| 研究生: |
趙培宇 Chao, Pei-Yu |
|---|---|
| 論文名稱: |
一鍋化合成中孔材料與其應用 One-pot Synthesis of Mesoporous Materials and the Applications |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 片狀沸石 、孔洞材料 、無模板合成法 、水熱合成法 、甲苯不均化反應 、選擇性還原反應 |
| 外文關鍵詞: | sheet-like zeolites, porous materials, template-free synthesis, hydrothermal synthesis, toluene disproportionation, selective catalytic reduction |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一鍋化合成法是在一個反應器中連續進行多步反應,藉此提高反應效率的合成方式。這種合成方法的優勢在於避免冗長的分離過程和純化步驟,也可以節省時間與原料。然而,前驅物的組成對於水熱處理所得之產物的結構相當關鍵。於本篇研究,配合雙界面活性劑的使用,經由一鍋化的水熱合成法成功製備片狀ZSM-5沸石,作為甲苯不均化反應的觸媒具有很高的催化活性。在雙界面活性劑的系統,四丙基氫氧化銨用於生成ZSM-5的結構,具有長疏水鏈的界面活性劑(十四烷基三甲基氯化銨,十六烷基三甲基溴化銨和十八烷基三甲基溴化銨)可以藉由尾端的疏水鏈妨礙沸石層狀結構的通常堆疊,進而限制ZSM-5晶體的成長。觀察不同水熱時間處理之ZSM-5樣品的XRD圖譜可以發現,水熱處理的初期即可生成層狀中孔結構,隨著水熱時間的增加逐漸轉相形成片狀ZSM-5。因為片狀ZSM-5的結構可以縮短孔道長度進而提高擴散能力,使用片狀ZSM-5作為甲苯不均化反應的觸媒時,其甲苯轉化率可以達到市售型ZSM-5的1.5倍。此外,更進一步地嘗試在不使用任何模板劑的前提,利用一鍋化的水熱合成法製備具有高表面積與高分散度的Mn3O4-Al2O3材料。因為此製程之濾液的金屬離子含量低於排放標準,不需要額外的後續處理即可排放,屬於環境友善型的製程。實驗結果顯示,Mn3O4晶體可以在水熱處理的過程穩定Al(OH)3擔體的結構,反之缺乏Mn2+的情況,Al(OH)3會經由脫水反應生成AlOOH。由於擔體材料之密度的變化,水熱處理之後得到的Mn3O4-Al(OH) 3經由鍛燒過程的脫水反應可以形成具有中孔結構的Mn3O4-Al2O材料。因為高度的孔洞性與良好的分散度,經過600度鍛燒的Mn3O4-Al2O材料當作低溫脫硝反應的觸媒在80度的反應溫度即可達到94%的脫硝效率。這種無模板之金屬氧化物-氧化鋁的合成方式不只是低成本、易於量產,同時也符合綠色化學的要求,甚至可以應用於MOx-Al2O3 (M= Mg, Ca, Fe, Co, Cr, Ni等)材料之合成,具有很高的發展潛力。
One-pot synthesis is a strategy to improve the efficiency of a reaction whereby a reactant is subjected to successive chemical reactions in just one reactor. The benefits of the one-pot synthesis not only avoid multiple separation and purification but also save time and chemicals. However, the composition of the precursor is crucial to influence the resulted product during the hydrothermal treatment. In this study, a sheet-like ZSM-5 as a high-performance catalyst for toluene disproportionation is carried out by using binary surfactants during the one-pot hydrothermal synthesis. In the dual templates, tetraethylammonium hydroxide was used to construct the microporous structure of ZSM-5, and the long chain cationic surfactants (e.g. octadecyltrimethylammonium chloride, hexadecyltrimethyl ammonium bromide, and tetradecyltrimethylammonium bromide) can change the growth habits of the ZSM-5 crystals by hindering the regular stacking of zeolite layers from their longer hydrophobic chain. From the XRD pattern of the as-synthesized ZSM-5 samples which were hydrothermally treated for different time, it was found that a lamellar mesostructured intermediate gradually transformed into the sheet-like ZSM-5 during hydrothermal process. Concerning the catalyst application, the toluene disproportionation performance over the sheet-like ZSM-5 is 1.5 times higher than that of the commercial ZSM-5. The higher conversion is ascribed to the faster diffusion amount due to the sheet-like ZSM-5. Furthermore, a mesoporous Mn3O4-Al2O3 catalyst with highly dispersed Mn3O4 and a high surface area is also prepared by using a one-pot synthesis without templates. The synthesis procedure is environmentally friendly due to the low concentration of residual metal ions in the filtered solution, which can thus be released to the environment directly without further processing. In addition, the results show that the presence of Mn3O4 crystals stabilizes the Al(OH)3 support during hydrothermal treatment and prevents the formation of the AlOOH phase otherwise observed in the absence of Mn2+ ions. The high stability of the resulting Mn3O4-Al(OH)3 nanoplatelets prompts the formation of a mesoporous Mn3O4-Al2O3 structure via the dehydration of the Al(OH)3 following calcination. Owing to its high porosity and well-dispersed crystallized Mn3O4, the Mn3O4-Al2O3 catalyst calcined at 600oC shows a particularly high NO conversion, which is found to be as much as 94% at a reaction temperature of 80oC for NH3-SCR. In future studies, the template-free synthesis method proposed in this study will be extended to the preparation of other MOx-Al2O3 (M= Mg, Ca, Fe, Co, Cr, Ni) mesoporous composites. In addition, the proposed synthesis method thus holds considerable promise for the green, low-cost and scalable production of highly mesoporous Al2O3-based catalysts.
1. C. T. Kresge,M. E. Leonowicz, W. J. Roth, J.C. Vartul, J.S. Beck, Nature 1992, 359, 710.
2. (a) D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024. (b) F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Edit. 2006, 45, 3216.
3. H. P. Lin, C. Y. Mou, Acc. Chem. Res. 2002, 35, 927
4. (a) Y. Ren, Z. Ma, P. G. Bruce, Chem. Soc. Rev. 2012, 41, 4909. (b)W. Yue, W. Zhou, Prog. Nat. Sci. Mater. 2008, 18, 1329.
5. B. Su, C. Sanchez, X. Yang, Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science, 2011.
6. H. Paul, R. Christina, T. Harper, Nanoporous Materials, 2003.
7. Everett, D. Pure. Appl. Chem. 1972, 31,577.
8. (a) T. T. Xu, C. F Xue, Z. L. Zhang, X. G. Hao, Prog. Chem. 2014, 26, 1924. (b) D. Bradshaw, S. El-Hankari, L. Lupica-Spagnolo, Chem. Soc. Rev. 2014, 43, 5431. (c) B. Fang, J. H. Kim, M. Kim, J. Yu, Acc. Chem. Res. 2012, 46, 1397. (d) X. Y. Yang, A. Léonard, A. Lemaire, G. Tian, B. L. Su, Chem. Commun. 2011, 47, 2763.
9. Y. Huang, L. R. Zhang, Science and Technology Consulting Herald 2015, 10, 248.
10. Y. Xie, D. Kocaefe, C. Chen, Y. Kocaefe, J. Nanomater. 2016, 1.
11. K. Nielsch, J. Choi, K. Schwirn, Nano Letters 2002, 2, 677.
12. S. Öztürk, N. Klnć, N. Taşltn, Z. Z. Öztürk, Phys. E. 2012, 44, 1062.
13. E. M. Johansson, J. M. Córdoba, M. Odén, Microporous Mesoporous Mater. 2010, 133, 66.
14. Q. Huo, D. I. Margolese, U. Ciesla, Nature 1994, 368, 317.
15. N. Ren, Y. Tang, Petrochemical Technology 2005, 34, 405.
16. J. Baloyi, T. Ntho, J. Moma, RSC Adv. 2018, 8, 5197.
17. Y. Yue, L. Gu, Y. Zhou, H. Liu, P. Yuan, H. Zhu, Z. Bai, X. Bao, Ind. Eng. Chem. Res. 2017, 56, 10069.
18. Y. Hayashi, Chem. Sci. 2016, 7, 866.
19. L. F. Tietze, Chem. Rev. 1996, 96, 115.
20. S. E. Denmark, A. Thorarensen, Chem. Rev. 1996, 96, 137.
21. (a) H. Ishikawa, T. Suzuki, H. Orita, T. Uchimaru, Y. Hayashi, Chem.-Eur. J. 2010, 16, 12616. (b) T. Mukaiyama, H. Ishikawa, H. Koshino, Y. Hayashi, Chem.-Eur. J. 2013, 19, 17789.
