簡易檢索 / 詳目顯示

研究生: 葉佳循
Yeh, Chia-Hsun
論文名稱: IC封裝模具模穴圓角對於EMC間黏著效應的影響
On Mold Corner Effects of EMC Adhesion for IC Encapsulation Process
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: IC封裝黏著效應黏模力特性曲線模穴圓角圓角效應
外文關鍵詞: IC package, Adhesion effects, Cavity fillet, Corner effect
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電子IC封裝製程中,封膠材料(Epoxy Molding Compound, EMC)在熟化(Curing)成型中完成包覆電子晶片,整個過程會與封裝模具表面產生緊密的結合造成黏著的現象,稱之為黏著效應(Adhesion effects);而此黏著效應會影響脫模作業過程,當黏著效應過大時會造成IC成品在脫模時可能破壞產品表面,進而導致封膠失敗、生產效率降低與可靠度不佳等結果。所以如何在不影響現有模具設計的前提下,能夠藉由特殊表面處理(Surface treatment)以及鍍層(Coating)選擇,來有效降低黏模力(Adhesion force)是目前產業界及研究單位所重視的主題。
    本研究是利用本實驗室自行研發完成的自動化電子封裝黏模力檢測設備與量測技術,本研究有別於過去所利用之量測方式,在過往本實驗室的研究中,量測試片與封膠材料接觸的部分的設計皆為平面形式,在本研究中改變了原有的試片設計,將試片與封膠材料接觸部分設計為一模穴形式,以更接近現今封裝業者生產情況,並進一步探討模穴圓角設計對於封膠材料黏著效應的影響。本研究也會將試片搭配不同的表面鍍層,探討封膠材料在模具表面的黏著效應,並進行一系列的黏模力測試。
    最後,本論文也針對不同封裝材料進行四百模次的長效性連續實驗,觀察黏模力的變化趨勢,透過線性迴歸分析(Linear regression)將實驗數據擬合出一條黏模力特性曲線,用以判斷最佳清模時機,找出黏模力增大的原因,才能減少因黏著效應所產生的不良影響。同時比較不同的試片設計在長效性連續實驗下,黏模力上升的模次。以利推測更準確的清模時機。

    In the IC packaging process, epoxy molding compound (EMC) was filling the mold cavity and cured in the mold. At the same time, adhesion may occur in the interface between the surface of mold and cured EMC. Large adhesion force could cause many problems, which may influence the ejection process. Some other critical problems may also happen in the IC molding process if adhesion problem occurs, such as distortion or crack on ejecting finished parts, residue of cured EMC on the surface of mold affecting the quality of the products, and regular, tedious and not effective mold cleaning. So how to improve the mold adhesion force effectively is an important issue for industry and research institutes. To avoid the mold adhesion problems, improving the mold design and applying suitable surface treatments such as mold surface coating are the common approaches. Among these, applying suitable surface coating is a more popular and practical approach.
    This study described the approach of using a semi-automatic EMC adhesion force test instrument to measure adhesion force between the mold surface and EMC and studied the corner effect during the encapsulation process. Three different cavity arcs were designed in three specimens and molded and tested during molding to observe the corner effects. Engineers could determine the best type of surface treatment and the type of corner to reduce the amount of mold adhesion force. This paper also discussed the issue of successive adhesion force test and the variation of adhesion force during successive molding test to predict the time for mold cleaning. It was found that adhesion force was an effective parameter to predict the performance of an IC encapsulation mold in terms of adhesion.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 VII 圖目錄 IX 第一章 緒論 Introduction 1 1-1前言 Introduction 1 1-2 IC封裝製程簡介 Introduction of IC Package Mold 3 1-3封裝模具的黏著問題 Adhesion Problem on IC package Mold 5 1-4研究目的 Research Objective 7 1-5文獻回顧 Literatures Review 8 1-5-1 封膠材料的固化 Cured Theory of Epoxy 8 1-5-2 封膠材料的黏著性質 Adhesion Properties of Epoxy 8 1-5-3 IC封裝模具表面的鍍層處理 Surface Coating on IC Package Mold 9 1-5-4 量測方式的相關文獻 Reference of Measure Adhesion Force 10 1-5-5 黏著強度的量測規範 Adhesion Strength Specification 12 第二章 量測原理與實驗設備 Measurement Theory and Equipment 17 2-1 黏著強度量測原理 Measure Adhesion Strength Theory 17 2-2量測試片與封膠材料的使用準則 Specimens and Epoxy Usage Rule 18 2-2-1 量測試片之製作 Specimens 18 2-2-2 封膠材料使用準則 Epoxy Usage Rules 19 2-3正向與簡向複合機台簡介 Introduction of Normal and Shear Equipment 22 2-3-1 模壓機單元 Top Mold 24 2-3-2 模具單元 Bottom Mold 26 2-3-3 灌膠伺服單元 Molding System 30 2-3-4 黏模力檢測裝置 Measurement System of Adhesion Force 31 2-4機台控制系統 Control System 33 2-5數據資料擷取系統 Capture Data System 35 2-6量測過程與結果 Measurement Step and Results 38 第三章 黏模力之不同鍍層實驗 Experiment of Different Coating 42 3-1 實驗目的 Experiment Purposes 42 3-2 實驗規劃與實驗參數 Experiment Program and Parameters 42 3-2-1 試片型式設計及鍍層選用 Specimens and Coating 43 3-2-2 封膠材料的選用 Epoxy Molding Compound 45 3-3 實驗結果及比較 Experiment Results and Comparison 46 3-3-1材料Hitachi-9200HF之實驗結果 Results of Hitachi-9200HF 46 3-3-2材為ShinEtsu-2520L之實驗結果 Results of ShinEtsu-2520L 51 3-3-3實驗結果的比較 Comparison 56 第四章 黏模力之長效性連續實驗 Continuous Experiment 59 4-1 實驗目的 Experiment Purposes 59 4-2 實驗規劃與實驗製程參數 Experiment Program and Parameters 59 4-2-1 試片為模穴型式 Cavity Specimens 59 4-2-2模穴型式試片與封膠材料接觸面積 Contact Area between material and Specimens 61 4-2-3模穴型式試片之圓角設計 Cavity Corner Fillet 61 4-3 實驗結果與比較 Experiment Results and Comparison 62 4-3-1試片表面模穴型式(材料Hitachi-9200HF鍍層為硬鉻) 62 4-3-2試片表面模穴形式(材料ShinEtsu-2520L鍍層為G7鍍層) 67 4-3-3模穴圓角R0.3 mm之連續實驗 Results of Cavity Arc R0.3 mm 72 4-3-4模穴圓角R0.6 mm之連續實驗 Results of Cavity Arc R0.6 mm 76 4-3-5模穴圓角R1.2 mm之連續實驗 Results of Cavity Arc R1.2 mm 79 4-4 實驗結果比較 Comparison 82 第五章 結論與未來展望 Conclusions and Future Prospects 85 5-1 結論 Conclusions 85 5-2 未來展望 Future Prospects 86 參考文獻 87 References 87 索引 91 Index 91

    [1] A. C. Loos and G. S. Springer, “Curing of Epoxy Matrix Composites,” Journal of Composite Materials, Vol. 17, No. 2, pp. 135-169, 1983.
    [2] G. S. Springer, “Resin Flow During the Cure of Fiber Reinforced Composites,” Journal of Composite Materials, Vol. 16, No. 5, pp. 400-410, 1982.
    [3] U. F. González, S. F. Shen, and Claude Cohen, “Rheological Characterization of Fast-Reacting Thermosets Through Spiral Flow Experiments,” Polymer Engineering and Science, Vol. 32, No. 3, pp. 172-181, 1992.
    [4] R. L. Frutiger, “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Polymer Engineering and Science, Vol.26, No. 3, pp. 243-254, 1986.
    [5] C. C. Lee and C. L. Tucker III, “Flow and Heat Transfer in Compression Mold Filling,” Journal of Non-Newtonian Fluid Mechanics, Vol. 24, No. 3, pp. 245-264, 1987.
    [6] D. R. Edwards, K. G. Heinen, S. K. Groothuis, and J. E. Martinez, “ Shear Stress Evaluation of Plastic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 618-627, 1987.
    [7] S. Kim, “The Role of Plastic Package Adhesion in Performance,” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 4, pp. 809-295, 1991.
    [8] M. Ko, M. Kim, D. Shin, Y. Park, M. Moon, and I. Lim, “Investigation on the Effect of Molding Compounds on Package Delamination,” Electronic Components and Technology Conference, pp. 1242-1247, San Jose, California, 1997.
    [9] N. Tanaka, M. Kitano, T. Kumazawa, and A. Nishimura, “Evaluating IC-Package Interface Delamination by Considering Moisture-Induced Molding-Compound Swelling,” IEEE Transaction on Components and Packaging Technology, Vol. 22, No. 3, pp. 426-432, 1999.
    [10] T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, and E. Andideh, “Interfacial Adhesion of Copper-Low k Interconnects,” IEEE Interconnect Technology Conference, pp. 257–259, Burlingame, California, 2001.
    [11] R. Balkova, S. Holcnerova, and V. Cech, “Testing of Adhesion for Bonding of Polymer Composites,” International Journal of Adhesion and Adhesives, Vol. 22, No. 4, pp. 291-295, 2002.
    [12] T. L. Gordon and M. E. Fakley, “The Influence of Elastic Modulus on Adhesion to Thermoplastics and Thermoset Materials,” International Journal of Adhesion and Adhesives, Vol. 23, No. 2, pp. 95-100, 2003.
    [13] S. Murray, C. Hillman, and M. Pecht, “Environmental Aging and Deadhesion of Siloxane-Polyimide-Epoxy Adhesive,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp. 524-531, 2003.
    [14] K. Uehara and M. Sakurai, “Bonding Strength of Adhesives and Surface Roughness of Joined Parts,” Journal of Materials Processing Technology, Vol. 127, No. 2, pp. 178-181, 2002.
    [15] S. Zhang, X. Zeng, Z. Tang, and M. Jen Tan, “Exploring the Antisticking Properties of Solid Lubricant Thin Films in Transfer Molding,” International Journal of Modern Physics B, Vol. 16, Nos. 6&7, pp. 1080-1085, 2002.
    [16] S. M. Chiu, S. J. Hwang, C. W. Chu, and D. Gan, “The Influence of Cr-based Coating on the Adhesion Force Between Epoxy Molding Compounds and IC Encapsulation Mold,” Thin Solid Films, Vol. 515, No. 1, pp. 285-292, 2006.
    [17] P. Navabpour, D. G. Teer, D. J. Hitt, and M. Gilbert, “Evaluation of Non-stick Properties of Magnetron-sputtered Coatings for Moulds Used for the Processing of Polymers,” Surface and Coatings Technology, Vol. 201, No. 6, pp. 3802-3809, 2006.
    [18] Y. Y. Hsieh, H. T. Hsu, M. T. Lin, Y. S. Lai, and S. H. Chen, “A Study of Self-assembled Monolayer Coating for Non-stick Encapsulation Mold,” International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, pp. 181-183, 2007.
    [19] 張祥傑,微材料測試系統之設計與製作,碩士論文,國立成功大學機械工程研究所,1999年。
    [20] 王俊祥,電子封裝黏模效應之量測技術開發與研究,碩士論文,國立成功大學機械工程研究所,2000年。
    [21] 莊俊華,IC構裝黏模測試機之設計與製造,碩士論文,國立成功大學工程科學研究所,2001年。
    [22] 朱言主,IC封裝模具黏著效應之研究,碩士論文,國立成功大學工程科學研究所,2002年。
    [23] M. Yoshii, Y. Mizukami, and H. Shoji, “Evaluation Technologies on Moldability of Epoxy Molding Compounds for Encapsulation of Semiconductors,” Hitachi Chemical Technical Report, No. 40, pp. 13-20, 2003.
    [24] S. J. Chang and S. J. Hwang, “Design and Fabrication of an IC Encapsulation Mold Adhesion Force Tester,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 26, No. 4, pp. 281-285, 2003.
    [25] 林俊宏,EMC與金屬介面剪向黏著力試驗機台之研發,碩士論文,國立成功大學工程科學研究所,2003年。
    [26] 黃勁華,EMC與金屬介面剪向黏著力試驗機台之設計與改良,碩士論文,國立成功大學工程科學研究所,2004年。
    [27] 張祥傑,IC封裝黏模力之量測與分析,博士論文,國立成功大學機械工程研究所,2004年。
    [28] 李文宏,IC封裝材料對模具及剪向黏著力量之研究,碩士論文,國立成功大學工程科學研究所,2005年。
    [29] 陳暉長,電子封裝模具以黏著力作為設計參數之可行性研究,碩士論文,國立成功大學工程科學研究所,2006年。
    [30] 楊昌明,表面清洗對電子封裝材料和模具間黏著力的影響,碩士論文,國立成功大學工程科學研究所,2007年。
    [31] 黃昭霖,剪向與黏著力測試機模具之設計與研究,碩士論文,國立成功大學工程科學研究所,2008年。
    [32] 宋政宏,IC封裝連續成形之黏模力特性研究,碩士論文,國立成功大學工程科學研究所,2009年。
    [33] 徐善宥,IC封裝模具表面噴砂處理與放電加工處理對於EMC間黏著效應研究,碩士論文,國立成功大學工程科學研究所,2010年。
    [34] “Test Method for Measurement of Adhesive Strength Between Leadframes and Molding Compounds,” STD. SEMI G69-0996, 1996.
    [35] “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading,” STD. ASTM D1002-94.
    [36] “Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds,” STD. ASTM D1062-96.
    [37] “Standard Test Method for Tensile Properties of Adhesive Bonds,” STD. ASTM D897-95a.
    [38] “Standard Test Method for Strength Properties of Metal-to-Metal Adhesives by Compression Loading (Disk Shear),” STD. ASTM D2182-72.
    [39] “Standard Recommended Practice for Determining the Strength of Adhesively Bonded Plastic Lap-Shear Sandwich Joint in Shear by Tension Loading,” STD. ASTM D3164-73.
    [40] B. A. Chapman, H. D. DeFord, G. P. Wirtz, and S. D. Brown, in: Technology of Glass, Ceramic, or Glass-Ceramic to Metal Sealing, W. E. Moddeman, C. W. Merten, and D. P. Kramer (Eds.), MD-Vol. 4, pp. 77-87, American Society of Mechanical Engineers, New York, Copyright 1987.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE