簡易檢索 / 詳目顯示

研究生: 張毓庭
Chang, Yu-Ting
論文名稱: 鎢青銅礦結構之鈮酸鍶鈉系統的製備、分析、與電性
Preparation, characterization, and electrical properties of strontium sodium niobate system with tungsten bronze structure
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 鎢青銅結構顯微結構結晶結構相對介電常數絕緣電阻率
外文關鍵詞: tungsten bronze structure, microstructure, crystal structure, relative permittivity, insulation resistivity
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年由於環保意識的興起帶動一些新興的產業,例如:電動汽車,太陽能轉換器等,加上對於在高溫工作下使用的需求,例如:航太,石油天然氣探勘等,因此在高溫環境下使用的電容材料是有市場需求的;常見的電容材料鈦酸鋇 (BaTiO3) 由於受限於相變溫度,使這類電容只能在較低溫約200°C 以下的環境應用。根據科學家的研究,發現僅次於鈣鈦礦結構的第二大類介電材料鎢青銅結構具有可應用在高溫之下的潛力,因此本研究認為要研發出可在高溫下作使用的電容材料可從鎢青銅結構的材料下手。
    本研究使用固態反應法合成 (Sr2-x-zCaxYz)Na(Nb5-zZrz)O15 、 Sr2Na(Nb5-zTaz)O15,藉由顯微結構、結晶結構、拉曼光譜分析、電性量測等方法,來探討鎢青銅結構中的鈮酸鍶鈉不同離子摻雜取代的性質之影響。實驗結果顯示,使用 1200°C 持溫 6 小時進行粉末煅燒,經過 X 光繞射分析下,成功合成出鎢青銅結構化合物,並無分析到第二相存在。在鈣、釔、鋯等量摻雜取代後,高溫介電峰的部分往低溫偏移且寬化的現象,有擴散介電行為。在減少鈣摻雜取代量時,小孔洞增加、緻密度下降,導致絕緣電阻率下降,在低溫段相對介電常數的部分,減少鈣摻雜取代量時,由於極性奈米區域的減少導致低溫段介電峰些微平坦化。在鉭摻雜取代下受到抑制晶粒成長的效果,不論是煅燒粉末顆粒還是陶瓷體晶粒大小都有較小的趨勢,在煅燒粉末與燒結陶瓷體的 X 光繞射結果都有發現到在 (2θ=45°-48°) 時繞射峰分裂,表示晶體結構從非中心對稱轉變為中心對稱,與相對介電常數對溫度結果圖相解釋則為隨鉭摻雜取代,結晶結構從 (P4bm) 轉變為 (P4/mbm) 導致極化量下降、相對介電常數值下降,高溫介電峰往低溫偏移,當摻雜取代量達等於 2 mol 時在室溫下呈現順電性。在所有成分點中,鈣、釔、鋯等量摻雜取代 5 mol% 時,由於晶粒大小較小、均勻,且顯微結構中沒有太多裂縫、孔洞,因此擁有最佳絕緣電阻率表現,平均絕緣電阻率為 46 GΩ·m 。

    In this study, (Sr2-x-zCaxYz)Na(Nb5-zZrz)O15 and Sr2Na(Nb5-zTaz)O15 were synthesized by solid-state reaction method. The experimental results show that the powder was calcined at 1200°C for 6 hours. After X-ray diffraction analysis, the tungsten bronze structure compound was successfully synthesized, and no second phase was detected. After calcium, yttrium, and zirconium are doped and replaced, the part of the high-temperature dielectric peak shifts to the low temperature and broadens, showing a diffuse dielectric behavior. When reducing the calcium doping substitution amount, the small pores increase and the density decreases, decreasing the insulation resistivity. In the part of the relative permittivity of the low-temperature section, when the amount of calcium doping substitution is reduced, the dielectric peak of the low-temperature section is slightly flattened due to the reduction of the polar nanoregions (PNRs). Under the substitution of tantalum doping, due to the effect of inhibiting grain growth, both the calcined powder particles and the grain size of the ceramic body tend to be smaller. In the X-ray diffraction results of the calcined powder and the sintered ceramic body, it was found that the diffraction peak split at (2θ=45°-48°), indicating that the crystal structure changed from non-centrosymmetric to centrosymmetric. Interpretation of the relative permittivity vs. temperature results shows that, with the substitution of tantalum doping, the crystallographic structure shifts from (P4bm) to (P4/mbm) resulting in a decrease in polarization and a decrease in the relative permittivity value. When the tantalum doping substitution amount is equal to 2 mol, the high-temperature dielectric peak shifts significantly to the low temperature, showing paraelectricity at room temperature. In all composition points, when calcium, yttrium, and zirconium are doped to replace 5 mol%, due to the small and uniform grain size, and there are not too many cracks and holes in the microstructure, it has the best performance of insulation resistivity. The average insulation resistivity is 46 GΩ·m.

