| 研究生: |
鍾政哲 Chung, Cheng-Che |
|---|---|
| 論文名稱: |
介電泳式平台於抗生素感受性的快速檢測與生物粒子操控的應用 Dielectrophoresis-Based Platforms for Rapid Antibiotic Susceptibility Test and Applications of Bioparticle Manipulation |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 介電泳 、微流體 、快速診斷法 、定量 、藥敏試驗 、交流電滲流 |
| 外文關鍵詞: | Dielectrophoresis, Microfluidics, Rapid diagnostics, Quantification, Antibiotic susceptibility test, AC electroosmosis |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來世界各地的新興感染症層出不窮,由於微生物不斷的突變,造成抗生素使用的極大困難。如何提升診斷效率與正確地使用藥物,是專家學者致力研究的領域。介電泳應用於操控細胞、微生物、病毒與DNA等的技術已有多例被結合在微流體晶片或感測器中,能夠快速與精準地操控並分析特定目標是技術伸張的要點。本論文將介電泳技術結合微流體晶片,進行微生物與其藥敏性的快速檢測。研究架構主要分為三個子題:(1)以灰階影像處理技術進行微生物的定量於介電泳晶片。生物微粒或細胞經由連續流體傳輸且被介電泳力影響而捕捉濃縮在特定區域,在最佳條件的控制下,能夠使捕捉效率達90%以上。實驗結果再以灰階影像處理技術進行量化,經換算之後便能得知樣本濃度。首先以聚苯乙烯微粒為樣本進行實驗,確認實驗的可行性之後;便以念珠菌種(Candida glabrata & Candida ablicans)進行生物檢體的量化實驗。樣本濃度的最佳檢測範圍約在105~107 CFU/mL,且實驗耗時不超過30分鐘。此實驗結果也與標準計數法的結果有高度的關聯性;因此,此系統對於微生物檢體的量化分析具有一定的可信度。(2)以介電泳法進行微生物的藥物敏感性試驗。此研究將介電泳技術應用於致病菌的抗藥性檢測與最小抑制菌濃度的判定,並希望達到快速且正確地診斷。以乙內醯胺類(-lactam)抗生素抑制細菌的細胞壁合成,且造成菌體延長的現象,造成細菌的介電泳特性產生變化。實驗結果發現當藥物濃度能夠抑制細菌生長時,其介電泳的特徵頻率會有顯著地變化;若是抗藥性菌株受藥物作用仍會持續進行細胞分裂,且菌體延長不明顯,故其特徵頻率並無改變。此方法不僅能夠辨知細菌的抗藥性與否,且在不同藥物濃度作用之後,能利用其特徵頻率的變化,快速判讀抗生素對於致病菌的最小抑制濃度。此外,整個實驗流程的耗時不超過兩個鐘頭,能夠大幅地縮短檢測時間。在檢測方法的可行性確定之後,進一步針對重要臨床致病菌的純化菌株(5株大腸桿菌、5株克雷白氏肺炎桿菌)進行藥敏性試驗,並與培養液稀釋法具有一致的結果。此方法已證明能適用於乙內醯胺類對革蘭氏陰性桿菌的藥敏性試驗且大幅縮短檢測的時間。此外晶片的製作十分簡易且所需成本低。針對革蘭氏陽性菌的檢測,未來也著手進行試驗。革蘭氏陰性菌(大腸桿菌與克雷白氏菌)為臨床感染症中的重要致病菌常帶有多重抗藥性,而乙內醯胺類抗生素為使用藥物的大宗。因此若能成功地應用在臨床診斷,相較於傳統的培養法可大幅縮短檢測時間(1-2小時),對於醫師的用藥指引有很大的幫助,亦可減少藥物濫用情形。(3)微粒在波形結構上的電動力學之探討。此章節主要在討論微粒在波浪型結構上,受到非均勻的交流電場作用下,誘發電動力學的現象(介電泳與交流電滲流)。首先在指叉式電極陣列上施加交流電場,使電極上的感光薄膜材料受介電泳力作用而產生波形結構,且藉由施加的電壓大小來控制其振幅,最後以紫外光照射使薄膜固化。第二階段的實驗是將此波形結構應用於粒子的操控。藉由調整交流電場的頻率或波形,使得粒子受到介電泳力或交流電滲流的作用,進而達到粒子的傳輸、定位或濃縮等目的。另外,不同尺寸的粒子於波形結構上能受交流電滲流與拖曳力的作用而進行分離。未來希望能夠藉由設計不同的波形結構,進而應用在生物細胞的排列、定位、分離及濃縮。
Nowadays, emerging infectious diseases seem to appear in an endless stream all over the world, and the mutation of microbes makes problems in the use of antibiotics. How to improve the diagnostic efficiency and reduce the antibiotic misuse were important issues that researchers are studying. Dielectrophoresis (DEP) for the manipulation of cells, microbes, viruses and DNA, has been widely integrated into microfluidic chips or min devices for manipulating specific targets accurately. In this thesis, three subjects will be introduced, I. Microbial quantification based on grayscale image processing in a DEP chip The first part is the quantification of bioparticles based on the grayscale image processing (GIP) in the DEP-based microfluidic chip. The polystyrene beads were used as the sample particles to test for the feasibility of this approach; and then, the Candida cells were tested by GIP method to compare the standard counting of hemocytometer. The detection range of sample concentration is around 105-107 cells/ml, and the experimental time does not exceed 30 min. Ⅱ. Dielectrophoresis-based antibiotic susceptibility test The second part is the screening of the antibiotic susceptibility of Gram-negative bacteria (GNB) based the changes in their DEP behaviors. The -lactam antibiotics, whose function is to inhibit the cell wall synthesis, were used as the sample drugs to treat GNB. The -lactam-induced cell elongation happens in drug susceptible bacteria, and the significant change in DEP behavior can be observed at the inhibitory concentration within two hours. The antibiotic susceptibilities of important clinical pathogens (Escherichia coli and Klebsella pneumoniae) to -lactam antibiotics were tested by dielectrophoresis-based antibiotic susceptibility test (d-AST), and compared with the results of the standard culture method. In summary, the techniques of electrokinetics and microfluidics were integrated into one device for rapidly detecting bacteria and their drug sensitivity. Most importantly, the time needed of bacteria growth can be reduced from days to hours, and the occurrence of multidrug resistant bacteria also can be avoided. Ⅲ. AC electrokinetic motions of colloidal particles on the electrically-induced wave structure In the last subject, we demonstrated the electrically-assisted lithography that the wave structures induced by non-uniform electric fields were fabricated on the interdigitated electrode (IDE) arrays, and then colloidal particles were manipulated on the wave structure. In low frequency (~30 kHz), AC electroosmosis (ACEO) is predominant that particles were transported along valleys of the wave structure. The DEP force became stronger as the frequency raised to hundreds of kHz (~200 kHz), and then particles were collected at peaks of wave structures. Particles also can be concentrated at specific positions via changing the AC waveform. In addition, the size-dependant particle separation on the wave structure was also performed. Different size particles (0.5 and 2 m) can be separated into two populations due to the joint effect of drag force and DEP force, as they were transported by ACEO along the valley of the wave structure. The wave structures were fabricated rapidly and simply through the DEP-assisted lithography; and further, the joint AC electrokinetic phenomena of particles under the non-uniform electric fields were observed. The cell assembly, pattern, transportation and separation are potential applications to be going to achieve.
Aldridge, B. B., M. Fernandez-Suarez, et al. (2012). "Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility." Science 335: 100-104.
Amiali, N. M., M. R. Mulvey, et al. (2008). "Evaluation of Fourier transform infrared spectroscopy for the rapid identification of glycopeptide-intermediate Staphylococcus aureus." Journal of Antimicrobial Chemotherapy 61: 95-102.
Arnold, W. M. and U. Zimmermann (1988). "Electro-rotation - development of a technique for dielectric measurements on individual cells and particles." Journal of Electrostatics 21: 151-191.
