| 研究生: |
何欣潔 Ho, Shin-Jie |
|---|---|
| 論文名稱: |
閉迴路水波系統中無閥流體驅動效應之解析研究 An Analytical Investigation into Valveless Pumping Effects in a Closed-loop Water-wave System |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 無閥流體驅動 、水波 、漸進分析 、流量 |
| 外文關鍵詞: | closed-loop valveless pumping system, water-wave, asymptotic analysis, flowrate |
| 相關次數: | 點閱:105 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無閥流體驅動系統普遍存在於自然界中,近年來也應用於生物微流體及3C產品散熱上之研究。本文中考慮以一條硬管連接水箱兩端所形成之封閉無閥流體迴路,並在水箱底部連接產波器,使水箱中的水產生波動並導致特定方向的平均流量。我們利用微擾理論求解本問題之勢流了數學模型,期望可以計算水波在封閉無閥系統中所產生的流量。具體而言,我們利用兩個不同的例子探討在不同頻率、當產波器放置於不同位置時,其瞬時流量振幅和相位角會如何變化。從這兩個特例的研究結果可以觀察到流量都有相同的定性趨勢,當產波器置於水箱中間,因為此時系統對稱而不會有流量的產生。同時,流量也會隨時間的無因次參數而有週期性的變化。同時,流量振幅會隨頻率增加而變化更快,相位角也相對應於振幅做改變。最後,我們也對系統中的多個無因次參數進行討論,以釐清其對此封閉無閥流體驅動系統的影響。從研究結果中發現此封閉無閥流體系統會受到系統幾何形狀、頻率、阻尼和慣性力影響。例如當慣性力 越大, 的振幅 會隨之減少;而當阻尼越小,流量則隨會之增加。
Valveless pumping systems are systems or devices which exploit system asymmetry and nonlinearity to drive flow without flow direction regulators. Nowadays, valveless micropumps are increasingly needed in micro-electro- mechanical systems (MEMS) and biomedical MEMS (BioMENS).
Here we focus on the effects of wave propagation in a closed-loop valveless pumping system. In particular, a fluid-filled closed-loop system is considered, which consists of a tank with a rigid tube connecting the two sides, with an actuator producing waves that propagate in the tank. A mathematic model is constructed and an analytic solution is derived by perturbation theory here. There are two cases discussed in this thesis, namely lab-size and real-life size system. It shows that both of the two cases have the same trends such as no average flowrate produced when the actuator is located at a symmetry position. Furthermore, the amplitude and phase angle of the instantaneous flowrate are studied carefully to reveal their dependence on varies system parameters. In addition, a study of each of the dimensionless parameters in this system is carried out to demonstrate how the system response depends upon geometry, frequency, damping and inertia force. Specially, the amplitude of flowrate decrease with inertia parameter increase. And increasing , which is proportional to the reciprocal of damping, will lead the amplitude of flowrate increase, too. We can conclude that combining the effects of some dimensionless parameters such as and , frequency and the position of the actuator, the maximum flowrate can be found from such results.
[1] Hover JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, and Gharib M, Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 421(6919): p. 172-177, 2003.
[2] H. Afrasiab, M.R. Movahhedy, and A. Assempour, Proposal of a new design for valveless micropumps. Scientia Iranica. 18(6): p. 1261-1266, 2011.
[3] Chi-Choung Wang (王齊中), Effects of actuator impact on the nonlinear dynamics of a valveless pumping system. Doctoral Dissertation, National Cheng Kung University, 2011.
[4] Chia-Hsiang Ho (何嘉祥), A numerical study on the nonlinear impact dynamics of a closed-loop valveless pumping system. Master thesis, National Cheng Kung University 2012.
[5] Wen-Shian Wang (王文憲), Experimental study of a closed-loop valveless pumping system. Master thesis, National Cheng Kung University, 2011.
[6] Cheng-Wei Lin (林政偉), Theoretical analysis of open-loop valveless pumps. Master thesis, National Cheng Kung University, 2009.
[7] Meng-Han Hung (洪孟漢), Experimental study of an open-loop valveless pumping system. Master thesis, National Cheng Kung University, 2011.
[8] Wikipedia, William harvey,URL, http://en.wikipedia.org/wiki/William_Harvey.
[9] Moser M, Huang JW, Schwarz GS, Kenner T, and Noordergraaf A, Impedance defined flow generalisation of william harvey's concept of the circulation— 370 years later. Int J Cardiovasc Med Sci. 1: p. 6, 1998.
[10] Donder FC, Physiologie des menschen. 1856: Leipzig.
[11] Liebau G, ber ein ventilloses pumpprinzip_liebau. Naturwiss. 41: p. 327, 1954.
[12] Liebau G, Arterielle pulsation und venöse repulsation. Z Gesamte Exp. 123: p. 71-90, 1954.
[13] Liebau G, Die strömungsprinzipien des herzens. Z Kreislaufforsch. 44: p. 677-684, 1955.
[14] Hickerson, Rinderknecht D, and Gharib M, Experimental study of the behavior of a valveless impedance pump. Experiments in Fluids. 38(4): p. 534-540, 2005.
[15] Ottesen JT, Valveless pumping in a fluid-filled closed elastic tube-system: One-dimensional theory with experimental validation. J Math Biol. 46(4): p. 309-332, 2003.
[16] Jung E and Peskin CS, Two-dimensional simulations of valveless pumping using the immersed boundary method. J Sci Comput. 23: p. 19-45, 2001.
[17] Jung E, A mathematical model of valveless pumping: A lumped model with time-dependent compliance, resistance, and inertia. Bull Math Biol. 69(7): p. 2181-2198, 2007.
[18] Borzi A and Propst G, Numerical investigation of the liebau phenomenon. Zeitschrift f¨ur angewandte Mathematik und Physik ZAMP. 54(6): p. 1050-1072, 2003.
[19] Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai H. J, Hove J. R, Fraser SE, Dickinson ME, and Gharib M, The embryonic vertebrate heart tube is a dynamic suction pump. Science. 312(5774): p. 751-753, 2006.
[20] Manopoulos OG, Mathioulakis DS, and Tsangaris SG, One-dimensional model of valveless pumping in a closed loop and a numerical solution. Physics of Fluids. 18(1): p. 017106, 2006.
[21] Hickerson AI and Gharib M, On the resonance of a pliant tube as a mechanism for valveless pumping. Journal of Fluid Mechanics. 555: p. 141, 2006.
[22] Wen CY and Chang HT, Design and characterization of valveless impedance pumps. Journal of Mechanics. 25(04): p. 345-354, 2011.
[23] C. F. Babbs, Behavior of a viscoelastic valveless pump: A simple theory with experimental validation. Biomed Eng Online. 9: p. 42, 2010.
[24] Manopoulos OG and Tsangaris S, Modelling of the blood flow circulation in the human foetus by the end of the third week of gestation. Cardiovascular Engineering. 5(1): p. 29-35, 2005.
[25] Manner J, Thrane L, Norozi K, and Yelbuz TM, In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dyn. 238(12): p. 3273-3284, 2009.
[26] Manner J, Wessel A, and Yelbuz TM, How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn. 239(4): p. 1035-1046, 2010.
[27] Loumes L, Multilayer impedance pump: A bio-inspired valveless pump with medical applications. Doctoral Dissertation, California Institute of Technology, 2007.
[28] Loumes L, Avrahami I, and Gharib M, Resonant pumping in a multilayer impedance pump. Physics of Fluids. 20(2): p. 023103, 2008.
[29] Wen CY, Yeh SJ, Leong KP, Kuo WS, and Lin H, Application of a valveless impedance pump in a liquid cooling system. IEEE. 3: p. 783-791, 2013.
2013.