22. B. M. Trost, Science 1991, 254, 1471.
23. P. A. Clarke, S. Santos, W. H. C. Martin, Green Chem. 2007, 9, 438.
24. T.E. Whyte, R.A. Dalla Betta, Catal. Rev.-Sci. Eng. 1982, 24, 567.
25. D. H. Olson, G. T. Kokotailo, S. L. Lawton, W. M. Meier, J. Phys. Chem. 1981, 85, 2238.
26. J. Weitkamp, Solid State Ionics 2000, 131, 175.
27. A. Corma. J. Catal. 2003, 216, 298.
28. (a) Z. L. Hua, J. Zhou, J. L. Shi, Chem. Commun. 2011, 47, 10536. (b) S. Bernasconi, J. A. van Bokhoven, F. Krumeich, G. D. Pirngrubera, R. Prins, Microporous Mesoporous Mater. 2003, 66, 21. (c) J. C. Groen, T. Bach, U. Ziese, A. M. Paulaime–van Donk, K. P. de Jong, J. A. Moulijn, C, J. Am. Chem. Soc. 2005, 127, 10792. (d) M. B. Yue, L. B. Sun, T. T. Zhuang, X. Dong, Y. Chuna, J. H. Zhu, J. Mater. Chem. 2008, 18, 2044.
29. (a) C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc. 2000, 122, 7116. (b) Z. Pavlackova, G. Kosova, N. Filkova, A. Zukal, J. Cejka, Stud. Surf. Sci. Catal. 2006, 162, 905.
30. (a) I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, Chem. Mater. 2001,13,4416. (b) M. Kustova, K. Egeblad, K. Zhu, C. H. Christensen, Chem. Mater. 2007, 19, 2915.
31. (a) A. A. Campos, L. Martins, L. L. de Oliveira, C. R. da Silva, M. Wallau, E. A. Urquieta–Gonzalez, Catal. Today. 2005, 107, 759. (b) D. J. Kong, J. L. Zheng, X. H. Yuan, Y. D. Wang, D. Y. Fang, Microporous Mesoporous Mater. 2009, 119, 91.
32. K. Egeblad, C. H. Christensen, M. Kustova, C. H. Christensen, Chem. Mater. 2008, 20, 946.
33. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 2009, 461, 246.
34. K. Na, W. Park, Y. Seo, R. Ryoo, Chem. Mater. 2011, 23, 1273.
35. A. Chang, H. M. Hsiao, T. H. Chen, M. W. Chu, C. M. Yang, Chem. Commun. 2016, 52, 11939.
36. M. E. Leonowic, J. A. Lawton, S. Lawton, M. K. Rubin, Science 1994, 264, 1910.
37. (a) T. Xue, H. Liu,Y. Zhang, H. Wu, P. Wu, M. He, Microporous Mesoporous Mater. 2017, 242, 190. (b) Y. Zhang, K. Zhu, X. Duan, P. Li, X. Zhou, W. Yuan, RSC Adv. 2014, 4, 14471.
38. (a) A. Karlsson, M. Stöcker, R. Schmidt, Microporous Mesoporous Mater. 1999, 27, 181. (b) J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, S. E chramm, Chem. Mater. 1994, 6, 1816.
39. S. P. Naik, J. C. Chen, A. S. T. Chiang, Microporous Mesoporous Mater. 2002, 54, 293.
40. (a) Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang, M. Zhou, Y. Han, T. Tanaka, A. Wang, T. Zhang, N. Yan, Nat. Commun. 2017, 8, 1. (b) K. Nagaoka, T. Eboshi, Y. Takeishi, R. Tasaki, K. Honda, K. Imamura, K. Sato, Sci. Adv. 2017, 3, 1.
41. M. Tabatabaee, N. Saberi, Int. J. Bio-Inorg. Hybd. Nanomat 2012, 4, 253.
42. C. N. Satterfield, Heterogeneous catalysis in industrial practice, 1991.
43. (a) L. Li, W. Han, F. Dong, L. Zong, Z. Tang, J. Zhang, Microporous Mesoporous Mater. 2017, 249, 1. (b) C. Gunathilake, M. Gangoda, M. Jaroniec, Ind. Eng. Chem. Res. 2016, 55, 5598. (c) J. Wei, Y. Ren, W. Luo, Z. Sun, X. Cheng, Y. Li, Y. Deng, Chem. Mater. 2017, 29, 2211.
44. W. Wang, J. Zhou, Z. Zhang, J. Yu, W. Cai, Chem. Eng. J. 2013, 233, 168.
45. F. Vaudry, F. di Renzo, F. Fajula, P. Schulz. Stud. Surf. Sci. Catal. 1994, 84, 163.
46. Z. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc. 2002, 124, 12294.
47. Z. Wu, Q. Li, D. Feng, P. A. Webley, D. Zhao, J. Am. Chem. Soc. 2010, 132, 12042.
48. R. Feng, X. Hu, X. Yan, Z. Yan, M. J. Rood, Microporous Mesoporous Mater. 2017, 241, 89.
49. Z. Zhang, T. J. Pinnavaia, Langmuir, 2010, 26, 10063.
50. Q. Liang, X. Guo, T. Quan, F. Meng, J. Adv. Ceram. 2016, 5, 225.
51. (a) X. Zhang, Y. Guo, W. Li, RSC Adv. 2015, 5, 25896. (b) W. Cai, Y. Hu, J. Yu, W. Wang, J. Zhou, RSC Adv. 2015, 5, 7066.
52. (a) D. R. Fang, W.Z. Ren, Z. M. Liu, X. F. Xu, H. M. Zhang, W. P. Liao, Chem. Res. Chinese U. 2010, 26105. (b) F. Li, H. Ma, H. Zhang, W. Ying, D. Fang, Chinese J. Catal. 2016, 3773.
53. F. L. Theiss, G. A. Ayoko, R. L. Frost, Appl. Surf. Sci. 2016, 383200.
54. T. Tsai, S. Liu, I. Wang, Appl. Catal. A Gen. 1999, 181, 355.
55. World Petrochemicals-Mixed Xylenes, SRI-Consulting, Menlo Park, CA, January 2009.
56. A. Mitsutani, K. Maruyama, Chem. Eco. Eng. Rev. 1974, 6, 36.
57. Exxon Estimates for Trade Publications, in National Petrol. Ref. Assoc., Exxon Chemicals, 1997.
58. T. Tsai, W. Chen, S. Liu, C. Tsai, I. Wang, Catal.Today 2002, 73, 39.
59. A. Wood, Chem. Week 1994, 7, 34.
60. (a) H. Roger, K. Moller, C. O’Connor, Microporous Mater. 1997, 8, 151. (b) J. Wu, L. Leu, Appl. Catal. 1983, 7, 283. (c) S. Park, J. Lee, H. Rhee, Korean J. Chem. Eng. 2000, 17, 198. (d) S. Park, H. Rhee, Catal. Today 2000, 63, 267.
61. (a) A. Krejci, Appl. Catal. A 2010, 377, 99. (b) J. Das, Y. Bhat, A. Halgeri, Appl. Catal. 1994, 116, 71. (c) A. Halgeri, J. Das, Appl. Catal. A 1999, 181, 347. (d) A. Halgeri, J. Das, Appl. Catal. A 1999, 181, 347.
62. C. W. Jones, S. Zones, M. Davis, Appl. Catal. A 1999, 181, 289.
63. J. Martens, J. Pérez-Pariente, E. Sastre, A. Corma, Appl. Catal. A 1988, 45, 85.
64. J. Serra, E. Guillon, A. Corma, J. Catal. 2005, 232, 342.
65. G Mirth, J. Cejka, J.A. Lercher, J. Catal. 1993, 139, 24.
66. L. Feng, S. Liu, I. Wang, J.Catal.1999, 185, 33.
67. P. S. Monks, C. Granier, S. Fuzzi, A. Stohl, M L. Williams, H. Akimoto, Atmos Environ. 2009, 43, 5268.
68. L. Lietti, P. Forzatti, F. Bregani, Ind. Eng. Chem. Res. 1996, 35, 3884.
69. F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, Y. Shi, X. Meng, Catalysts 2017, 7, 199.
70. Y. Zhao, L. Duan, T. Larssen, L. Hu, J. Hao, Environ. Sci. Technol. 2007, 41, 1815.
71. J. Li, H. Chang, L. Ma, J. Hao, R. T. Yan, Catal. Today 2011, 175, 147.
72. D. Cobb, L. Glatch, J. Ruud, S. Snyder, Environ. Prog. 1991, 10, 49.
73. S. Roy, B. Viswanath, M. S. Hegde, G. Madras, J. Phys. Chem. C 2008, 112, 6002.
74. Z. M. Liu, S. I. Woo. Catal. Re. Sci. Eng. 2006, 48, 43.
75. K. J. Laidler, J. H. Meiser Physical Chemistry, 1982.
76. (a) F. Cao, J. Xiang, S. Su, P. Wang, L. Sun, S .Hu, S. Lei, Chem. Eng. J. 2014, 243, 347. (b) F. Cao, S. Su, J. Xiang, P. Wang, S .Hu, L. Sun, A. Zhang, Fuel 2015, 139, 232.
77. R. B. Jin, Y. Liu, Z. B. Wu, Chemosphere 2010, 78, 1160.
78. G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 1998, 18, 1.
79. M. Zheng, G. T. Reader, J. G. Hawley, Energy Convers. Manage. 2004, 45, 883.
80. L. Chen, J. Li, M. Ge, Environ. Sci. Technol. 2010, 44, 9590.
81. (a) G. Qi, R. T. Yang, J. Phys. Chem. B 2004, 108, 15738. (b) Z. Wu, B. Jiang, Y. Liu, W. Zhao, B. Guan, J. Hazard Mater. 2007, 145, 488.
82. (a) D. Pena, B. Uphade, E. Reddy, P. Smirniotis, J. Phys. Chem. B 2004, 108, 9927. (b) B. Huang, R. Huang, D. Jin, D. Ye, Catal. Today 2007, 126, 279. (c) L. Singoredjo, R. Korver, F. Kapteijn, J. Moulijn, Appl. Catal. B: Environ. 1992, 1, 297. (d) B. Thirupathi, P.G. Smirniotis, Appl. Catal. B Environ. 2011, 110, 195.
83. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S.W. Sing, Pure Appl. Chem. 2015, 87, 105.
84. W. Ostwald, Lehrbuch der Allgemeinen Chemie, 1896.
85. W. J. Roth, P. Nachtigall, R. E. Morris, J. Čejka, Chem. Rev. 2014, 114, 4807.
86. S. Lee, C. Jo, R. Ryoo, J. Mater. Chem. A 2017, 5, 11086.
87. G. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spanò, F. Rivetti, J. Am. Chem. Soc. 2001, 123, 11409.
88. J.S. Beck, J. C. Vartuli, G. J. Kennedy, C.T. Kresge, W. J. Roth, S. E. Schramm, Chem. Mater. 1994, 6, 1816.
89. C. Jo, R. Ryoo, N. Žilková, D. Vitvarová, J. Čejka, Catal. Sci. Technol. 2013, 3, 2119.
90. M. O. Opanasenko, W. J. Roth, J. Čejka, Catal. Sci. Technol. 2016, 6, 2467.
91. S. Al–Khattaf, Energy Fuel 2006, 20, 946.
92. B. Shen, H. Ma, C. He, X. Zhang, Fuel Process. Technol. 2014, 119, 121. 7.
93. Q. Zhang, H. Yang, W. Yan, RSC Adv. 2014, 4, 56938.
94. D. H. Olson, W. O. Haag, Acs. Symp. Ser. 1984, 248, 275.
95. Y. S. Bhat, J. Das, K. V. Rao, A. B. Halgeri, J. Catal. 1996, 159, 368.
96. A. Karlsson, M. Stöcker, R. Schmidt, Microporous Mesoporous Mater. 1999, 27, 181.
97. (a) J. Huang, H. Huang, L. Liu, H. Jiang, Mol. Catal. 2018, 446, 49. (b) Y. F. Han, F. X. Chen, Z. Y. Zhong, K. Ramesh, L. W. Chen, E. Widjaja, J. Phys. Chem. B 2006, 110, 24450. (c) E. J. Grootendorst, Y. Verbeek, V. Ponec, J. Catal. 1995, 157, 706. (d) D. Zhao, Y. Li, Z. Zhen, Y. Wang, X. Gou, Adv. Environ. Protect. 2016, 6, 108.
98. http://www.rootlaw.com.tw/Attach/LE-Doc/A040300050000400-1050106-2000-001.Pdf
99. A. M.E. Raj, S. G. Victoria, V. B. Jothy, C. Ravidhas, J. Wollschläger, M. Suendor, M. Neumann, M. Jayachandran, C. Sanjeeviraja, Appl .Surf. Sci. 2010, 256, 2920.
100. I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęki, S. Jurga, V. Smyntyna, Vacuum 2015, 113, 5.
101. W. M. Haynes, CRC Handbook of Chemistry and Physics. 2010-2011.
102. K. Furusato, M. Katayama, Y. Inada, XAFS Analysis for Calcination Process of Supported Mn Catalysts on Silica, 2018.
103. T. Lee, H. Bai, AIMS Environ. Sci. 2016, 3, 261.
104. Z. Sheng, Y. Hu, J. Xue, X. Wang, W. Liao, J. Rare Earth 2012, 30, 676.
校內:2024-01-31公開