研究生: |
袁國樹 Yuan, Kuo-Shu |
---|---|
論文名稱: |
設計非對稱脈波寬度調變變頻器和類神經網路控制器應用於超音波馬達 Design of Asymmetrical PWM Inverter and Neural Network Controller for Ultrasonic Motor |
指導教授: |
陳添智
Chen, Tien-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | 非對稱脈波寬度調變變頻器 、超音波馬達 、類神經網路控制器 |
外文關鍵詞: | Ultrasonic Motor, Neural Network Controller, APWM |
相關次數: | 點閱:99 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在新型的超音波馬達裡,尤其是旋轉駐波型超音波馬達,在工業、消費者、機械人與汽車的伺服系統應用層面裡,直接驅動的致動器已經受到高度重視。超音波馬達擁有許多獨特的優點,像是低轉速高扭力、體積小、運轉安靜以及沒有電磁干擾的問題,適合應用在窗簾或是辦公室等安靜的場所使用。
在超音波馬達的驅動器上,最常用的有二相半橋串聯共振、電流源並聯共振以及串並聯(LLCC)共振變頻器等等。這些變頻器在操作時同時存在著優缺點。串聯共振與並聯共振容易受到品質因素的影響。而串並聯共振變頻器則是沒有品質因素干擾的問題。本論文是採用以串並聯共振架構的非對稱脈波寬度調變變頻器(APWM)用來驅動超音波馬達。當此變頻器操作在超音波馬達的共振頻率時,能夠減少二次和高次諧波的干擾以及在電晶體開關的切換上達到零電壓切換,減少切換損失並且輸出二相電壓振幅不隨著頻率變動而有所不同。因此,利用APWM共振變頻器,超音波馬達能夠維持良好的性能。
超音波馬達的特性是複雜且高度非線性,因此傳統的PI控制器在不穩定的系統裡很難有較佳的性能,容易受到負載干擾使系統更不穩定。本篇論文採用了新穎的遞迴類神經網路控制器,在陌生或是不明確的系統裡,透過即時學習與自我修正機制,克服外在因素之干擾,達到即時控制之目的,使系統能有更強健的控制效能。因此在超音波馬達的速度控制上,選用遞迴類神經網路控制器會比傳統的PI控制器有更良好的性能產生。
最後,由實驗結果可以證明,負載干擾的存在與否,遞迴類神經網路控制器都比傳統PI控制器展現出較佳的性能;而且所採用的非對稱脈波寬度調變變頻器在驅動超音波馬達上也有良好的效能。
The newly ultrasonic motor (USM), especially the rotary traveling-wave type, has invited special interest as direct drive type actuators for servo systems in industrial, consumable, robotic and automotive applications. The USM has many outstanding features such as high torque at low speed, compactness in size, silence and no electromagnetic interferences.
Several driving circuits for the USM generally include the two-phase half-bridge series-resonant inverter, the current-source parallel-resonant inverter, the LLCC resonant inverter, and so on. The advantages and drawbacks are existed simultaneously under those circuits operating. This thesis adopted the asymmetrical-pulsed-width-modulated (APWM) inverter which is based on the LLCC resonant topology for driving the USM. When the APWM inverter is operated near the resonant frequency, the second and high-order harmonics of the inverter can be reduced and the zero-voltage-switching both at turn-on and turn-off of the transistor also can be achieved. Then a good performance can be maintained.
The control characteristics of the USM are so complex and highly nonlinear that the conventional PI controller is hard to control the uncertain system. The novel recurrent neural network (RNN) controller provide a way for the design of online control for drive systems having unknown or uncertain dynamics.
Finally, between the conventional PI controller and the proposed RNN controller, results of this study showed a superior performance for controlling the USM; and the proposed inverter has a good achievement for driving the USM.
[1] H. V. Barth, “Ultrasonic Driven Motor,” IBM Technological Disclosure Bulletin 16, No. 7, P. 2263, December 1973.
[2] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993.
[3] S. Ueha and Y. Tomikawa, Ultrasonic Motors Theory and Applications, Clarendon Press, Oxford, 1993.
[4] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, 1997.
[5] K. Uchino, “Piezoelectric Ultrasonic Motors: Overview”, Smart Materials and Structures, Vol. 7, pp. 273–285, 1998.
[6] T. Sattel, Dynamic of Ultrasonic Motors, dissertation, Dep. of Applied Mechanics, Darmstadt University of Technology, 2003.
[7] N. El Ghouti, Hybrid modeling of a traveling wave piezoelectric motor, PhD Thesis, Dep. of Control Engineering, Aalborg University, Denmark, 2000.
[8] T. S. Glrnn, Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device, PhD, Massachusetts Institute of Technology, 2002.
[9] G. C. Hsieh, C. H. Lin, J. M. Li and Y. C. Hsu, “A Study of Series-Resonant DC/AC Inverter,” IEEE Trans. on Power Electronics, Vol. 11, No. 4, pp. 641-652, July 1996.
[10] C. M. Wang and G. C. Hsieh, “A Series-Resonant DC/AC Inverter for Impedance-Load Drives,” IEEE Trans. on Power Electronics, Vol. 16, No. 3, pp. 325-335, May 2001.
[11] C. M. Wang and G. C. Hsieh, “Nonlinear-Control Strategy for the Half-Bridge Series-Resonant Inverter,” IEEE Trans. on Industrial Electronics, Vol. 50, No. 2, pp. 336-348, April 2003.
[12] G. J. Ping, H. M. Qiang, J. Long, S. Bin and M. Y. Ping, “Resonant booster for driving ultrasonic motors,” IEEE Power Electronics Specialist Conference, Vol. 2, pp. 545-549, June 2003.
[13] G. Bal and E. Bekiroglu, “Experimental Examination of Speed Control Methods for a Traveling Wave Ultrasonic Motor,” International Advanced Technologies Symposium, pp. 415-423, August 2003, ANLARA.
[14] F. J. Lin, R. Y. Duan and J. C. Yu, “A Current-Source Parallel-Resonant Inverter for Ultrasonic Motor,” IEEE Power Electronics Specialist Conference, Vol. 1, pp. 450-455, May 1998.
[15] F. J. Lin, R. Y. Duan and J. C. Yu, “An Ultrasonic Motor Drive Using a Current-Source Parallel-Resonant Inverter with Energy Feedback,” IEEE Trans. on Power Electronics, Vol. 14, No. 1, pp. 31-42, January 1999.
[16] F. J. Lin, R. Y. Duan, R. J. Wai and C. M. Hong, “LLCC resonant inverter for piezoelectric ultrasonic motor drive,” IEE Proceedings Electronic. Power Application, Vol. 146, No. 5, pp. 479-487, September. 1999.
[17] F. J. Lin, R. Y. Duan and H. H. Lin, “An ultrasonic motor drive using LLCC resonant technique,” IEEE Power Electronics Specialists Conference, Vol. 2, pp. 947-952, June 1999.
[18] M. Qiu, P. Jain and H. Zhang, “An APWM Resonant Inverter Topology for High Frequency AC Power Distribution Systems,” IEEE Trans. on Power Electronics, Vol. 19, No. 1, pp. 121-128, January 2004.
[19] P. Jain, A. St-Martin and G. Edwards, “Asymmetrical Pulse-Width-Modulated Resonant DC/DC Converter Topologies,” IEEE Trans. on Power Electronics, Vol. 11, No. 3, pp. 413-422, May 1996.
[20] S. Mangat, M. Qiu and P. Jain, “A Modified Asymmetrical Pulse-Width-Modulated Resonant DC/DC Converter Topology,” IEEE Trans. on Power Electronics, Vol. 19, No. 1, pp. 104-111, January 2004.
[21] A. Schonknecht and R. W. A. A. D. Doncker, “Novel Topology for Parallel Connection of Soft-Switching High-Power High-Frequency Inverters,” IEEE Trans. on Industry Applications, Vol. 39, No. 2, pp. 550-555, March/April 2003.
[22] G. C. Hua, E. X. Yang, Y. M. Jiang and F. C. Lee, “Novel Zero-Current-Transition PWM Converters,” IEEE Trans. on Power Electronics, Vol. 9, No. 6, pp. 601-606, November 1994.
[23] G. C. Hua, C. S. Leu, Y. M. Jiang and F. C. Lee, “Novel Zero-Voltage-Transition PWM Converters,” IEEE Trans. on Power Electronics, Vol. 9, No. 2, pp. 213-219, March 1994.
[24] R. L. Lin and F. C. Lee, “Novel Zero-Current-Switching-Zero-Voltage
-Switching Converters,” IEEE Power Electronics Specialists Conference, Vol. 1, No. 6, pp. 438-442, June 1996.
[25] G. Bal and E. Bekiroglu, “Servo Speed Control of Travelling-Wave Ultrasonic Motor Using Digital Signal Processor,” SENSOR and ACTUATORS, A, 109, pp. 212-219, 2004.
[26] G. Bal and E. Bekiroglu, “A Highly Effective Load Adaptive Servo Drive System for Speed Control of Traveling-Wave Ultrasonic Motor,” IEEE Trans. on Power Electronics, Vol. 20, No. 5, September 2005.
[27] S. I. Furuya, T. Maruhashi, Y. Izuno and M. Nakaoka, “Load-Adaptive Frequency Tracking Control Implementation of Two-Phase Resonant Inverter for Ultrasonic Motor,” IEEE Trans. on Power Electronics, Vol. 7, No. 3, July 1992.