簡易檢索 / 詳目顯示

研究生: 馮信為
Feng, Hsin-Wei
論文名稱: 馬來酸酐改質無定形聚丙烯作為鋰離子電池膠態高分子電解質
Maleic Anhydride Modified Atactic Polypropylene for Gel Polymer Electrolytes of Lithium Ion Batteries
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 鋰離子電池膠態高分子電解質無定形聚丙烯接枝馬來酸酐聚環氧乙烷
外文關鍵詞: lithium ion batteries, gel polymer electrolytes, atactic-polypropylene grafted maleic anhydride, poly(ethylene oxide)
相關次數: 點閱:86下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用無定形聚丙烯與馬來酸酐,製備馬來酸酐接枝無定形聚丙烯 (aPP-g-MA)。再使用aPP-g-MA,與特殊聚環氧乙烷 (PEO)製備成高分子薄膜,作為鋰離子電池膠態高分子電解質使用。
    本實驗使用FTIR和TGA對aPP-g-MA進行鑑定,高分子薄膜也使用TGA與DSC鑑定熱穩定性與熱轉移性質。本系統製作成鋰離子電池後,分別使用線性掃描伏安法 (LSV)測試電化學穩定性、電解液吸收、交流阻抗法 (AC-impedance)測試離子傳導度、定電位法 (potentiostatic)測試鋰離子遷移數,最後組成磷酸鋰鐵的半電池測試充放電表現。
    實驗結果顯示,電化學穩定性有達到4.5 V以上,且電解液可順利被高分子薄膜吸收,可作為鋰離子電池的膠態高分子電解質。離子傳導度與溫度關係圖,符合VTF方程式,即鋰離子傳導依賴著PEO高分子鏈的segmental motion;隨著溫度上升,離子傳導度也提升;若增加PEO在膜中的比例,活化能也隨之變大。鋰離子遷移數小於0.1,比起同為PEO系統的膠態高分子電解質來的更小。半電池放電可達140 mAh/g,但不耐多次充放電。

    In this study, atactic-polypropylene grafted maleic anhydride (aPP-g-MA), which was reacted with special poly(ethylene oxide) (PEO), JEFFAMINE® ED-2003 Polyetheramine (XTJ-502), to make polymer thin films, was synthesized. Lithium ion batteries with gel polymer electrolytes are made from our polymer thin films soaked in liquid electrolyte, which consists of 1 M lithium hexafluorophosphate (LiPF6) with EC/DMC/DEC in 1:1:1 wt%.
    FTIR and TGA were used for characterizing aPP-g-MA. The result of TGA reveals that there is a clear increase in temperature of 5 wt% degradation. The electrochemical windows of our systems for lithium ion batteries reach 4.5 V, and they successfully absorb liquid electrolyte. The relationship between temperature and ionic conductivity obeys Vogel-Tammann-Fulcher (VTF) behavior, and as increasing amount of XTJ-502 in films, the activation energy of ionic conductivity also increases, which is contributed to confinement effect. All of lithium ion transport numbers are smaller than 0.1, because of existence of associated lithium salts and high mobility of negative ions, which are made lithium ion transport numbers relatively small. Finally, the capacities of discharge curves of lithium iron phosphate (LiFePO4) half cell reach 140 mAh/g, but it cannot bear many times of charge and discharge.

    中文摘要 i Extended Abstract ii 誌謝 viii 總目錄 ix 圖目錄 xi 表目錄 xiii 第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章、文獻回顧 4 2-1 可充電電池與鋰離子電池之簡介 4 2-2 鋰離子電池結構與運作程序 10 2-3 電解質種類 12 2-3-1 液態電解質 12 2-3-2離子液體電解質 13 2-3-3 高分子電解質 15 2-4 離子於高分子電解質傳導機制 20 第三章、實驗步驟與儀器檢測 26 3-1 實驗藥品 26 3-2 儀器設備 27 3-3 實驗步驟 28 3-3-1 製備聚丙烯接枝馬來酸酣 28 3-3-2 製備鋰離子電池之膠態高分子電解質 29 3-3-3 製備鋰離子電池之正極 30 3-3-4 鋰離子電池之組裝 31 3-4 儀器分析 32 3-4-1聚丙烯接枝馬來酸酐之鑑定 32 3-4-2聚丙烯接枝馬來酸酐之酸酐含量測定 32 3-4-3 熱穩定性分析 34 3-4-4 熱轉移性質分析 34 3-4-5電解液吸收測試 35 3-4-6 電化學穩定性分析 35 3-4-7 離子傳導度 36 3-4-8 鋰離子遷移數分析 37 3-4-9 半電池充放電測試 38 3-5 儀器原理 39 3-5-1 電化學阻抗頻譜 39 3-5-2 鋰離子遷移數 49 第四章、結果與討論 51 4-1 聚丙烯接枝馬來酸酐之鑑定 51 4-2 聚丙烯接枝馬來酸酐之酸酐含量測定 56 4-3 熱穩定性分析 58 4-4 熱轉移性質分析 62 4.5 電化學穩定度 66 4.6 電解液吸收 68 4.7 離子傳導度 70 4.8 鋰離子遷移數 75 4.9 充放電測試 78 第五章、結論 80 參考文獻 81

    [1] J.-K. Park, "Principles and Applications of Lithium Secondary Batteries", Wiley-VCH, Weinheim, Germany, 2012.
    [2] M. Yoshio, R. J. Brodd, and A. Kozawa, "Lithium-Ion Batteries", Springer, New York, USA, 2009.
    [3] W. Van Schalkwijk, and B. Scrosati, "Advances in lithium-ion batteries", Springer Science & Business Media, New York, USA, 2002.
    [4] J. R. MacCallum, and C. A. Vincent, "Polymer Electrolyte Reviews", Springer Science & Business Media, New York, USA, 1987.
    [5] P. L. Kuo, C. A. Wu, C. Y. Lu, C. H. Tsao, C. H. Hsu, and S. S. Hou, ACS Appl Mater Interfaces, 2014, 6, 3156.
    [6] A. M. Bernardes, D. C. R. Espinosa, and J. A. S. Tenório, Journal of Power Sources, 2004, 130, 291.
    [7] J. Xu, H. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, Journal of Power Sources, 2008, 177, 512.
    [8] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy & Environmental Science, 2011, 4, 3243.
    [9] F. Beck, and P. Rüetschi, Electrochimica Acta, 2000, 45, 2467.
    [10] K. Xu, Chemical reviews, 2004, 104, 4303.
    [11] H. Tokuda, S. Muto, N. Hoshi, T. Minakata, M. Ikeda, F. Yamamoto, and M. Watanabe, Macromolecules, 2002, 35, 1403.
    [12] A. Manuel Stephan, European Polymer Journal, 2006, 42, 21.
    [13] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, Journal of Power Sources, 2010, 195, 7904.
    [14] Y. Hu, H. Li., X. Huang, and L. Chen, Electrochemistry Communications, 2004, 6, 28.
    [15] Y. S. Lee, G. S. Song, Y. Kang, and D. H. Suh, Electrochimica Acta, 2004, 50, 311.
    [16] H. R. Allcock, and D. L. Olmeijer, Macromolecules, 1998, 31, 8036.
    [17] D. Bamford, A. Reiche, G. Dlubek, F. Alloin, J. Y. Sanchez, and M. A. Alam, The Journal of Chemical Physics, 2003, 118, 9420.
    [18] J. Souquet, Annual Review of Materials Science, 1981, 11, 211.
    [19] B. Huang, Z. Wang, L. Chen, R. Xue, and F. Wang, Solid State Ionics, 1996, 91, 279.
    [20] Z. Wang, B. Huang, R. Xue, X. Huang, and L. Chen, Solid State Ionics, 1999, 121, 141.
    [21] O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, Solid State Ionics, 1993, 66, 97.
    [22] O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, Solid State Ionics, 1993, 66, 105.
    [23] C. Svanberg, J. Adebahr, H. Ericson, L. Börjesson, L. M. Torell, and B. Scrosati, The Journal of Chemical Physics, 1999, 111, 11216.
    [24] C. Svanberg, J. Adebahr, R. Bergman, L. Börjesson, B. Scrosati, and P. Jacobsson, Solid State Ionics, 2000, 136–137, 1147.
    [25] Y. Saito, H. Kataoka, E. Quartarone, and P. Mustarelli, The Journal of Physical Chemistry B, 2002, 106, 7200.
    [26] J. M. Song, H. R. Kang, S. W. Kim, W. M. Lee, and H. T. Kim, Electrochimica Acta, 2003, 48, 1339.
    [27] H. Huang, and S. L. Wunder, Journal of The Electrochemical Society, 2001, 148, A279.
    [28] H. Zhang, X. Ma, C. Lin, and B. Zhu, RSC Advances, 2014, 4, 33713.
    [29] D. Saikia, H.-Y. Wu, Y.-C. Pan, C.-P. Lin, K.-P. Huang, K.-N. Chen, G. T. K. Fey, and H.-M. Kao, Journal of Power Sources, 2011, 196, 2826.
    [30] Z. Cui, Y. Xu, L. Zhu, J. Wang, Z. Xi, and B. Zhu, Journal of Membrane Science, 2008, 325, 957.
    [31] M. Watanabe, S. Nagano, K. Sanui, and N. Ogata, Solid State Ionics, 1988, 28–30, Part 2, 911.
    [32] V. V. Kharton, "Solid state electrochemistry II: electrodes, interfaces and ceramic membranes", John Wiley & Sons, Weinheim, Germany, 2012.
    [33] D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, Journal of Power Sources, 2011, 196, 5334.
    [34] L. G. Wade, "Organic-chemistry 7th ed", Pearson Prentice Hall, 2010.
    [35] R. Rengarajan, V. R. Parameswaran, S. Lee, M. Vicic, and P. L. Rinaldi, Polymer, 1989, 31, 1703.
    [36] B. D. Roover, M. Sclavons, V. Carlier, J. Devaux, R. Legras, and A. Momtaz, Journal of Polymer Scicence: Part A: Polymer Chemistry, 1995, 33, 829.
    [37] H. Chen, X. Shi, Y. Zhu, Y. Zhang, and J. Xu, Frontiers of Chemical Engineering in China, 2008, 2, 102.
    [38] S. S. Hou, R. Graf, H. W. Spiess, and P. L. Kuo, Macromolecular Rapid Communications, 2001, 22, 1386.
    [39] K. Jeddi, N. T. Qazvini, S. H. Jafari, and H. A. Khonakdar, Journal of Polymer Science Part B: Polymer Physics, 2010, 48, 2065.
    [40] Z. Fu, H. Feng, C. Sun, X. Xiang, W. Wu, J. Luo, Q. Hu, A. Feng, and W. Li, Journal of Solid State Electrochemistry, 2013, 17, 2167.
    [41] L.-F. Fang, J.-L. Shi, B.-K. Zhu, and L.-P. Zhu, Journal of Membrane Science, 2013, 448, 143.
    [42] F. A. Amaral, C. Dalmolin, S. C. Canobre, N. Bocchi, R. C. Rocha-Filho, and S. R. Biaggio, Journal of Power Sources, 2007, 164, 379.
    [43] Z. Li, J. Jiang, G. Lei, and D. Gao, Polymers for Advanced Technologies, 2006, 17, 604.
    [44] Z. Tian, X. He, W. Pu, C. Wan, and C. Jiang, Electrochimica Acta, 2006, 52, 688.
    [45] M. Elmahdy, K. Chrissopoulou, A. Afratis, G. Floudas, and S. Anastasiadis, Macromolecules, 2006, 39, 5170.
    [46] A. Ghosh, C. Wang, and P. Kofinas, Journal of The Electrochemical Society, 2010, 157, A846.
    [47] P. G. Bruce, M. T. Hardgrave, and C. A. Vincent, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 271, 27.
    [48] P. G. Bruce, and C. A. Vincent, Faraday Discussions of the Chemical Society, 1989, 88, 43.
    [49] M. Watanabe, and A. Nishimoto, Solid State Ionics, 1995, 79, 306.
    [50] A. Nishimoto, M. Watanabe, Y. Ikeda, and S. Kohjiya, Electrochimica Acta, 1998, 43, 1177.
    [51] V. Gentili, S. Panero, P. Reale, and B. Scrosati, Journal of Power Sources, 2007, 170, 185.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE