| 研究生: |
湯思達 Tang, Si-Da |
|---|---|
| 論文名稱: |
應用於微波系統的超寬頻類循環器、除頻器之研製 Ultra-Wideband Quasi-Circulator and Frequency Divider for Microwave and Millimeter Wave System Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 超寬頻 、高隔離度 、分佈式放大器 、類循環器 、相位抵消 、相移器 、全相位輸出 、蘭吉耦合器 、相位疊加 、反射型 、電流模式邏輯電路 、除頻器 、八相位輸出 、三倍頻器 、主動巴倫 |
| 外文關鍵詞: | ultra-wideband, high isolation, distributed amplifier, circulator, phase cancellation, phase shifter, all-pass output, Lange coupler, vector-sum, reflection-type, current mode logic, frequency divider, octet phases, tripler, active balun |
| 相關次數: | 點閱:201 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文主要探討類循環器、除頻器、相移器與倍頻器,其研究方向在於發展超寬頻、高隔離度的新型電路架構。近些年來,隨著科技的進步,下一代行動通訊系統越來越快的走進我們日常生活中。超寬頻技術,作為一種具備低耗電於高速傳輸的無線局域網絡通訊技術,從上個世紀60年代,它被用於軍事用途,如今有很大可能被應用於一般消費產品領域。 根據美國聯邦委員會定義,超寬頻技術的系統中心頻率大於2.5 GHz,且具備很大的頻寬,這些優質的特性讓它極大可能很快得到普及和應用。另外,隔離度一直是無線通訊系統中一個重要的、經常被拿來衡量性能的重要指標。高隔離度的元件可以最大程度的使兩個不同訊號減少干擾,從而更加有利於訊號的傳輸。因此,本文主要分為五部分,第一部分為超寬頻類循環器的研製;第二部分為新穎架構的相移器研製;第三部分為超寬頻除頻器研製;第四部分為微小化三倍頻器研製;第五部分為寬頻高隔離度類循環器的研製。
首先,我們利用分佈式巴倫架構設計了一個超寬頻類循環器,採用90nm CMOS製程實現。通過串聯分佈式巴倫電路在接口1和3之間,實現相位抵消。 另外,本文基於對八端口矩陣的分析,可以更好的細化設計電路中的參數模型。 量測結果表明,此循環器具有超寬頻、良好的插入增益和不錯的隔離度。在線性度和雜訊指數等其他參數上也有著不錯的特性。
其次,針對相移器的設計,本論文提出了一種全新的架構,即Vector-Sum (VS)與 Reflection-Type (RT) 整合。基於上述兩種技術,此相移器可以產生全相位輸出訊號。理論推導證實了一堆可變二機體對RT相移器的相位變化和工作帶寬產生的影響,本文也驗證了每個模組對整體電路的幅度和相位變化產生的影響。此相移器由兩個耦合器和一對RT衰減器和相移器組成,採用了GaAS製程。量測結果表明,在22-38GHz的範圍內,訊號幅度變化小於2.2 dB,相位誤差小於19°。此外,插入損耗和1 dB壓縮點分別優於-12 dB和20 dBm。
再次,一個超寬頻八相位輸出除四除頻器被提出。本文詳細分析了其鎖定範圍、輸出頻率和注射比的關係。 當添加電阻負載時,邏輯分頻器的鎖定範圍不再受LC振盪電路Q值的限制。另外,驅動分頻器的最小功率需要滿足條件在輸出頻率等於振盪頻率的時候。量測結果顯示,此除頻器具有超高頻率帶寬和精確的八相位輸出,相位偏差小於4.7°。
接著,本論文設計了一種基波抑制型寬頻三倍頻器,其工作頻寬為30-70 GHz。此三倍頻器包括一個晶體管和一個緊湊型帶通濾波器。接地電容器減少了單通濾波器的線路長度,且提高了倍頻器的工作帶寬和對基波的抑制效果。在中頻功率為6 dBm時,此倍頻器的轉換損耗在11-26 dB,基波和二次諧波的抑制分別為11.25-25.54 dB、18-66.67 dB。
最後,一個寬頻高隔離度的類循環器被提出。此類循環器由一個主動巴倫和反相器組成。在5-33GHz的工作頻寬下,其所有隔離度全部由於20 dB。其中端口1和3之間的隔離全部大於35 dB, 並且可以實現最大達到60 dB的優質特性。
This paper mainly discusses class circulators, frequency dividers, phase shifters and frequency multipliers. Its research direction is to develop new circuit architectures with ultra-wideband and high isolation. In recent years, with the advancement of technology, the next generation of mobile communication systems has entered our daily lives more and more quickly. Ultra-wideband technology, as a wireless local area network communication technology with low power consumption for high-speed transmission, has been used for military purposes since the 1960s and is now likely to be used in general consumer products. According to the US Federal Council, ultra-wideband technology has a system center frequency greater than 2.5 GHz and a large bandwidth. These high-quality features make it very likely to be popularized and applied very quickly. In addition, isolation has always been an important indicator in wireless communication systems that is often used to measure performance. High-isolation components can minimize the interference of two different signals, which is more conducive to the transmission of signals. Therefore, this paper is mainly divided into five parts, the first part is the development of ultra-wideband circulator; the second part is the development of phase shifter with novel architecture; the third part is the development of ultra-wideband frequency divider; the fourth part is miniaturization The frequency multiplier is developed; the fifth part is the development of broadband high isolation circulator.
First, we designed an ultra-wideband circulator using a distributed balun architecture, implemented in a 90nm CMOS process. Phase cancellation is achieved between the interfaces 1 and 3 by a series distributed balun circuit. In addition, based on the analysis of the eight-port matrix, this paper can better refine the parameter model in the design circuit. The measurement results show that the circulator has ultra-wideband, good insertion gain and good isolation. It also has good characteristics in other parameters such as linearity and noise index.
Secondly, for the design of phase shifter, this paper proposes a new architecture, namely Vector-Sum (VS) and Reflection-Type (RT) integration. Based on the above two techniques, the phase shifter can generate a full phase output signal. The theoretical derivation confirms the influence of a bunch of variable two-body on the phase change and working bandwidth of the RT phase shifter. This paper also verifies the effect of each module on the amplitude and phase changes of the overall circuit. This phase shifter consists of two couplers and a pair of RT attenuators and phase shifters using a GaAS process. The measurement results show that the signal amplitude variation is less than 2.2 dB and the phase error is less than 19° in the range of 22-38 GHz. In addition, the insertion loss and 1 dB compression point are better than -12 dB and 20 dBm, respectively.
Again, an ultra-wideband eight-phase output divided by a four-divider is proposed. This paper analyzes in detail the relationship between its locking range, output frequency and injection ratio. When a resistive load is added, the locked range of the logic divider is no longer limited by the Q value of the LC oscillator circuit. In addition, the minimum power required to drive the divider needs to be met when the output frequency is equal to the oscillation frequency. The measurement results show that the frequency divider has an ultra-high frequency bandwidth and an accurate eight-phase output with a phase deviation of less than 4.7°.
Then, this thesis designs a fundamental suppression type wide frequency tripler with a working bandwidth of 30-70 GHz. This tripler includes a transistor and a compact bandpass filter. The grounding capacitor reduces the line length of the single-pass filter and improves the operating bandwidth of the frequency multiplier and the suppression of the fundamental wave. At an intermediate frequency power of 6 dBm, the conversion loss of this frequency multiplier is 11-26 dB, and the suppression of the fundamental and second harmonics is 11.25-25.54 dB and 18-66.67 dB, respectively.
Finally, a wideband high isolation class circulator is proposed. This type of circulator consists of an active balun and an inverter. At a working bandwidth of 5-33 GHz, all isolation is due to 20 dB. The isolation between ports 1 and 3 is all greater than 35 dB and can achieve quality characteristics up to 60 dB.
1.4 References 11
[1] I. Bahl, and P. Bhartia, Microwave solid state circuit design, Wiley-Interscience, 2003
[2] Y. Ayasli, J. L. Vorhous, R. L. Mozzi, and L. D. Reynolds, “Monolithic GaAs traveling-wave amplifier,” Electron. Lett., vol. 17, pp. 413–414, June 1981.
[3] Y. Ayasli, L.D. Reynolds, J.L. Vorhaus and L. Hanes, "Monolithic 2- 20GHz GaAs travelling-wave amplifier," IEEE Electronics Letters. vol. 18, no. 14, pp. 596-598, 1982.
[4] Y. Ayasli, R. L. Mozzi, J. L. Vorhaus, L. D. Reynolds, and R. A. Pucel, “A monolithic GaAs 1–13-GHz traveling-wave amplifier,” IEEE Trans. Microwave Theory Tech., vol. 30, pp. 976–981, July 1982.
[5] T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s,” lEEE Trans. Microwave Theory Tech., vol. 38, pp. 270-275, Mar. 1990.
[6] Sten E. Gunnarsson, Camillar Karnfelt, Herber Zirath, Rumen Kozhuharov, Dan Kuylenstierna, Arne Alping, and Christian Fager, “ Highly integrated 60 GHz transmitter and receiver MMIC in a GaAs pHEMP technology,” IEEE Journal of Solid-State Circuits, vol 40, pp 2174-2186, Nov. 2005.
[7] C. H. Doan, et al, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, pp. 144-155, Jan. 2005.
[8] T. S. Rappaport, J. N. Murdock, F. Gutierrez, “ State of the Art in 60- GHz Integrated Circuits and Systems for Wireless Communications,” Proceedings of the IEEE Vol. 99, No. 8, August 2011..
[9] A. A. Abidi, “CMOS microwave and millimeter-wave ICs: The historical background,” 2014 IEEE International Symposium on Radio-Frequency Integration Technology, pp. 1-5, Aug. 2014
[10] S. Hara, T. Tokumitsu, and M. Aikawa, “Novel unilateral circuits for MMIC circulators,” IEEE Trans. Microw. Theory Techn., vol. 38, no. 10, pp. 1399–1406, Oct. 1990.
[11] C. Kalialakis, M. J. Cryan, P. S. Hall, and P. Gardner, “Analysis and design of integrated active circulator antennas,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 6, pp. 1017–1023, Jun. 2000.
[12] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Quasi-circulator module design using conventional MMIC components in the frequency range 0.45-7.2GHz” Electron. Lett., vol. 31, no. 15, pp. 1261-1262, Jul. 1995.
[13] G. Carchon and B. Nauwelaers, “Power and noise limitation of active circulators,” IEEE Trans. Microw. Theory Techn., vol 48, no. 2, pp. 316-319, Feb. 2000.
[14] C. Saavedra and Y. Zheng, “Active quasi-circulator realization with gain elements and slow-wave couplers,” IET Microw. Antennas, Propag., vol. 1, no. 5, pp. 1020–1023, 2007.
[15] S. C. Shin, J. Huang, K. Lin, and H. Wang, “A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 797-799, Dec. 2008.
[16] A. Gasmi, B. Huyart, E. Beregeault, and L. Jallet, “Noise and power optimization of a MMIC quasi-circulator,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
[17] S. W. Y. Mung and W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 800–802, Dec. 2008.
[18] Y. Zheng and C. E. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 218–220, Apr. 2009.
[19] S. K. Cheung, T. Halloran, W. Weedon, and C. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 3, pp. 489–497, Mar. 2010.
[20] H. S. Wu, C. W. Wang, and C. K. Clive Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-Band,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2084–2091, Aug. 2010.
[21] M. Palomba, A. Bentini, D. Palombini, W. Ciccognani, and E. Limiti, “A novel hybrid active quasi-circulator for L-band applications,”, Warsaw, Poland, May, 2012, pp. 41–44.
[22] D. J. Huang, J. L. Kuo, and H. Wang, “A 24-GHz low power and high isolation active quasi-circulator,” 2012 IEEE Microwave Symposium Digest MTT-S, Montreal, QC, Canada, June, 2012, pp. 1–3.
[23] S. He, N. Akel, and C. E. Saavedra, “Active quasi-circulator with high port-to-port isolation and small area,” Electron. Lett., vol. 48, no. 14, pp. 848-850, Jul. 2012.
[24] C. H. Chang, Y. T. Lo, and J. F. Kiang, “A 30 GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no.12, pp. 693–695, Dec. 2012.
[25] A. H. Baree and I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans. Microwave Theory and Techn., vol. 45, no. 2, pp. 188–195, Feb. 1997.
[26] M. Ferndahl and H. O. Vickes, “The matrix balun—a transistor-based module for broadband applications,” IEEE Trans. Microwave Theory and Techn., vol. 57, no. 1, pp. 53–60, Jan. 2009.
[27] S. H. Hung, K. W. Cheng, and Y. H. Wang, “An ultra wideband quasi-circulator with distributed amplifiers using 90-nm CMOS technology, ” IEEE Microw. Wireless Compon. Lett., vol.23, no. 12, pp. 656-658, Dec. 2013.
[28] S. H. Hung, K. W. Cheng, and Y. H. Wang, “An ultra wideband subharmonic mixer with distributed amplifier using 90-nm CMOS technology,” IEEE Trans. Microwave Theory and Techn., vol. 61, no. 10, pp. 3650-3657, Oct. 2013.
[29] S. W. Y. Mung, and W. S. Chan, “Self-equalization technique for distributed quasi-circulator”, Microw. Opt. Technol. Lett., vol. 51, no. 01, pp. 182-184, Jan. 2009.
[30] J. S. Herd, M. D. Conway, “The evolution to modern phased array architectures,” Proc. IEEE, vol. 104, no. 3, pp. 519-529, Mar. 2016.
[31] J. Paramesh, R. Bishop, K. Soumyanath, and D.-J. Allstot, “A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2515–2524, Dec. 2005.
[32] J. P. Comeau, M.-A. Morton, W.-M. L. Kuo, T. Thrivikraman, J.-M. Andrews, C.-M. Grens, J.-D. Cressler, J. Papapolymerou, and M. Mitchell, “A silicon-germanium receiver for -band transmit/receive radar modules,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1889–1896, Sep. 2008.
[33] A.-S. Nagra and R.-A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
[34] F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase shifter at -band using lumped elements,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[35] R. V. Garver, “360° varactor linear phase modulator,” IEEE Trans. Microwave Theory Techn., vol. MTT-17, pp. 137-147, Mar. 1969.
[36] S. Lucyszyn and I.-D. Robertson, “Analog reflection topology building blocks for adaptive microwave signal processing applications,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 3, pp. 601–611, Mar. 1995.
[37] F. Ellinger, R. Vogt, and W. Bächtold, “Ultra compact reflective-type phase shifter MMIC at -band with 360 phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.
[38] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[39] Y.-Y. Huang, H. Jeon, Y. Yoon, W. Woo, C.-H. Lee, and J. S. Kenney, “An ultra-compact, linearly-controlled variable phase shifter designed with a novel RC poly-phase filter,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 2, pp. 301–310, Feb. 2012.
[40] K.-J. Koh and G. M. Rebeiz, “0.13 um CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 2535–2546, Nov. 2007.
[41] K.-J. Koh and G. M. Rebeiz, “A Q-band 4-element phased-array front-end receiver with integrated Wilkinson power combiners in 0.18 m–SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 9, pp. 2046–2053, Sep. 2008.
[42] A. Asoodeh and M. Atarodi, “A Full 360 vector-sum phase shifter with very low RMS phase error over a wide bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1626–1634, Jun. 2012.
[43] K.-J. Koh, J.-W. May, and G.-M. Rebeiz, “A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-m SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1498–1509, May 2009.
[44] H. R. Fang, X. Tang, K. Mouthaan, and R. Guinvarc’h, “180 and 90 reflection-type phase shifters using over-coupled Lange couplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3440–3448, Nov. 2012.
[45] C.-W. Wang, H.-S. Wu, and C.-K. C. Tzuang, “CMOS passive phase shifter with group-delay deviation of 6.3 ps at -band,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1778–1786, Jul. 2011.
[46] I. S. Song, J. G. Lee, G. Yoon and C. S. Park, “A Low-power LNA-Phase shifter with vector sum method for 60 GHz beamforming receiver,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 9, pp. 612-614, July. 2015.
[47] H. Kwon, H. Lim, and B. Kang, “Design of 6–18 GHz wideband phase shifters using radial stubs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 205–207, Mar. 2007.
[48] S. P. Sah, X. Yu, and D. Heo, “Design and analysis of a wideband 15–35GHz quadrature phase shifter with inductive loading,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3024–3033, Aug. 2013.
[49] B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak and Y. Gurbuz, “A 6 bit vector-sum phase shifter with a decoder based control circuit for X-band phased-arrays,” IEEE Microw. Wireless Compon Lett., vol. 26, no. 1, pp. 64-66, Jan. 2016.
[50] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-Bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[51] A. Mazzanti, M. Sosio, M. Repossi, and F. Svelto, “A 24 GHz subharmonic direct conversion receiver in 65 nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 58, No. 1, 88−97, 2011.
[52] S. Kim and L. E. Larson, “A 44-GHz SiGe BiCMOS phase-shifting sub-harmonics up-converter for phase-array transmitters,” IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1089−1099, 2010.
[53] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, Vol. 39, No. 9, 1425−1433, 2004.
[54] M Alioto, G Palumbo, “Power-aware design techniques for nanometer MOS current-mode logic gates: a design framework,” IEEE Circuits and System Magazine, Fourth quarter, 42-61, 2006.
[55] M. Alioto, R. Mita, and G. Palumbo, “Design of high-speed power-efficient MOS current-mode logic frequency dividers,” IEEE Trans. Circuits Syst. II, exp. Briefs, Vol. 53, No. 11, 1165−1169, 2006.
[56] C. Zhou, L. Zang, L. Zhang, Z. Yu, and H. Qian, “Injection-locking-based power and speed optimization of CML dividers,” IEEE Trans. Circuits Syst. II, exp. Briefs, Vol. 58, No. 9, 565−569, 2011.
[57] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, W. Bischof, M. C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, “38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp.484–487, Nov. 2000.
[58] H. Fudem and E. C. Niehenke, “Novel millimeter wave active MMIC triplers,” in IEEE MTT-S Int. Dig., vol. 2, Jun. 1998, pp. 387–390.
[59] C. Beaulie, “Millimeter wave broad-band frequency tripler in GaAs/InGaP HBT technology,” in IEEE MTT-S Int. Dig., vol. 3,Jun. 2000, pp. 1581–1584.
[60] D. Allen, D. Bryant, and W. Gaiewski, “25.5 to 76.5 GHz active frequency tripler for automotive radar applications,” in IEEE MTT-S Int. Dig., vol. 3, Jun. 2003, pp. 2233–2236.
[61] G.Y. Chen, H.Y. Chang, Y.M. Hsin, and C.C. Chiong “A 60–110 GHz low conversion loss tripler in 0.15 μm MHEMT process,” in Asia–Pacific Microw. Conf. Tech. Dig., Dec. 2009, pp. 377–380.
[62] K. Lin, H. Wang, M. Morgan, T. Gaier, and S. Weinreb, “A W-Band GCPW MMIC diode tripler,” 32nd European Microwave Conference, Milan, Sep. 2002.
[63] M. Morgan, and S. Weinreb, “A full waveguide band MMIC tripler for 75-110 GHz,” IEEE International Microwave Symposium Digest, vol. 1, pp. 103–106, Aug. 1975.
[64] P. A. Rizzi, “High-Power Ferrite Circulators,” IEEE Trans. Microw. Theory Tech., vol. 5, no. 4, pp. 230-237, Oct. 1957.
[65] R. Bahri, A. Abdipour, G. Moradi, “Design a new type of active quasi-circulator module,” Microw. Conference, pp. 1-4, Dec. 2008.
[66] S. He, N. Akel, C. E. Saavedra, “Active quasi-circulator with high port-to-port isolation and small area,” Electronics Lett., vol. 48, no. 14, pp. 848 - 850, Jul. 2012.
[67] C. H. Chang, Y. T. Lo, J. F. Kiang, “A 30 GHz active quasi-circulator with current-reuse technique in 0.18 mm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 12, pp. 693–695, Dec. 2010.
[68] S. C. Shin, J. Y. Huang, K. Y. Lin, H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 12, pp. 797–799, Dec. 2008.
[69] S. W. Y. Mung, W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 12, pp. 800-802, Dec. 2008.
[70] D. J. Huang, J. L. Kuo, H. Wang, “A 24GHz low power and high isolation active quasi-circulator,” in IEEE MTT-S Dig., Montreal, QC, Canada, Jun. 2012, pp. 1-3
2.4 References 39
[1] A. A. Abidi, “CMOS microwave and millimeter-wave ICs: The historical background,” 2014 IEEE International Symposium on Radio-Frequency Integration Technology, pp. 1-5, Aug. 2014
[2] S. Hara, T. Tokumitsu, and M. Aikawa, “Novel unilateral circuits for MMIC circulators,” IEEE Trans. Microw. Theory Techn., vol. 38, no. 10, pp. 1399–1406, Oct. 1990.
[3] C. Kalialakis, M. J. Cryan, P. S. Hall, and P. Gardner, “Analysis and design of integrated active circulator antennas,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 6, pp. 1017–1023, Jun. 2000.
[4] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Quasi-circulator module design using conventional MMIC components in the frequency range 0.45-7.2GHz” Electron. Lett., vol. 31, no. 15, pp. 1261-1262, Jul. 1995.
[5] G. Carchon and B. Nauwelaers, “Power and noise limitation of active circulators,” IEEE Trans. Microw. Theory Techn., vol 48, no. 2, pp. 316-319, Feb. 2000.
[6] C. Saavedra and Y. Zheng, “Active quasi-circulator realization with gain elements and slow-wave couplers,” IET Microw. Antennas, Propag., vol. 1, no. 5, pp. 1020–1023, 2007.
[7] S. C. Shin, J. Huang, K. Lin, and H. Wang, “A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 797-799, Dec. 2008.
[8] A. Gasmi, B. Huyart, E. Beregeault, and L. Jallet, “Noise and power optimization of a MMIC quasi-circulator,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
[9] S. W. Y. Mung and W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 800–802, Dec. 2008.
[10] Y. Zheng and C. E. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 218–220, Apr. 2009.
[11] S. K. Cheung, T. Halloran, W. Weedon, and C. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 3, pp. 489–497, Mar. 2010.
[12] H. S. Wu, C. W. Wang, and C. K. Clive Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-Band,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2084–2091, Aug. 2010.
[13] M. Palomba, A. Bentini, D. Palombini, W. Ciccognani, and E. Limiti, “A novel hybrid active quasi-circulator for L-band applications,” Microwave Radar and Wireless Communications , Warsaw, Poland, May, 2012, pp. 41–44.
[14] D. J. Huang, J. L. Kuo, and H. Wang, “A 24-GHz low power and high isolation active quasi-circulator,” 2012 IEEE Microwave Symposium Digest MTT-S, Montreal, QC, Canada, June, 2012, pp. 1–3.
[15] S. He, N. Akel, and C. E. Saavedra, “Active quasi-circulator with high port-to-port isolation and small area,” Electron. Lett., vol. 48, no. 14, pp. 848-850, Jul. 2012.
[16] C. H. Chang, Y. T. Lo, and J. F. Kiang, “A 30 GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no.12, pp. 693–695, Dec. 2012.
[17] A. H. Baree and I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans. Microwave Theory and Techn., vol. 45, no. 2, pp. 188–195, Feb. 1997.
[18] M. Ferndahl and H. O. Vickes, “The matrix balun—a transistor-based module for broadband applications,” IEEE Trans. Microwave Theory and Techn., vol. 57, no. 1, pp. 53–60, Jan. 2009.
[19] S. H. Hung, K. W. Cheng, and Y. H. Wang, “An ultra wideband quasi-circulator with distributed amplifiers using 90-nm CMOS technology, ” IEEE Microw. Wireless Compon. Lett., vol.23, no. 12, pp. 656-658, Dec. 2013.
[20] S. H. Hung, K. W. Cheng, and Y. H. Wang, “An ultra wideband subharmonic mixer with distributed amplifier using 90-nm CMOS technology,” IEEE Trans. Microwave Theory and Techn., vol. 61, no. 10, pp. 3650-3657, Oct. 2013.
[21] S. W. Y. Mung, and W. S. Chan, “Self-equalization technique for distributed quasi-circulator”, Microw. Opt. Technol. Lett., vol. 51, no. 01, pp. 182-184, Jan. 2009.
[22] J. Y. Hsieh, T. Wang, and S. S. Lu, “A 1.5mW, 2.4 GHz Quasi-Circulator With High Transmitter-to-Receiver Isolation in CMOS Technology,” IEEE Microw. Wireless Compon Lett., vol. 24, no. 12, pp. 872-874, Dec. 2014
[23] M. Porranzl, C. Wagner, H. Jaeger, and A. Stelzer, “An Active Quasi-Circulator for 77 GHz Automotive FMCW Radar Systems in SiGe Technology,” IEEE Microw. Wireless Compon Lett., vol. 25, no. 5, pp. 313-315, May. 2015
[24] J. F. Chang, J. C. Kao, Y. H. Lin, and H. Wang, “Design and Analysis of 24 GHz Active Isolator and Quasi-Circulator,” IEEE Trans. Microwave Theory and Techn.., vol. 63, no. 8, pp. 2638-2649, Aug. 2015
3.5 References 57
[1] J. S. Herd, M. D. Conway, “The evolution to modern phased array architectures,” Proc. IEEE, vol. 104, no. 3, pp. 519-529, Mar. 2016.
[2] J. Paramesh, R. Bishop, K. Soumyanath, and D.-J. Allstot, “A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2515–2524, Dec. 2005.
[3] J. P. Comeau, M.-A. Morton, W.-M. L. Kuo, T. Thrivikraman, J.-M. Andrews, C.-M. Grens, J.-D. Cressler, J. Papapolymerou, and M. Mitchell, “A silicon-germanium receiver for -band transmit/receive radar modules,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1889–1896, Sep. 2008.
[4] A.-S. Nagra and R.-A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
[5] F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase shifter at -band using lumped elements,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[6] R. V. Garver, “360° varactor linear phase modulator,” IEEE Trans. Microwave Theory Techn., vol. MTT-17, pp. 137-147, Mar. 1969.
[7] C.-L. Chen, W.-E. Courtney, L.-J. Mahoney, M.-J. Manfra, A. Chu, and H.-A. Atwater, “A low-loss Ku-band monolithic analog phase shifter,” IEEE Trans. Microw. Theory Techn., vol. MTT-35, no. 3, pp. 315–320, Mar. 1987.
[8] S. Lucyszyn and I.-D. Robertson, “Analog reflection topology building blocks for adaptive microwave signal processing applications,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 3, pp. 601–611, Mar. 1995.
[9] F. Ellinger, R. Vogt, and W. Bächtold, “Ultra compact reflective-type phase shifter MMIC at -band with 360 phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.
[10] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[11] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-Bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[12] N. D. H. Lai, H. Kim, and S. W. Yoon, “A wideband active phase shifter using positive and negative inductive/capacitance,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 11, pp. 927-929, Nov. 2016.
[13] Y.-Y. Huang, H. Jeon, Y. Yoon, W. Woo, C.-H. Lee, and J. S. Kenney, “An ultra-compact, linearly-controlled variable phase shifter designed with a novel RC poly-phase filter,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 2, pp. 301–310, Feb. 2012.
[14] K.-J. Koh and G. M. Rebeiz, “0.13 um CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 2535–2546, Nov. 2007.
[15] K.-J. Koh and G. M. Rebeiz, “A Q-band 4-element phased-array front-end receiver with integrated Wilkinson power combiners in 0.18 m–SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 9, pp. 2046–2053, Sep. 2008.
[16] A. Asoodeh and M. Atarodi, “A Full 360 vector-sum phase shifter with very low RMS phase error over a wide bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1626–1634, Jun. 2012.
[17] K.-J. Koh, J.-W. May, and G.-M. Rebeiz, “A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-m SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1498–1509, May 2009.
[18] H. R. Fang, X. Tang, K. Mouthaan, and R. Guinvarc’h, “180 and 90 reflection-type phase shifters using over-coupled Lange couplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3440–3448, Nov. 2012.
[19] C.-W. Wang, H.-S. Wu, and C.-K. C. Tzuang, “CMOS passive phase shifter with group-delay deviation of 6.3 ps at -band,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1778–1786, Jul. 2011.
[20] I. S. Song, J. G. Lee, G. Yoon and C. S. Park, “A Low-power LNA-Phase shifter with vector sum method for 60 GHz beamforming receiver,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 9, pp. 612-614, July. 2015.
[21] H. Kwon, H. Lim, and B. Kang, “Design of 6–18 GHz wideband phase shifters using radial stubs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 205–207, Mar. 2007.
[22] S. P. Sah, X. Yu, and D. Heo, “Design and analysis of a wideband 15–35GHz quadrature phase shifter with inductive loading,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3024–3033, Aug. 2013.
[23] T. Ohira, Y. Suzuki, H. Ogawa, and H. Kamitsuna, “Megalithic microwave signal processing for phased-array beamforming and steering,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 12, pp. 2324-2332, Dec. 1997.
[24] P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New miniature 15-20GHz continuous-phase/amplitude control MMICs using 0.18μm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 10-19, Jan. 2006.
[25] D. W. Kang, J. G. Kim, B. W. Min, and G. M. Rebeiz, “Single and four element Ka-band transmit/receive phased- array silicon RFICs with 5-bit amplitude and phase control,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3534-3543, Dec. 2009.
[26] B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak and Y. Gurbuz, “A 6 bit vector-sum phase shifter with a decoder based control circuit for X-band phased-arrays,” IEEE Microw. Wireless Compon Lett., vol. 26, no. 1, pp. 64-66, Jan. 2016.
4.5 References 72
[1] A. Mazzanti, M. Sosio, M. Repossi, and F. Svelto, “A 24 GHz subharmonic direct conversion receiver in 65 nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 58, No. 1, 88−97, 2011.
[2] S. Kim and L. E. Larson, “A 44-GHz SiGe BiCMOS phase-shifting sub-harmonics up-converter for phase-array transmitters,” IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1089−1099, 2010.
[3] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, Vol. 39, No. 9, 1425−1433, 2004.
[4] M Alioto, G Palumbo, “Power-aware design techniques for nanometer MOS current-mode logic gates: a design framework,” IEEE Circuits and System Magazine, Fourth quarter, 42-61, 2006.
[5] M. Alioto, R. Mita, and G. Palumbo, “Design of high-speed power-efficient MOS current-mode logic frequency dividers,” IEEE Trans. Circuits Syst. II, exp. Briefs, Vol. 53, No. 11, 1165−1169, 2006.
[6] C. Zhou, L. Zang, L. Zhang, Z. Yu, and H. Qian, “Injection-locking-based power and speed optimization of CML dividers,” IEEE Trans. Circuits Syst. II, exp. Briefs, Vol. 58, No. 9, 565−569, 2011.
[7] S. L. Jang, T. C. Kung and C. W. Hsue, “Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach,” IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 4, 398-400, 2017.
[8] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection-locked frequency divider with quadrature outputs,”.IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 373−375, 2007.
[9] U. Singh and M. M. Green, “High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, Vol. 40, No.8, 1658-1661, 2005.
[10] H. H. Cheema, R. Mahmoudi, M. A. T. Sandulean, and A. van Roermund, “ A Ka band, static, MCML frequency divider in standard 90-nm-CMOS LP for 60 GHz applications,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 541-544, 2007.
[11] S. L. Jang and C. C. Fu, “Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” Analog Integr. Circuits Signal Process., Vol. 78, no. 2, 523-528, 2014.
5.5 References 82
[1] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, W. Bischof, M. C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, “38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp.484–487, Nov. 2000.
[2] H. Fudem and E. C. Niehenke, “Novel millimeter wave active MMIC triplers,” in IEEE MTT-S Int. Dig., vol. 2, Jun. 1998, pp. 387–390.
[3] C. Beaulie, “Millimeter wave broad-band frequency tripler in GaAs/InGaP HBT technology,” in IEEE MTT-S Int. Dig., vol. 3,Jun. 2000, pp. 1581–1584.
[4] D. Allen, D. Bryant, and W. Gaiewski, “25.5 to 76.5 GHz active frequency tripler for automotive radar applications,” in IEEE MTT-S Int. Dig., vol. 3, Jun. 2003, pp. 2233–2236.
[5] G.Y. Chen, H.Y. Chang, Y.M. Hsin, and C.C. Chiong “A 60–110 GHz low conversion loss tripler in 0.15 μm MHEMT process,” in Asia–Pacific Microw. Conf. Tech. Dig., Dec. 2009, pp. 377–380.
[6] K. Lin, H. Wang, M. Morgan, T. Gaier, and S. Weinreb, “A W-Band GCPW MMIC diode tripler,” 32nd European Microwave Conference, Milan, Sep. 2002.
[7] M. Morgan, and S. Weinreb, “A full waveguide band MMIC tripler for 75-110 GHz,” IEEE International Microwave Symposium Digest, vol. 1, pp. 103–106, Aug. 1975.
[8] J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H. Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006.
[9] Y. S. Lin, H. M. Yang, and C. H. Chen, “Miniature microstrip parallel-coupled bandpass filters based on lumped-distributed coupled-line sections,” in IEEE MTT-S Int. Microwave Symp. Dig. vol. 3, Jun. 2005, pp. 691–694.
6.5 References 92
[1] P. A. Rizzi, “High-Power Ferrite Circulators,” IEEE Trans. Microw. Theory Tech., vol. 5, no. 4, pp. 230-237, Oct. 1957.
[2] R. Bahri, A. Abdipour, G. Moradi, “Design a new type of active quasi-circulator module,” Microw. Conference, pp. 1-4, Dec. 2008.
[3] S. He, N. Akel, C. E. Saavedra, “Active quasi-circulator with high port-to-port isolation and small area,” Electronics Lett., vol. 48, no. 14, pp. 848 - 850, Jul. 2012.
[4] C. H. Chang, Y. T. Lo, J. F. Kiang, “A 30 GHz active quasi-circulator with current-reuse technique in 0.18 mm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 12, pp. 693–695, Dec. 2010.
[5] S. C. Shin, J. Y. Huang, K. Y. Lin, H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 12, pp. 797–799, Dec. 2008.
[6] S. W. Y. Mung, W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 12, pp. 800-802, Dec. 2008.
[7] D. J. Huang, J. L. Kuo, H. Wang, “A 24GHz low power and high isolation active quasi-circulator,” in IEEE MTT-S Dig., Montreal, QC, Canada, Jun. 2012, pp. 1-3