| 研究生: |
王奕中 Wang, Yi-Chung |
|---|---|
| 論文名稱: |
以微粒子成像測速技術量測無閥式微泵之暫態流場 Measurement of the Transient Flow Field of a Valveless Micropump Using the Technique of Micro-PIV |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 低溫共燒陶瓷 、無閥式微泵 、微粒子成像測速 |
| 外文關鍵詞: | Low temperature co-fired ceramic, Valveless micropump, Micro-PIV |
| 相關次數: | 點閱:110 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究先以低溫共燒陶瓷製作平板型擴流器微泵主體,再用蓋玻片作為微泵之震動板與觀景窗,在致動器方面,我們選用性質穩定的PZT-5A。接著使用微粒子成像測速系統對微泵之暫態流場進行影像擷取及分析,但由於目前所使用的雷射光源強度不足,而且又有螢光粒子聚積在流道壁面上,所以無法透過相關性比對得到完整的速度場。因此我們將微粒子成像測速系統作為流場之可視性化工具。觀測結果發現,在致動頻率為200 Hz 時,出現不同於其它作動頻率造成的流場現象;當頻率範圍落在20 至150 Hz,粒子振動軌跡均是隨頻率上升而逐漸縮短,但在200 Hz 時,粒子振動軌跡不但增長,而且流場出現明顯的渦流,實驗結果顯示,在此頻率下微泵的淨流量亦接近最大值。
In this study, we use low-temperature co-fire ceramic to fabricate the main part of a planer-diffuser-type valveless micropump. The pump cavity and the flow channels are sealed by glass wafers, working as the actuation diaphragm and viewing window. A PZT-5A piezoelectric disc is glued on the diaphragm to drive the pump. We try to analyze the transient flow field in the channel using a micro particle image velocimetry. However, due to the deficiency of the laser intensity and the aggregation of dyed particles on the walls, the velocity fields built from the PIV images are incomplete. The micro-PIV system is then applied to visualize the flow qualitatively. Results from the observation show that the characteristics of the flow field at the actuation frequency of 200 Hz are very different from other driving frequencies. For frequency between 20 and 150 Hz, the length of the track of the oscillating particle decreases with increasing frequency. At 200 Hz, the track length increases considerably and severe vortexes are observed close to the diffuser neck. Interestingly, at this frequency, the pump exhibits an optimal net flow rate.
[1] Smith L, Micromachined nozzles fabricated with a replicative method, 2nd Workshop on Micromachining, Micromechanics and Microsystems “Micromechanics Europe ‘90”, Berlin, Germany (1990).
[2] E. Stemme and G. Stemme, "A Valveless Diffuser/Nozzle-Based Fluid Pump," Sensors and Actuators A-Physical, vol. 39, pp. 159-167, Nov 1993.
[3] T. Gerlach and H. Wurmus, "Working principle and performance of the dynamic micropump," Sensors and Actuators A-Physical, vol. 50, pp. 135-140, Aug 1995.
[4] A. Olsson, G. Stemme, and E. Stemme, "A Valve-Less Planar Fluid Pump with 2 Pump Chambers," Sensors and Actuators A-Physical, vol. 47, pp. 549-556, Mar-Apr 1995.
[5] A. Olsson, G. Stemme, and E. Stemme, "Micromachined diffusernozzle elements for valve-less pumps," Micro Electro Mechanical System, pp. 378-383, 1996.
[6] P. E. Anders Olsson, Goran Stemme and Erik Stemme, "An improved valve-less pump fabricated using deep reactive ion etching," Ninth International Workshop on MEMS, pp. 479-484, 1996.
[7] A. Olsson, G. Stemme, and E. Stemme, "Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps," Sensors and Actuators A-Physical, vol. 84, pp. 165-175, Aug 1 2000.
[8] V. Singhal, S. V. Garimella, and J. Y. Murthy, "Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps," Sensors and Actuators A-Physical, vol. 113, pp. 226-235, Jul 5 2004.
[9] J. Kim and X. F. Xu, "Laser-based fabrication of polymer micropump," Journal of Microlithography Microfabrication and Microsystems, vol. 3, pp. 152-158, Jan 2004.
[10] D. J. Laser and J. G. Santiago, "A review of micropumps," Journal of Micromechanics and Microengineering, vol. 14, pp. R35-R64, Jun 2004.
[11] P. Woias, "Micropumps - past, progress and future prospects," Sensors and Actuators B-Chemical, vol. 105, pp. 28-38, Feb 14 2005.
[12] C. L. Sun and K. H. Huang, "Numerical characterization of the flow rectification of dynamic microdiffusers," Journal of Micromechanics and Microengineering, vol. 16, pp. 1331-1339, Jul 2006.
[13] 林世航, "圓錐型微擴流器之暫態流場數值模擬," 國立成功大學機械工程研究所碩士論文, 2007.
[14] S.-H. L. Yi-Chun Wang, Darry Jang, "Unsteady analysis of the flow rectification performance of conical microdiffuser valves for valveless micropump applications," Journal of Maechanics, 2010.
[15] 張德偉, "微擴流器閥門整流效率之數值研究," 國立成功大學機械工程研究所碩士論文, 2008.
[16] 陳竑一, "圓錐型擴流器整流效率之實驗研究," 國立成功大學機械工程研究所碩士論文, 2008.
[17] 韓旻坊, "平板型微擴流器整流效率之實驗研究," 國立成功大學機械工程研究所碩士論文, 2008.
[18] Y. C. Wang, J. C. Hsu, P. C. Kuo, and Y. C. Lee, "Loss characteristics and flow rectification property of diffuser valves for micropump applications," International Journal of Heat and Mass Transfer, vol. 52, pp. 328-336, Jan 15 2009.
[19] E. G. Palmer and C. M. Newton, "3-D packaging using low-temperature cofired ceramic (LTCC)," International Journal of Microcircuits and Electronic Packaging, vol. 16, pp. 279-284, 1993.
[20] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST)," Sensors and Actuators a-Physical, vol. 89, pp. 222-241, Apr 15 2001.
[21] D. Jurkow and L. Golonka, "Novel cold chemical lamination bonding technique-A simple LTCC thermistor-based flow sensor," Journal of the European Ceramic Society, vol. 29, pp. 1971-1976, Jul 2009.
[22] A. M. Lanzillotto, T. S. Leu, M. Amabile, and R. Samtaney, "A study of the structure and motion of fluidic microsystems," 28th AIAA Fluid Dynamics Conf. Snomass Village (1997).
[23] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, pp. 316-319 (1998).
[24] C. D. Meinhart, S. T.Werely, and M. H. B. Gray, "Volume illumination for two-dimensional particle image velocimetry," Measurement Science & Technology, vol. 11, pp. 809-814 (2000).