| 研究生: |
林美辰 Lin, Mei-Chen |
|---|---|
| 論文名稱: |
含苉七螺旋烴衍生物:合成與結構探討 Picene-Based Heptahelicenes: Syntheses and Structural Analyses |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 多環芳香烴 、七螺旋烴 |
| 外文關鍵詞: | Polycyclic aromatic hydrocarbons, Heptahelicenes |
| 相關次數: | 點閱:176 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文分為兩部分,第一部分為接續四苯并[7]螺旋烴化合物2,第二部分以5,8-二碘-6,7-二苯基苉8延伸合成非交替二苊并七螺旋烴衍生物3的反應路徑探討。第一部分中,學長曾於鈀金屬、配位基、鹼和溶劑下透過去羧化反應得到化合物2,透過更換鹼、溫度、配位基和改變添加化合物13速度等變因,嘗試提升產率,最終成功將產率調高至33%。接續透過X-ray單晶繞射、旋光光度計與高效能液相層析儀得到化合物2晶體與掌性間的關係。
第二部分中,以非交替二苊并七螺旋烴衍生物3做為目標產物,以不同的苊基來源進行合成策略分析,透過嘗試合成的過程中探討結構等因素造成反應失敗的原因。
This thesis is divided into two parts. In the first part, improving the synthesis conditions of dimethyltetrabenzo[f,i,o,r]heptahelicene 2. Secondly, attempted synthesis of non-alternant heptahelicene 3 from diiodo-picene 8 were investigated in the following part.
In the first part, heptahelicene 2 was synthesized before with palladium catalyst, ligand, base and solvent through decarboxylation. In this thesis, trying to improve the yield of 2 by changing bases, temperature, ligands and the rate of adding compound 13. Finally, the yield successfully increased to 33%. According to single X-ray crystallography, automatic polarimeter and high efficiency liquid chromatography (HPLC), the relation between crystal structure and chirality property of 2 could be understood.
In the second part, attempted synthesis of targeted non-alternant heptahelicene 3 was from diiodo-picene 8. Planning and trying to use different source of acenaphthylene to achieve the product 3.
[1] Tönshoff, C.; Bettinger, H. F. Angew. Chem. Int. Ed. 2010, 49, 4125-4128.
[2] Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2003, 5, 4245-4248.
[3] Anthony, J. Chem. Rev. 2006, 106, 5028-5048.
[4] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666-669.
[5] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science, 2008, 321, 385-388.
[6] Charlier, J.-C., et al. In Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Ed.; Berlin/Heidelberg: Springer-Verlag, 2008.
[7] Li, H.; Anugrah, Y.; Koester, S. J.; Li, M. Appl. Phys. Lett. 2012, 101, 111110.
[8] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183-191.
[9] Wu, Y.-T.; Siegel, J. S. Chem. Rev. 2006, 106, 4843-1867.
[10] Moss, G. P.; Smith, P. A. S.; Tavernier, D. Pure Appl. Chem. 1995, 67, 1307-1375.
[11] Meisenheimer, J.; Witte, K. Chem. Ber. 1903, 36, 4153-4164.
[12] Weitzenböck, R.; Klingler, A. Monatsh. Chem. 1918, 39, 315-323.
[13] Newman, M. S.; Lutz, W. B.; Lednicer, D. J. Am. Chem. Soc. 1955, 77, 3420-3421.
[14] Newman, M. S.; Lednicer, D. J. Am. Chem. Soc. 1956, 78, 4765-4770.
[15] Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem. Int. Ed. 1966, 5, 385-415.
[16] Groen, M. B.; Wynberg, H. J. Am. Chem. Soc. 1971, 93, 2968-2974.
[17] Flammang, M; Nasielsk, J; Martin, R. H. Tetrahedron Lett. 1967, 8, 743-744.
[18] Liu, L. B.; Katz, T. J. Tetrahedron Lett. 1990, 31, 3983-3986.
[19] Newman, M. S.; Wolf, M. J. Am. Chem. Soc. 1952, 74, 3225-3228.
[20] Zhang, Y. Z.; Petersen, J. L.; Wang, K. K. Tetrahedron 2008, 64, 1285-1293.
[21] (a) Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H. J. Org. Chem. 2007, 72, 7406-7408. (b) Caeiro, J.; Peña, D.; Cobas, A.; Pérez, D.; Guitián, E. Adv. Synth. Catal. 2006, 348, 2466-2474.
[22] (a) Yamano, T.; Shibata, Y.; Tanaka, K. Chem. Eur. J. 2018, 24, 6364-6370. (b) Okubo, H.; Yamaguchi, M.; Kabuto, C. J. Org. Chem. 1998, 63, 9500-9509. (c) Jančařík, A.; Rybáček, J.; Cocq, K.; Chocholoušová, J. V.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, I. G. Angew. Chem. Int. Ed. 2013, 52, 9970-9975.
[23] (a) Huang, Q.; Jiang, L.; Liang, W.; Gui, J.; Xu, D.; Wu, W.; Nakai, Y.; Nishijima, M.; Fukuhara, G.; Mori, T. J. Org. Chem. 2016, 81, 3430-3434.
[24] Dova, D.; Viglianti, L.; Mussini, P. R.; Prager, S.; Dreuw, A.; Voituriez, A.; Licandro, E.; Cauteruccio, S. Asian J. Org. Chem. 2016, 5, 537-549.
[25] Gingras, M. Chem. Soc. Rev. 2013, 42, 1051-1095.
[26] Fox, J. M.; Katz, T. J.; Elshocht, S. V.; Verbiest, T.; Kauranen, M.; Persoons, A.; Thongpanchang, T.; Krauss, T.; Brus, L. J. Am. Chem. Soc. 1999, 121, 3453-3459.
[27] 引用自實驗室蔡旻臻學長的碩士論文。
[28] (a) Radenković, S.; Tošović, J.; Nikolić, J. Đ. J. Phys. Chem. A 2015, 119, 4972-4982. (b) Koper, C. In Non-Alternant Polycyclic Aromatic Hydrocarbons versus Closed Carbon Surfaces; Netherlands: Utrecht University, 2003.
[29] 引用自實驗室黃珮瑜學姊的碩士論文。
[30] Hsieh, Y.-C.; Wu, C.-F.; Chen, Y.-T.; Fang, C.-T.; Wang, C.-S.; Li, C.-H.; Chen, L.-Y.; Cheng, M.-J.; Chueh, C.-C.; Chou, P.-T.; Wu, Y.-T. J. Am. Chem. Soc. 2018, 140, 14357-14366.
[31] Yang, Y.; Zhou, B.; Zhu, X.; Deng, G.; Liang, Y.; Yang, Y. Org. Lett. 2018, 20, 5402-5405.
[32] Fu, W. C.; Wang, Z.; Chan, W. T. K.; Lin, Z.; Kwong, F. Y. Angew. Chem. Int. Ed. 2017, 56, 7166-7170.
[33] Yang, X.; Lu, H.; Zhu, X.; Zhou, L.; Deng, G.; Yang, Y.; Liang, Y. Org. Lett. 2019, 21, 7284-7288.
[34] (a)Green, B. S.; Knossow, M. Science 1981, 214, 795-797. (b) Zlokazov, M. V.; Pivnitsky, K. K. Mendeleev Commun. 2020, 30, 1-6.
[35] Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9276-9287.
[36] Jutand, A. In The Mizoroki‐Heck Reaction; Oestreich, M., Ed.; Wiley-VCH: Weinheim, 2009; p 1-42.
[37] Kinstle, T. H.; Ihrig, P. J. J. Org. Chem. 1970, 35, 257-258.
[38] Churruca, F.; SanMartin, R.; Carril, M. Tetrahedron 2004, 60, 2393-2408.
[39] Danoun, G.; Tlili, A.; Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2012, 51, 12815-12819.
[40] Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Chem. Eur. J. 2004, 10, 5607-5622.
[41] Drapeau, M. P.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Angew. Chem. Int. Ed. 2015, 54, 10587-10591.
[42] Li, J.; Fang, X.; Ming, X. J. Org. Chem. 2020, 85, 4602-4610.
[43] (a) Sünnemann, H. W.; Hofmeister, A.; Magull, J.; de Meijere, A. Chem. Eur. J. 2007, 13, 3739-3756. (b) von Zezschwitz, P.; Petry, F.; de Meijere, A. Chem. Eur. J. 2001, 7, 4035-4046.
[44] Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V. and Larock, R. C. Angew. Chem. 2009, 121, 1158-1163.
[45] Benhamou, L.; Walker, D. W.; Bučar, D.-K.; Aliev, A. E.; Sheppard, T. D. Org. Biomol. Chem. 2016, 14, 8039-8043.
[46] Broadus, K. M.; Kass, S. R. J. Am. Chem. Soc. 2001, 123, 4189-4196.