簡易檢索 / 詳目顯示

研究生: 何品萱
Ho, Pin-Hsuan
論文名稱: 無機聚合材料複合版防爆性能之數值研究
Numerical study of geopolymer-based composite panels under blast loadings
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 蔡營寬
Tsai, Ying-Kuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 複合版無機聚合材料非接觸爆炸LS-DYNA
外文關鍵詞: Composite panels, Geopolymer materials, Non-contact explosive, LS-DYNA
相關次數: 點閱:136下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從鋼筋混凝土問世以及建築技術蓬勃發展以來,人們已普遍將其使用於各類建築物或構造物,藉以作為交通運輸或生活起居之目的。然而,世界上常有不同的衝突發生在各個角落,人們為了自身的利益或各種考量,也開始研發出各式爆裂物投向與立場互相衝突的人事物,最終造成無可挽回的傷亡,當人民所居住的建築物受到爆炸衝擊後會使結構物受到毀損甚至倒塌,而為了避免結構物直接受到嚴重傷害,近晚亦發展出以複合版來提高原始材料的性能,因此本研究即以無機聚合砂漿為主要材料,再配合鍍鋅鋼板與鐵絲進行複合版相關試驗,最後使用有限元素軟體分析進行數值模擬比較。本文共進行三種數值模擬分析,分別為280×70×9.5(mm)複合版抗彎模擬、炸藥爆炸壓力波模擬以及1200×600×9.5(mm)複合版爆炸模擬,中間材料則以純無機聚合砂漿作為對照,並與添加碳纖維、克維拉纖維或超高性能聚乙烯纖維共四種配比進行比擬,首先將以基本材料試驗獲取其抗壓強度,並作為數值模擬參數輸入其中,其後再參考文獻建議設置其餘參數。依據本研究成果顯示,鍍鋅鋼板與無機聚合砂漿之間有無接合影響甚大,而數值模擬設定之邊界條件與實際試驗使用之夾具尚有落差情形,故使分析結果位移量偏小。綜上所述,本研究有關提升防爆性能之成果,將提供未來在相關試驗研究與數值模擬分析上之參考。

    The structure is easy to receive serious damage directly after an explosion. In order to avoid direct damage, the composite panels are developed to enhance the original material. In this study, geopolymer mortar is used as the main material, combined with galvanized steel plates and iron wires, to carry out experiments and finite element analysis of composite panels. This study conducted three types of numerical simulation analysis, which are 280×70×9.5(mm) composite panels bending simulation, explosion pressure wave simulation and 1200×600×9.5(mm) composite panels explosion simulation. The intermediate material is pure geopolymer mortar as a control group to be compared with designs in four different proportions, adding carbon fiber, Kevlar fiber or ultra-high molecular weight polyethylene fiber. First, the compressive strength is obtained from the basic material test, being the input into the model as a numerical simulation parameter, and the remaining parameters are set based on the reference literature. Finally, the results of experiments and numerical analysis are discussed to provide a reference for future explosion-proof performance.

    摘要 i 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 2 1.3 文獻回顧 2 1.3.1 混凝土版試驗及數值模擬研究 2 1.3.2 複合版試驗及數值模擬研究 4 1.4 研究流程與架構 5 第二章 爆炸概述與防爆版抗爆震波性能試驗 7 2.1 概述 7 2.2 爆炸原理 7 2.3 爆炸壓力波構成 8 2.4 爆炸類型 10 2.5 爆炸壓力峰值 12 2.6 炸藥介紹 16 2.6.1 TNT炸藥 16 2.6.2 Tetryl炸藥 16 2.6.3 炸藥當量計算 17 2.7 防爆版填充材研發 18 2.7.1 無機聚合材料 18 2.7.2 纖維種類 21 2.7.3 配比 21 2.8 防爆版填充材基本力學試驗 22 2.9 防爆版抗彎試驗 23 2.10 爆炸試驗 25 2.10.1 構型 27 2.10.2 試體灌製流程 28 2.11 儀器設備說明與配置 29 2.11.1 加速規與爆壓計 31 2.11.2 位移感測器 32 第三章 數值模擬分析 33 3.1 概述 33 3.2 有限元素法 33 3.2.1 網格模擬方式 33 3.2.2 LS-DYNA概述 35 3.3 材料力學行為及組成 35 3.3.1 無機聚合砂漿 36 3.3.2 鋼板與鐵絲 36 3.4 接觸與連結設定 38 3.5 抗彎試驗數值模擬 38 3.6 爆炸模擬介紹 40 3.6.1 爆炸模擬方法 40 3.6.2 CONWEP方法概述 42 3.7 邊界條件設定 43 3.8 爆炸壓力波及爆炸試驗數值模型 44 第四章 試驗與數值模擬成果討論 46 4.1 概述 46 4.2 防爆版抗彎性能驗證 46 4.3 爆壓結果驗證 54 4.4 防爆版抗爆性能驗證 58 第五章 結論及建議 71 5.1 結論 71 5.2 建議 72 參考文獻 73

    [1] T. Ngo, P. Mendis, T. Krauthammer, “Behavior of Ultrahigh-Strength Prestressed Concrete Panels Subjected to Blast Loading”, Journal of Structural Engineering, Volume 133 Issue 11, November 2007.
    [2] Y.S. Tai, T.L. Chu, H.T. Hu, J.Y. Wu, “Dynamic Response of a Reinforced Concrete Slab Subjected to Air Blast Load”, Theoretical and Applied Fracture Mechanics, Volume 56, Issue 3, Pages 140-147, December 2011.
    [3] W. Wang, D. Zhang, F. Lu, S.C. Wang, F. Tang, “Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading”, International Journal of Impact Engineering, Volume 49, Pages 158-164, November 2012.
    [4] M. Shuaib and O. Daoud, “Numerical Analysis of RC Slab under Blast Loads Using The Coupling of LBE and ALE Method in LS-DYNA”, fib Symposium, November 2016.
    [5] P.F. Silva, B. Lu, “Improving the blast resistance capacity of RC slabs with innovative composite materials”, Composites Part B: Engineering, Volume 38, Issues 5–6, Pages 523-534, September 2007.
    [6] X. Liang, Z. Wang, R. Wang, “Deformation model and performance optimization research of composite blast resistant wall subjected to blast loading”, Journal of Loss Prevention in the Process Industries, Volume 49, Part B, Pages 326-341, September 2017.
    [7] C. Zhao, X. Lu, Q. Wang, A. Gautam, J. Wang, Y.L. Mo, “Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading”, Engineering Structures, Volume 196, 109337, October 2019.
    [8] Q. Guo, W. Zhao, “Displacement response analysis of steel-concrete composite panels subjected to impact loadings”, International Journal of Impact Engineering, Volume 131, Pages 272-281, September 2019.
    [9] UFC 3-340-02, “Structures to Resist the Effects of Accidental Explosions”, 2008.
    [10] W.E. Baker, “Explosions in Air”, Univ. of Texas Press, Austin TX USA, 1973.
    [11] V. Karlos, B. Viaccoz, G. Solomos, “Calculation of blast loads for application to structural components”, Joint Research Centre, Institute for the Protection and Security of the Citizen, Publications Office, 2014.
    [12] H.L. Brode, “Numerical solutions of spherical blast waves”, Journal of Applied Physics, Volume 26, Issues 6, Pages 766-775, 1955.
    [13] J. Henrych, “The Dynamics of Explosion and Its Use”, Elsevier Scientific Publishing Company, Amsterdam, 1979.
    [14] N.M. Newmark and R.J. Hansen, “Design of blast resistant structures”, Shock and Vibration Handbook, Vol. 3, Eds. Harris and Crede, McGraw-Hill, New York, USA, 1961.
    [15] C.A. Mills, “The design of concrete structure to resist explosions and weapon effects”, Proceedings of the 1st International Conference on Concrete for Hazard Protections, Pages 61–73, 1987.
    [16] C.N. Kingery and G. Bulmash, “Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst”, U.S. Technical Report ARBRL-TR-02555. Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland, USA. April 1984.
    [17] Global Ordnance:https://www.global-ordnance.com/product/single-molecule-explosive-materials/, 2022.06.25.
    [18] LSTC, “LS-DYNA ® KEYWORD USER’S MANUAL VOLUME I”, LIVERMORE SOFTWARE TECHNOLOGY (LST), ANANSYS COMPANY, 2020.
    [19] Tripwire:https://tripwireops.org/tetryl/, 2022.06.25.
    [20] N. Kubota, “Propellants and Explosives: Thermochemical Aspects of Combustion”, Wiley-VCH, 2002.
    [21] W. Xiao, M. Andrae, N. Gebbeken, “Air blast TNT equivalence concept for blast-resistant design”, International Journal of Mechanical Sciences, Volume 185, 105871, November 2020.
    [22] F. Farooq, J. Xin, M.F. Javed, A. Akbar, M.I. Shah, F. Aslam, R. Alyousef, “Geopolymer concrete as sustainable material: A state of the art review”, Construction and Building Materials, Volume 306, 124762, November 2021.
    [23] J. Davidovits, “Geopolymers: Man-Made Rock Geosynthesis and the Resulting Development of Very Early High Strength Cement”, Journal of Materials Education, Volume 16, Pages 91-139, 1994.
    [24] 鄭大偉,“無機聚合技術的發展應用及回顧”,中國鑛冶工程學會會刊,第54卷,第1期,第141頁,2010。
    [25] J. Davidovits, “Geopolymer Cement a review, published in Geopolymer Science and Technics”, Geopolymer Institute Library, Technical Paper #21, 2013.
    [26] 周佳靜,張天益,“無機聚合物的發展現況及研究動態”,化工資訊與商情,第78期,2009。
    [27] 鄭大偉,蔡志達,李韋皞,吳佳正,“無機聚合混凝土在國內應用的實例”,中國土木水利工程學會會刊,第47卷,第2期,2020。
    [28] BS EN 12467, “Fibre-cement flat sheets”, 2018.
    [29] L. Olovsson, M. Souli, I. Do, “LS-DYNA–ALE Capabilities (Arbitrary-Lagrangian-Eulerian) Fluid-Structure Interaction Modeling” , Livermore Software Technology Corporation, 2003.
    [30] 鑫威資訊:https://www.simware.com.tw/about_us/OEM/, 2022.06.25.
    [31] LSTC, “LS-DYNA ® KEYWORD USER’S MANUAL VOLUME II ”, Material Models LIVERMORE SOFTWARE TECHNOLOGY (LST), AN ANSYS COMPANY, 2020.
    [32] T.P. Slavik, “A Coupling of Empirical Explosive Blast Loads to ALE Air Domains in LS-DYNA®”, IOP Conference Series: Materials Science and Engineering, Volume 10, 012146, 2010.
    [33] J. Trajkovski, “Comparison of MM-ALE and SPH methods for modelling blast wave reflections of flat and shaped surfaces”, 11th European LS-DYNA Conference, Salzburg, Austria, 2017.
    [34] T.P. Slavik, “Blast Loading in LS-DYNA”, Livermore Software Technology Corporation, University California San Diego, May 2012.
    [35] H. Tu, T.C. Fung, K.H. Tan, W. Riedel, “An analytical model to predict spalling and breaching of concrete plates under contact detonation” , International Journal of Impact Engineering, Volume 160, 104075, February 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE