| 研究生: |
孫德勳 Sun, De-syun |
|---|---|
| 論文名稱: |
無閥壓電微幫浦的雷射加工製程與其應用 Fabrication and Application of Laser Machined Valve-Less Piezoelectric Micropump |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 無閥壓電微幫浦 、擴流器/噴嘴 、CFDRC 、微混合器 |
| 外文關鍵詞: | Micromixer, CFDRC, Micropump, Nozzle/diffuser |
| 相關次數: | 點閱:75 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微幫浦主要的功能是要獲得精準的流量,在本文中所設計製作模擬的微幫浦屬於無閥式微幫浦,在致動器方面是採用壓電蜂鳴片,採用它的主要原因是價格便宜、致動位移量大,但是缺點是高頻時,致動位移量會急遽減小。微幫浦結構是利用壓克力板搭配雷射加工製程製作,製成簡單快速且低成本。在模擬分析方面使用CFDRC套裝軟體設計模擬分析。在無閥式微幫浦的文獻中,理論的分析通常是以穩態流體流經擴流器/噴嘴,將流量視為一固定值,但實際上微幫浦的作動,腔體內的流體是非穩態的,流量也並非為定值,是會隨著時間而改變的。故本文主的研究目的著重於探討動態模擬分析擴流器/噴嘴元件。從本文實驗量測與模擬分析中發現擴流器/噴嘴在半角5°頻率20 Hz時微幫浦有最佳的流率160 ul/min 。微幫浦應用於混合器的部份,在低頻的操作下,分子間主要藉由擴散達成混合,由於頻率5 Hz的擴散時間較長,混合效率百分比86 %最佳。
The capability of micropump is to get the accurate flow rate. In this research, the design and simulation of this micropump is adopted for valve-less micropump by using PZT to actuate the micropump. The advantages of PZT are cheap and huge actuating displacement, but the defect is rapid decreasing displacement when operating in higher frequencies. The structure of micropump is fabricated by LASER processing on PMMA and the advantages are simple, quick, and low cost. In simulations, we use CFDRC to design and simulate our models. In references of the no-valve micropump, they used steady flow to cross the Nozzle/Diffuser and fixed the flow rate in theoretical analysis. But the motions of micropump and the flow in cavity are not steady. In fact, they changed with time. So this research will focus on the transient analysis of Nozzle/Diffuser elements. From our experimental data and simulations, we can get the optimal flow rate 160 ul/min of this micropump when operating in 20 Hz and the half angle of Nozzle/Diffuser is 5°. For application, we combine a mixer to this micropump. Because of the diffuse time of frequency 5 Hz is enough to mix, we can get the best mixing effiency percent 86% while micropump operating in 5Hz.
1.R. Rapp, W.K. Schomburg, D. Mass, J. Schulz and W. Stark, “Ligamicropump for gases and liquids”, Sensors and Actuators A, Vol. 40, pp. 57-61 (1994).
2.R. Zengerle, A. Richter, and H. Sandmaier, “A Micromembrane pump withelectrostatic actuation”, IEEE 5th International Workshop on Micro Electro Mechanical Systems (MEMS’92), pp. 31-36 (1992)
3.S. Shoji, S. Nakagawa and M. Esashi, “Micropump and sample-injector for integrated chemical analyzing systems”, Sensors and Actuators A, Vol. 21-23, pp. 189-192 (1990)
4.J. Jaesung and L.S. Seung, “Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump”, Sensors and Actuators A, Vol.80, pp. 84-89 (2000)
5.X.N. Jiang, Z.Y. Zhou, X.Y. Huang, Y. Li, Y. Yang and C.Y. Liu, “Micronozzle/diffuser flow and its application in micro valveless pumps”, Sensors and Actuators A, Vol. 70, pp. 81-87 (1998).
6.E. Stemme and G. Stemme, “A valveless diffuser/nozzle fluid pump”, Sensorsand Actuators A, Vol. 39, pp. 159-167 (1993).
7.V. Singhal, S.V. Garimella and J.Y. Murthy, “Low reynolds number flowthrough nozzle-diffuser elements in valveless micropumps”, Sensors and Actuators A, Vol. 113, pp. 226-235 (2004).
8.I.E. Idelchik, “Handbook of hydraulic resistance”, CRC Press FL third ed. (1994).
9.F.M. White, “Fluid Mechanics”, McGraw-Hill fifth ed., Singapore (1999).
10.G.K. Artyushkina, “On the hydraulic resistance during laminar fluid flow in conical diffusers”, Tr. LPI no. 333, pp.104-106 (1973).
11.L. Smith, “Micromachined nozzles fabricated with a replicative method”, 2nd Workshop on Micromachining, Micromechanics and Microsystems ”, Micromechanics Europe, Berlin, Germany (1990).
12.E. Stemme, and G. Stemme, “A valveless diffuser/nozzle fluid pump”, Sensors and Actuators A , Vol. 39, pp. 159-167 (1993).
13.T. Gerlach and H. Wurmus, “Working principle and performance of the dynamic micropump”, Sensors and Actuators A, Vol. 50, pp. 135-140 (1995).
14.A. Olsson, G. Stemme and E. Stemme, “Diffuser-element design investigation For valve-less pumps”, Sensors and Actuators A, Vol 57, pp. 137-143 (1996).
15.A. Olssen, P. Enoksson, G.. Stemme and E. Stemme, “Micromachined flat-walledvalveless diffuser pumps”, Journal of. Micromechanics and Microengineering, Vol. 9, pp. 161-166 (1997).
16.X.N. Jiang, Z.Y. Zhou, X.Y. Huang, Y. Li, Y. Yang and C.Y. Liu, “Micronozzle/diffuser flow and its application in micro valveless Pumps”, Sensors and Actuators A, Vol. 70, pp. 81-87 (1998).
17.T. Gerlach, “Microdiffusers as dynamic passive valves for micropump applications”, Sensors and Actuators A, Vol. 69, pp. 181-191 (1998).
18.Y. H Lee, T. G Kang and Y. H Cho, “Characterization of bidirectionally oscillating dynamic flow and frequency-dependent rectification performance of microdiffusers”, Proc. Micro Electro Mechanical Systems Workshop, pp. 403-408 (2000).
19.A. Olsson, G. Stemme and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps”, Sensors and Actuators A, Vol. 84, pp. 165-175 (2000).
20.K.S. Yang, I.Y. Chen, B.Y. Shew and C.C. Wang, “Investigation of the flow characteristics within a micronozzle/diffuser”, Journal of. Micromechanics and Microengineering, Vol. 14, pp. 26-31 (2004).
21.J.H. Kim, Y.S. Kim and C.J. Kang, “A Disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc”, Microelectronic Engineering, Vol. 71, pp. 119-124 (2004).
22.C. Yamahata, C. Lotto, E.A. Assaf and M. Gijs, “A PMMA valveless micropump using electromagnetic actuation”, Microfluid Nanofluid, Vol. 14, pp. 197-207 (2005).
23.F. Xia, S. Tadigadapa and Q. M. Zhang, “Electroactive polymer based microfluidic pump”, Sensors and Actuators A, Vol. 125, pp. 346-352 (2006).
24.T. Gerlach, “Microdiffusers as dynamic passive valves for micropump applications”, Sensors and Actuators A, Vol. 69, pp. 181-191 (1998).
25.F. M. White, “F M Fluid Mechanics”, McGraw-Hill fifth ed. (1999).
26.A. Olsson, G. Stemme and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps”, Sensors and Actuators A, Vol. 84, pp. 165-175 (2005).
27.V. Singhal, S.V. Garimella and J.Y. Murthy, “Low reynolds number flow through nozzle-diffuser elements in valveless micropumps”, Sensors and Actuators A, Vol. 113, pp. 226-235 (2004).
28.C.L. Sun and K.H. Huang, “Numerical characterization of the flow rectification of dynamic microdiffusers”, Journal of Micromechanics and Microengineering , Vol. 16, pp. 1331-1339 (2006).
29.郭秉奇,無閥式微泵之微擴流器/噴嘴流場分析及性能研究,國立成功大學機械工程研究所碩士論文(2007).
30.N. Schwesinger, T. Frank and H. Wurmus,, “A modular microfluid system with an integrated micromixer”, Journal of Micromechanics and Microengingeering, Vol. 6, pp. 99-102 (1996).
31.M. Koch, C. Schabmueller, G.J. Evans and A. Brunnshweiler , “Micromachined chemical reaction system”, Sensor and Actuators A, Vol. 74, pp. 207-210 (1999).
32.D. Gobby, P. Angeli and A. Gavriilidis, “Mixing characteristics of t-type microfluidic mixers” , Journal of Micromechanics and Microengingeering, Vol.11, pp. 126-132 (2001).
33.D.J. Beebe, R.J. Adrian, M.G. Olsen, M.A. Stremler, B.H. Jo and H. Aref, “Passive mixing in microchannels: fabrication and flow experiments”, Journal of Mechanics and Industry, Vol. 2, pp. 343-348 (2001).
34.S. Devahastin and A.S. Mujumdar, “A numerical study of flow and mixing characteristics of laminar confined impinging streams”, Journal of Chemical Engineering, Vol. 85, pp. 215-223 (2002).
35.A.D. Stroock, S.K. Dertinger, A. Ajdar, L. Mezic, H.A. Stone and G.M. Whitesides, “Chaotic mixer for microchannels”, Science, Vol. 295, pp.647-651 (2002).
36.V. Vivek, Y. Zeng and E.S. Kim, “Novel acoustic-wave micromixer”, IEEE International Micro Electro Mechanical Systems Conference, Miyazaki, Japan, pp. 668-673 (2000).
37.Y.K. Lee, J. Deval, P. Tabeling and C.M. Ho, “Chaotic mixing in electrokinetically and pressure driven micro flows”, The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp. 483-486 (2001).
38.Z.S. Yang, H. Matsumoto, M. Goto and R. Maedu, “Ultrasonic micromixer for microfluidic systems”, Sensors and Actuators A, Vol. 93, pp. 266-272 (2001).
39.楊愷祥,壓電無閥式微幫浦之製作與量測分析,國立雲林科技大學工程科技技術研究所博士論文 (2004)