Asphahani, F., K. Wang, et al. (2011). "Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment." Physical Biology 8:015006.
Ateya, D. A., J. S. Erickson, et al. (2008). "The good, the bad, and the tiny: a review of microflow cytometry." Analytical and Bioanalytical Chemistry 391: 1485-1498.
Bauer, A. W., W. M. Kirby, et al. (1966). "Antibiotic susceptibility testing by a standardized single disk method." American Journal of Clinical Pathology 45: 493-496.
Beebe, D. J., G. A. Mensing, et al. (2002). "Physics and applications of microfluidics in biology." Annual Review of Biomedical Engineering 4: 261-286.
Bernini, R., E. De Nuccio, et al. (2006). "Development and characterization of an integrated silicon micro flow cytometer." Analytical and Bioanalytical Chemistry 386: 1267-1272.
Boedicker, J. Q., L. Li, et al. (2008). "Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics." Lab on a Chip 8: 1265-1272.
Boucher, H. W., G. H. Talbot, et al. (2009). "Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America." Clinical Infectious Diseases 48: 1-12.
Bradford, P. A. (2001). "Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat." Clinical Microbiology Reviews 14: 933-951.
Brouzes, E., M. Medkova, et al. (2009). "Droplet microfluidic technology for single-cell high-throughput screening." Proceedings of the National Academy of Sciences of the United States of America 106: 14195-14200.
Brown, C. V., G. G. Wells, et al. (2009). "Voltage-programmable liquid optical interface." Nature Photonics 3: 403-405.
Cabeen, M. T. and C. Jacobs-Wagner (2005). "Bacterial cell shape." Nature Review Microbiology 3: 601-610.
Call, D. R., M. K. Bakko, et al. (2003). "Identifying antimicrobial resistance genes with DNA microarrays." Antimicrob Agents Chemother 47: 3290-3295.
Castellanos, A., A. Ramos, et al. (2003). "Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws." Journal of Physics D-Applied Physics 36: 2584-2597.
Castellarnau, M., A. Errachid, et al. (2006). "Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli." Biophysical Journal 91: 3937-3945.
Chang, H. C., J. J. Chang, et al. (2000). "Evaluation of a capacitance method for direct antifungal susceptibility testing of yeasts in positive blood cultures." Journal of Clinical Microbiology 38: 971-976.
Chen, C. H., Y. Lu, et al. (2010). "Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels." Analytical Chemistry 82: 1012-1019.
Chen, H. T. and Y. N. Wang (2009). "Optical microflow cytometer for particle counting, sizing and fluorescence detection." Microfluidics and Nanofluidics 6: 529-537.
Chen, X., S. Y. Xu, et al. (2010). "1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers." Nano Letters 10: 2133-2137.
Cheng, I. F., H. C. Chang, et al. (2007). "An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting." Biomicrofluidics 1.
Cheng, I. F., S. Senapati, et al. (2010). "A rapid field-use assay for mismatch number and location of hybridized DNAs." Lab on a Chip 10: 828-831.
Cheung, K., S. Gawad, et al. (2005). "Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation." Cytometry Part A 65A: 124-132.
Cho, J. H., S. M. Han, et al. (2006). "Plastic ELISA-on-a-chip based on sequential cross-flow chromatography." Analytical Chemistry 78: 793-800.
Chou, C. F., J. O. Tegenfeldt, et al. (2002). "Electrodeless dielectrophoresis of single- and double-stranded DNA." Biophysical Journal 83: 2170-2179.
Chu, H., I. Doh, et al. (2009). "A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes." Lab on a Chip 9: 686-691.
Chung, C. C., I. F. Cheng, et al. (2012). "Screening of antibiotic susceptibility to beta-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis." Analytical Chemistry 84: 3347-3354.
Chung, C. C., I. F. Cheng, et al. (2011). "Rapid quantification of bio-particles based on image visualisation in a dielectrophoretic microfluidic chip." Microfluidics and Nanofluidics 10: 311-319.
Chung, C. C., I. F. Cheng, et al. (2011). "Antibiotic susceptibility test based on the dielectrophoretic behavior of elongated Escherichia coli with cephalexin treatment." Biomicrofluidics 5: 021102.
Chung, H. S., Z. Z. Yao, et al. (2009). "Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery." Proceedings of the National Academy of Sciences of the United States of America 106: 21872-21877.
Churski, K., T. S. Kaminski, et al. (2012). "Rapid screening of antibiotic toxicity in an automated microdroplet system." Lab on a Chip 12: 1629-1637.
Cira, N. J., J. Y. Ho, et al. (2012). "A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics." Lab on a Chip 12: 1052-1059.
Cockerill, F. R. (1999). "Genetic methods for assessing antimicrobial resistance." Antimicrobial Agents and Chemotherapy 43: 199-212.
Croxatto, A., G. Prod'hom, et al. (2012). "Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology." FEMS Microbiology Reviews 36: 380-407.
Dalton, C., A. D. Goater, et al. (2001). "Parasite viability by electrorotation." Colloids and Surfaces a-Physicochemical and Engineering Aspects 195: 263-268.
Davey, H. M. and D. B. Kell (1996). "Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses." Microbiological Reviews 60: 641-696.
Dittrich, P. S. and A. Manz (2006). "Lab-on-a-chip: microfluidics in drug discovery." Nature Reviews Drug Discovery 5: 210-218.
Dumas, J. L., C. van Delden, et al. (2006). "Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR." FEMS Microbiology Letters 254: 217-225.
Ehret, R., W. Baumann, et al. (1997). "Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures." Biosensors & Bioelectronics 12: 29-41.
Ericsson, H. M. and J. C. Sherris (1971). "Antibiotic sensitivity testing. Report of an international collaborative study." Acta Pathologica et Microbiologica Scandinavica - Section B: Microbiology & Immunology 217: Suppl 217:1+.
Ermolina, I. and H. Morgan (2005). "The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis." Journal of Colloid and Interface Science 285: 419-428.
Espy, M. J., J. R. Uhl, et al. (2006). "Real-time PCR in clinical microbiology: Applications for routine laboratory testing." Clinical Microbiology Reviews 19: 165-256.
Eun, Y. J., A. S. Utada, et al. (2011). "Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation." ACS Chemical Biology 6: 260-266.
Frye, J. G., T. Jesse, et al. (2006). "DNA microarray detection of antimicrobial resistance genes in diverse bacteria." International Journal of Antimicrobial Agents 27: 138-151.
Frye, J. G., R. L. Lindsey, et al. (2010). "Development of a DNA microarray to detect antimicrobial resistance genes identified in the National Center for Biotechnology Information database." Microbial Drug Resistance 16: 9-19.
Fu, Y., Y. Pan, et al. (2012). "Development of a high-throughput DNA microarray for drug-resistant gene detection and its preliminary application." Journal of Microbiological Methods 89: 110-118.
Gadish, N. and J. Voldman (2006). "High-throughput positive-dielectrophoretic bioparticle microconcentrator." Analytical Chemistry 78: 7870-7876.
Gagnon, Z., J. Mazur, et al. (2010). "Integrated AC electrokinetic cell separation in a closed-loop device." Lab on a Chip 10: 718-726.
Gfeller, K. Y., N. Nugaeva, et al. (2005). "Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli." Biosensors & Bioelectronics 21: 528-533.
Giamarellou, H. (2010). "Multidrug-resistant Gram-negative bacteria: How to treat and for how long." International Journal of Antimicrobial Agents 36: S50-S54.
Green, N. G., A. Ramos, et al. (2000). "Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements." Physical Review E 61: 4011-4018.
Gross, S. J., S. Tadigadapa, et al. (2003). "Lead-zirconate-titanate-based piezoelectric micromachined switch." Applied Physics Letters 83: 174-176.
Han, K. H. and A. B. Frazier (2008). "Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium." Lab on a Chip 8: 1079-1086.
Hawkins, B. G., C. Huang, et al. (2011). "Automated dielectrophoretic characterization of mycobacterium smegmatis." Analytical Chemistry 83: 3507-3515.
Hillemann, D., M. Weizenegger, et al. (2005). "Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates." Journal of Clinical Microbiology 43: 3699-3703.
Hoettges, K. F., J. W. Dale, et al. (2007). "Rapid determination of antibiotic resistance in E coli using dielectrophoresis." Physics in Medicine and Biology 52: 6001-6009.
Hoettges, K. F., Y. Hubner, et al. (2008). "Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment." Analytical Chemistry 80: 2063-2068.
Hu, Q. and R. P. Joshi (2010). "Model evaluation of changes in electrorotation spectra of biological cells after nsPEF electroporation." IEEE Transactions on Dielectrics and Electrical Insulation 17: 1888-1894.
Huang, K. C., R. Mukhopadhyay, et al. (2008). "Cell shape and cell-wall organization in Gram-negative bacteria." Proceedings of the National Academy of Sciences of the United States of America 105: 19282-19287.
Hughes, M. P. and K. F. Hoettges (2005). "Dielectrophoresis for drug discovery and cell analysis: novel electrodes for high-throughput screening." Biophysical Journal 88: 172A-172A.
Hughes, M. P., H. Morgan, et al. (1998). "Manipulation of herpes simplex virus type 1 by dielectrophoresis." Biochimica Et Biophysica Acta-General Subjects 1425: 119-126.
Inatomi, K. I., S. I. Izuo, et al. (2006). "Application of a microfluidic device for counting of bacteria." Letter in Applied Microbiology 43: 296-300.
Iseman, M. D. (1993). "Treatment of multidrug-resistant tuberculosis." The New England Journal of Medicine 329: 784-791.
Jaeger, H. M. and S. R. Nagel (1992). "Physics of the granular state." Science 255: 1523-1531.
Jones, T. B. (1995). "Electrical forces and torques on bioparticles." Electrostatics 1995 143: 135-144.
Jones, T. B. (2002). "On the relationship of dielectrophoresis and electrowetting." Langmuir 18: 4437-4443.
Jones, T. B., M. Gunji, et al. (2001). "Dielectrophoretic liquid actuation and nanodroplet formation." Journal of Applied Physics 89: 1441-1448.
Kastanos, E. K., A. Kyriakides, et al. (2010). "A novel method for urinary tract infection diagnosis and antibiogram using Raman spectroscopy." Journal of Raman Spectroscopy 41: 958-963.
Khoshmanesh, K., S. Baratchi, et al. (2012). "On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis." Microfluidics and Nanofluidics 12: 597-606.
Khoshmanesh, K., S. Nahavandi, et al. (2011). "Dielectrophoretic platforms for bio-microfluidic systems." Biosensors & Bioelectronics 26: 1800-1814.
Khoshmanesh, K., C. Zhang, et al. (2010). "Dielectrophoretic-activated cell sorter based on curved microelectrodes." Microfluidics and Nanofluidics 9: 411-426.
Kim, K. P., Y. G. Kim, et al. (2010). "In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device." Lab on a Chip 10: 3296-3299.
Kim, U., J. R. Qian, et al. (2008). "Multitarget Dielectrophoresis activated cell sorter." Analytical Chemistry 80: 8656-8661.
Kralj, J. G., M. T. W. Lis, et al. (2006). "Continuous dielectrophoretic size-based particle sorting." Analytical Chemistry 78: 5019-5025.
Krupke, R., F. Hennrich, et al. (2004). "Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes." Nano Letters 4: 1395-1399.
Krupke, R., S. Linden, et al. (2006). "Thin films of metallic carbon nanotubes prepared by dielectrophoresis." Advanced Materials 18: 1468-1470.
Kumarasamy, K. K., M. A. Toleman, et al. (2010). "Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study." Lancet Infectious Diseases 10: 597-602.
Lapizco-Encinas, B. H., B. A. Simmons, et al. (2004). "Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators." Analytical Chemistry 76: 1571-1579.
Lapizco-Encinas, B. H., B. A. Simmons, et al. (2004). "Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water." Electrophoresis 25: 1695-1704.
Lee, H., L. C. Hsiung, et al. (2011). "Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments." Lab on a Chip 11: 2333-2342.
Lee, W. G., Y. G. Kim, et al. (2010). "Nano/microfluidics for diagnosis of infectious diseases in developing countries." Advannced Drug Delivery Reviews 62: 449-457.
Leinberger, D. M., V. Grimm, et al. (2010). "Integrated detection of extended-spectrum- beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes." Journal of Clinical Microbiology 48: 460-471.
Li, H. B. and R. Bashir (2002). "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes." Sensors and Actuators B-Chemical 86: 215-221.
Liu, T. Y., K. T. Tsai, et al. (2011). "Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood." Nature Communications 2: 538.
Luo, T., L. Jiang, et al. (2011). "Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis." Journal of Clinical Microbiology 49: 3132-3138.
Mach, K. E., R. Mohan, et al. (2011). "A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples." Journal of Urology 185: 148-153.
Mann, T. S. and S. R. Mikkelsen (2008). "Antibiotic susceptibility testing at a screen-printed carbon electrode array." Analytical Chemistry 80: 843-848.
Manz, A., N. Graber, et al. (1990). "Miniaturized total chemical-analysis systems - A novel concept for chemical sensing." Sensors and Actuators B-Chemical 1: 244-248.
Martinez, A. W., S. T. Phillips, et al. (2010). "Diagnostics for the developing world: Microfluidic paper-based analytical devices." Analytical Chemistry 82: 3-10.
Maskos, U. and E. M. Southern (1992). "Oligonucleotide hybridizations on glass supports: A novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ." Nucleic Acids Research 20: 1679-1684.
Messinger, R. J. and T. M. Squires (2010). "Suppression of electro-osmotic flow by surface roughness." Physical Review Letters 105: 144503.
Miesel, L., J. Greene, et al. (2003). "Genetic strategies for antibacterial drug discovery." Nature Reviews Genetics 4: 442-456.
Miller, R. D. and T. B. Jones (1993). "Electro-orientation of ellipsoidal erythrocytes - theory and experiment." Biophysical Journal 64: 1588-1595.
Morens, D. M., G. K. Folkers, et al. (2004). "The challenge of emerging and re-emerging infectious diseases." Nature 430: 242-249.
Moritz, T. J., C. R. Polage, et al. (2010). "Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers." Journal of Clinical Microbiology 48: 4287-4290.
Musken, M., S. Di Fiore, et al. (2010). "A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing." Nature Protocols 5: 1460-1469.
Nath, S., C. Kaittanist, et al. (2008). "Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility." Analytical Chemistry 80: 1033-1038.
Ndieyira, J. W., M. Watari, et al. (2008). "Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance." Nature Nanotechnology 3: 691-696.
Nicolaou, N., Y. Xu, et al. (2011). "Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp cremoris in milk." Analytical Chemistry 83: 5681-5687.
Nieuwenhuis, J. H., F. Kohl, et al. (2004). "Integrated Coulter counter based on 2-dimensional liquid aperture control." Sensors and Actuators B-Chemical 102: 44-50.
Oh, J., R. Hart, et al. (2009). "Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel." Lab on a Chip 9: 62-78.
Park, S. and A. Beskok (2008). "Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes." Analytical Chemistry 80: 2832-2841.
Park, S., Y. Zhang, et al. (2011). "Advances in microfluidic PCR for point-of-care infectious disease diagnostics." Biotechnology Advances 29: 830-839.
Peitz, I. and R. van Leeuwen (2010). "Single-cell bacteria growth monitoring by automated DEP-facilitated image analysis." Lab on a Chip 10: 2944-2951.
Perez-Nunez, D., R. Briandet, et al. (2011). "A new morphogenesis pathway in bacteria: Unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci." Molecular Microbiology 79: 759-771.
Perreten, V., L. Vorlet-Fawer, et al. (2005). "Microarray-based detection of 90 antibiotic resistance genes of Gram-positive bacteria." Journal of Clinical Microbiology 43: 2291-2302.
Pethig, R. (2010). "Review article-dielectrophoresis: Status of the theory, technology, and applications." Biomicrofluidics 4: 022811.
Pethig, R., Y. Huang, et al. (1992). "Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes." Journal of Physics D-Applied Physics 25: 881-888.
Pethig, R. and D. B. Kell (1987). "The Passive electrical-properties of biological-systems - Their significance in physiology, Biophysics and Biotechnology." Physics in Medicine and Biology 32: 933-970.
Pethig, R. and G. H. Markx (1997). "Applications of dielectrophoresis in biotechnology." Trends in Biotechnology 15: 426-432.
Pitout, J. D. and K. B. Laupland (2008). "Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern." The Lancet Infectious Diseases 8: 159-166.
Pohl, H. A. (1951). "The motion and precipitation of suspensoids in divergent electric fields." Journal of Applied Physics 22: 869-871.
Ramos, A., A. Gonzalez, et al. (2003). "Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes." Physical Review E 67: 056302.
Ramos, A., H. Morgan, et al. (1998). "Ac electrokinetics: A review of forces in microelectrode structures." Journal of Physics D-Applied Physics 31: 2338-2353.
Ramos, A., H. Morgan, et al. (1999). "AC electric-field-induced fluid flow in microelectrodes." Journal of Colloid and Interface Science 217: 420-422.
Ren, H. W., S. Xu, et al. (2011). "Voltage-expandable liquid crystal surface." Lab on a Chip 11: 3426-3430.
Rodriguez-Trujillo, R., C. A. Mills, et al. (2007). "Low cost micro-Coulter counter with hydrodynamic focusing." Microfluidics and Nanofluidics 3: 171-176.
Sakamoto, C., N. Yamaguchi, et al. (2007). "Rapid quantification of bacterial cells in potable water using a simplified microfluidic device." Journal of Microbiological Methods 68: 643-647.
Salieb-Beugelaar, G. B., G. Simone, et al. (2010). "Latest developments in microfluidic cell biology and analysis Systems." Analytical Chemistry 82: 4848-4864.
Schnelle, T., T. Muller, et al. (1999). "The influence of higher moments on particle behaviour in dielectrophoretic field cages." Journal of Electrostatics 46: 13-28.
Schnelle, T., T. Muller, et al. (1999). "Paired microelectrode system: Dielectrophoretic particle sorting and force calibration." Journal of Electrostatics 47: 121-132.
Scott, R., P. Sethu, et al. (2008). "Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter." Review of Scientific Instruments 79: 046104.
Seng, P., J. M. Rolain, et al. (2010). "MALDI-TOF-mass spectrometry applications in clinical microbiology." Future Microbiology 5: 1733-1754.
Simonnet, C. and A. Groisman (2006). "High-throughput and high-resolution flow cytometry in molded microfluidic devices." Analytical Chemistry 78: 5653-5663.
Sinn, I., T. Albertson, et al. (2012). "Asynchronous magnetic bead rotation microviscometer for rapid, sensitive, and label-free studies of bacterial growth and drug sensitivity." Analytical Chemistry 84: 5250-5256.
Slamti, L., M. A. de Pedro, et al. (2011). "Deciphering morphological determinants of the helix-shaped Leptospira." Journal of Bacteriology 193: 6266-6275.
Squires, T. M. (2009). "Induced-charge electrokinetics: Fundamental challenges and opportunities." Lab on a Chip 9: 2477-2483.
Stevens, D. Y., C. R. Petri, et al. (2008). "Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage." Lab on a Chip 8: 2038-2045.
Stone, H. A., A. D. Stroock, et al. (2004). "Engineering flows in small devices: Microfluidics toward a lab-on-a-chip." Annual Review of Fluid Mechanics 36: 381-411.
Sun, T. and H. Morgan (2010). "Single-cell microfluidic impedance cytometry: A review." Microfluidics and Nanofluidics 8: 423-443.
Suzuki, M., T. Yasukawa, et al. (2008). "Negative dielectrophoretic patterning with different cell types." Biosensors & Bioelectronics 24: 1043-1047.
Takeuchi, S., W. R. DiLuzio, et al. (2005). "Controlling the shape of filamentous cells of Escherichia coli." Nano Letters 5: 1819-1823.
Theberge, A. B., F. Courtois, et al. (2010). "Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology." Angewandte Chemie- International Edition 49: 5846-5868.
Torquato, S., T. M. Truskett, et al. (2000). "Is random close packing of spheres well defined?" Physical Review Letters 84: 2064-2067.
Valasek, M. A. and J. J. Repa (2005). "The power of real-time PCR." Advances in Physiology Education 29: 151-159.
Volkmer, B. and M. Heinemann (2011). "Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling." PLoS One 6: e23126.
Wada, T., S. Maeda, et al. (2004). "Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR." Journal of Clinical Microbiology 42: 5277-5285.
Waksman, S. A. (1947). "What is an antibiotic or an antibiotic substance?" Mycologia 39: 565-569.
Waldeisen, J. R., T. Wang, et al. (2011). "A real-time PCR antibiogram for drug-resistant sepsis." PLoS One 6: e28528.
Wang, C.-H., K.-Y. Lien, et al. (2011). "A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification." Lab on a Chip 11: 1521-1531.
Wang, L. and P. C. H. Li (2011). "Microfluidic DNA microarray analysis: A review." Analytica Chimica Acta 687: 12-27.
Wang, X. B., J. Yang, et al. (2000). "Cell separation by dielectrophoretic field-flow- fractionation." Analytical Chemistry 72: 832-839.
Weile, J. and C. Knabbe (2009). "Current applications and future trends of molecular diagnostics in clinical bacteriology." Analytical and Bioanalytical Chemistry 394: 731-742.
Wells, G. G., N. Sampara, et al. (2011). "Diffraction grating with suppressed zero order fabricated using dielectric forces." Optics Letters 36: 4404-4406.
Weng, X., H. Jiang, et al. (2011). "Microfluidic DNA hybridization assays." Microfluidics and Nanofluidics 11: 367-383.
Whitesides, G. M. (2006). "The origins and the future of microfluidics." Nature 442: 368-373.
Winter, W. T. and M. E. Welland (2009). "Dielectrophoresis of non-spherical particles." Journal of Physics D-Applied Physics 42: 045501.
Wong, P. K., C. Y. Chen, et al. (2004). "Electrokinetic bioprocessor for concentrating cells and molecules." Analytical Chemistry 76: 6908-6914.
Yang, L. J., Y. B. Li, et al. (2004). "Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157 : H7." Analytical Chemistry 76: 1107-1113.
Ying, H., R. Holzel, et al. (1992). "Differences in the AC electrodynamics of viable and nonviable yeast-cells determined through combined dielectrophoresis and electrorotation studies." Physics in Medicine and Biology 37: 1499-1517.
Yong, D., M. A. Toleman, et al. (2009). "Characterization of a New Metallo-beta-Lactamase Gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India." Antimicrobial Agents and Chemotherapy 53: 5046-5054.
Yoon, M. Y., K. M. Lee, et al. (2011). "Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration." PLoS One 6: e16105.
Zavizion, B., Z. Zhao, et al. (2010). "Rapid microbiological testing: Monitoring the development of bacterial stress." PLoS One 5: e13374.
Zhang, Y. H. and P. Ozdemir (2009). "Microfluidic DNA amplification-A review." Analytica Chimica Acta 638: 115-125.
Zhao, H. and H. H. Bau (2010). "Polarization of nanorods submerged in an electrolyte solution and subjected to an ac electrical field." Langmuir 26: 5412-5420.
Zheng, L. F., J. P. Brody, et al. (2004). "Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly." Biosensors & Bioelectronics 20: 606-619.
Zhu, Z., G. Jenkins, et al. (2012). "Single-molecule emulsion PCR in microfluidic droplets." Analytical and Bioanalytical Chemistry 403: 2127-2143.