    摘要XVI 誌謝XVII 目錄XVIII 表目錄XX 圖目錄XX 第一章 緒論1 1-1 前言1 1-2 研究目的1 第二章 文獻回顧與理論基礎3 2-1 正方鎢青銅結構3 2-1-1 填充結構 (Filled structure)5 2-1-2 容忍因子 (Tolerance factor)5 2-2 介電性質6 2-3 原子取代理論8 2-3-1 A-site 離子取代8 2-3-2 B-site 離子取代9 2-4 還原氣氛燒結之半導化現象9 第三章 實驗步驟與方法11 3-1 實驗起始原料11 3-2 實驗方法11 3-3 粉末製備及分析13 3-3-1 煅燒粉末X光繞射分析14 3-3-2 煅燒粉末晶格常數擬合分析15 3-3-3 煅燒粉末比表面積分析15 3-3-4 煅燒粉末顯微結構分析16 3-4 陶瓷體分析16 3-4-1 陶瓷體密度量測16 3-4-2 陶瓷體顯微結構分析17 3-4-3 陶瓷體X光繞射分析17 3-4-4 陶瓷體拉曼光譜分析17 3-5 電性分析18 3-5-1 陶瓷體電性量測樣品準備18 3-5-2 陶瓷體介電常數與電容變化率18 3-5-3 陶瓷體絕緣電阻量測19 第四章 結果與討論20 4-1 煅燒粉末分析結果20 4-1-1 結晶相分析20 4-1-2 晶格常數擬合結果23 4-1-3 比表面積結果27 4-1-4 顯微結構結果29 4-2 陶瓷體分析結果30 4-2-1 陶瓷體密度分析30 4-2-2 顯微結構結果33 4-2-3 拉曼分析35 4-2-4 陶瓷體X光繞射分析38 4-3 陶瓷體性質40 4-3-1 介電性質40 4-3-2 絕緣電阻率性質44 4-3-3 電壓對電容變化率45 第五章 結論47 參考文獻48

