Vienna, in Topics in Finite Elasticity, pp. 131-167.
    [20] B. Kim, S. B. Lee, J. Lee, S. Cho, H. Park, S. Yeom, and S. H. Park, "A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber," International Journal of Precision Engineering and Manufacturing, vol. 13, no. 5, pp. 759-764, 2012.
    [21] R. W. Ogden, "Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 326, no. 1567, pp. 565-584, 1972.
    [22] G. E. P. Box, J. S. Hunter, and W. G. Hunter, "Statistics for Experimenters," in Wiley Series in Probability and Statistics: Wiley Hoboken, NJ, 2005.
    [23] P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design (no. TS156 R12). McGraw-Hill New York, 1988.
    [24] "MechaniCalc Web Page." https://mechanicalc.com/reference/mechanical-properties-of-materials.
    [25] "MatWeb Web Page." http://www.matweb.com/index.aspx.
    [26] CNS 2112 G2014 金屬材料拉伸試驗試片, 2017.
    [27] ASTM E8/E8M : Standard Test Methods for Tension Testing of Metallic Materials, 2016.
    [28] K. Yamada, T. Moroe, M. Nishida, K. Mizutani, S. Enomoto, T. Matsuda, K. O. Bae, and H. S. Shin, "Finite element simulation and experimental studies on projectile perforation of circular and rectangular plates," in Key Engineering Materials, 2016, vol. 715: Trans Tech Publ, pp. 68-73.
    [29] CNS 3553 K6344 硫化或熱塑性橡膠 - 拉伸應力 - 應變性質之測定, 2016.
    [30] J. Diani, B. Fayolle, and P. Gilormini, "A review on the Mullins effect," European Polymer Journal, vol. 45, no. 3, pp. 601-612, 2009.
    [31] "ADAMS使用手冊." http://atc.sjf.stuba.sk/files/mechanika_vms_ADAMS/Contact_Table.pdf.
    [32] L. M. Kutt, A. B. Pifko, J. A. Nardiello, and J. M. Papazian, "Slow-dynamic finite element simulation of manufacturing processes," Computers & structures, vol. 66, no. 1, pp. 1-17, 1998.
    [33] LS-DYNA KEYWORD USER'S MANUAL, 2017.

    下載圖示 校內:2024-08-23公開
    校外:2024-08-23公開
    QR CODE