    [1] T. Brown, A. P. Brown, D. A. Hall, T. E. Hooper, Y. Li, S. Micklethwaite, Z. Aslam, and S. J. Milne, “New high-temperature dielectrics: Bi-free tungsten bronze ceramics with stable permittivity over a very wide temperature range,” Journal of the European Ceramic Society, vol. 41, no. 6, pp. 3416-3424, 2021.
    [2] A. Torres-Pardo, R. Jimenez, J. M. González-Calbet, and E. García-González, “Structural effects behind the low-temperature nonconventional relaxor behavior of the Sr2NaNb5O15 bronze,” Inorganic Chemistry, vol. 50, no. 23, pp. 12091-12098, 2011.
    [3] L. Wei, Z. Yang, X. Han, and Z. Li, “Structures, dielectric and ferroelectric properties of Sr2-xCaxNaNb5O15 lead-free ceramics,” Journal of Materials Research, vol. 27, no. 7, pp. 979-984, 2012.
    [4] A. Magnéli, “The crystal structure of tetragonal potassium tungsten bronze,” Arkiv för kemi, pp. 213-221, 1949.
    [5] M. H. Francombe, and B. Lewis, “Structural, dielectric and optical properties of ferroelectric lead metaniobate,” Acta Crystallographica, pp. 696-703, 1958.
    [6] J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L.G.V. Uitert, “The nonlinear optical properties of Ba2NaNb5O15,” Applied Physics Letters, pp.269-271, 1967.
    [7] A. Simon, and J. Ravez, “Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials,” Comptes Rendus Chimie, vol. 9, no. 10, pp. 1268-1276, 2006.
    [8] M. Khachane, A. Moure, M. Elaatmani, A. Zegzouti, M. Daoud, and A. Castro, “Processing by both classical and mechanosynthesis routes and characterization of a new solid solution of tungsten–bronze structure ceramics,” Materials Research Bulletin, vol. 41, no. 10, pp. 1798-1805, 2006.
    [9] X. Zhu, M. Fu, M. C. Stennett, P. M. Vilarinho, I. Levin, C. A. Randall, J. Gardner, F. D. Morrison, and I. M. Reaney, “A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes,” Chemistry of Materials, vol. 27, no. 9, pp. 3250-3261, 2015.
    [10] R. Li, Y. Pu, Q. Zhanga, W. Wang, J. Li, X. Du, M. Chen, X. Zhang, and Z. Sun, “The relationship between enhanced dielectric property and structural distortion in Ca doped Ba2NaNb5O15 tungsten bronze ceramics,” Journal of the European Ceramic Society, vol. 40, no. 13, pp. 4509-4516, 2020.
    [11] P. Yang, B. Yang, S. Hao, L. Wei, and Z. Yang, “Variation of electrical properties with structural vacancies in ferroelectric niobates (Sr0.53Ba0.47)2.5−0.5NaNb5O15 ceramics,” Journal of Alloys and Compounds, vol. 685, pp. 175-185, 2016.
    [12] M. Takashige, S.-I. Hamazaki, M. Tsukioka, F. Shimizu, H. Suzuki, and S. Sawada, “Ferroelectric properties of Ba2NaNb5(1–x)Ta5xO15,” Ferroelectrics, vol. 158, no. 1, pp. 187-191, 2011.
    [13] B. Yang, J. Li, P. Yang, L. Wei, and Z. Yang, “Effects of A-site cations on the electrical behaviors in (Sr1-xCax)2.1Na0.8Nb5O15 tungsten bronze ferroelectrics,” Materials Chemistry and Physics, vol. 243, 2020.
    [14] S. Hou, S. Xu, L. Yang, X. Liu, L. Wei, X. Chao, D. Wu, P. Liang, and Z. Yang, “High energy storage performance of Ca0.15(Sr0.6Ba0.4)0.85Nb2-xTaxO6 relaxor ferroelectric ceramics,” Ceramics International, vol. 48, no. 19, pp. 28382-28390, 2022.
    [15] C. Luo, X. Zheng, P. Zheng, J. Du, Z. Niu, K. Zhang, W. Bai, Q. Fan, L. Zheng, and Y. Zhang, “Realizing excellent energy storage performances in tetragonal tungsten bronze ceramics via a B-site engineering strategy,” Journal of Alloys and Compounds, 2022.
    [16] L. Wei, Z. Yang, H. Ren, and X. Chen, “Phase transitional behavior and electrical properties of Sr2K0.1Na0.9Nb5−xTaxO15 ceramics,” Journal of the American Ceramic Society, vol. 93, no. 12, pp. 3986-3989, 2010.
    [17] A. C. Larson, and R. B. V. Dreele, “General structure analysis system (GSAS),’’ New Mexico: Los Alamos National Laboratory, 2004.
    [18] E. García-González, A. Torres-Pardo, R. Jiménez, and J. M. González-Calbet, “Structural singularities in ferroelectric Sr2NaNb5O15,” American Chemical Society, 2007.
    [19] L. Li, B. Yang, X. Chao, D. Wu, L. Wei, and Z. Yang, “Effects of preparation method on the microstructure and electrical properties of tungsten bronze structure Sr2NaNb5O15 ceramics,” Ceramics International, vol. 45, no. 1, pp. 558-565, 2019.
    [20] Z. J. Yang, W. B. Feng, X. Q. Liu, X. L. Zhu, and X. M. Chen, “Ba4R2Sn4Nb6O30 (R = La, Nd, Sm) lead‐free relaxors with filled tungsten bronze structure,” Journal of the American Ceramic Society, vol. 102, no. 8, pp. 4721-4729, 2019.
    [21] Y. Wang, T. L. Sun, X. L. Zhu, L. Liu, and X. M. Chen, “Ferroelectric transition and structural modulation in Sr2Na(Nb1−xTax)5O15 tungsten bronze ceramics,” Journal of Applied Physics, vol. 129, no. 24, 2021.
    [22] Y.-Q. Tan, Y. Yu, Y.-M. Hao, S.-Y. Dong, and Y.-W. Yang, “Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics,” Materials Research Bulletin, vol. 48, no. 5, pp. 1934-1938, 2013.

    無法下載圖示 校內:2028-08-14公開
    校外:2028-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE