| 研究生: |
陳俊源 Chen, Chun-Yuan |
|---|---|
| 論文名稱: |
邁向零排放:通過通用機器學習實現智慧垃圾掩埋場聚類、採礦選址及焚化底渣資源化 Towards zero emissions: Employing intelligent waste management, the case studies of landfills clustering, landfill mining sites selection, and recapturing bottom ash to resources via general machine learning |
| 指導教授: |
余騰鐸
Yu, Teng To |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 316 |
| 中文關鍵詞: | 機械學習 、掩埋場採礦 、廢棄物管理 、捲積式類神精網路 、黑面琵鷺 、多評準決策 、焚化底渣 、均勻流形近似及投影 |
| 外文關鍵詞: | machine learning, landfill mining, waste management, convolutional neural networks (CNNs), Platalea minor, multi-criteria decision-making (MCDM), municipal incineration bottom ash (MIBA), uniform manifold approximation and projection (UMAP) |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文呼應世界淨零排放趨勢所興起對溫室氣體排放的逆向工程概念,提出廢棄物管理的兩個逆向迴圈架構,兩者分別運用先進的機械學習技術的元素來進行操作,分別將廢棄物被丟棄前及丟棄後行資源化,從而實踐淨零排放目的。第一個逆向迴圈運用於當前掩埋場有關的領域管理,包含提出運用專家猶豫的模糊語言HFLTS,K-means及計量的場位模型(CPLM)演算法進行多評準決策(MCDM)掩埋場採礦選址框架,及提出運用均勻流形近似及投影(uniform manifold approximation and projection, UMAP)結合魯汶(Louvain)的社群模塊聚類演算法進行掩埋場風險管理聚類框架,將特徵相似的掩埋場進行聚類,以達到風險定位;此兩框架的提出可提供管理者對區域掩埋場相關管理決策參考,並更有系統的進行大範圍選址,且及時的決策工具;第二個逆向循環環圈則是運用卷積式類神經網路(CNNs)及隨機森林RF機械學習技術,來探討焚化底渣資源化的影像辨識,評估底渣被處理前將其中不可燃的電池、金屬、塑膠等物質提取,逆轉為資源並極小化掩埋的可能,並且提出「太極焚化底渣影像」(TaiChi_MIBA)數據集(dataset),提供未來探討垃圾焚化底渣這議題的智慧影像辨識研究。以上兩個逆向循環對廢棄物領域提出全新的管理思維概念,並貢獻於決策框架開發及新穎之技術工具的提出,研究主要結論如下:
1、於第一個逆向迴圈
(1)所提出的CPLM基礎的選址框架,使用於臺灣的402處掩埋場案例,發現使用HFLTS專家多決策評準,人口密度是影響最重要的權重,其次是水體及海岸線,最後是坡度,另在台灣既有掩埋場分類中。套用於中南部114處掩埋場地區的選址結果,有17處需要移除,有45處可以轉為暫存設施,可以復育約66公頃土地,並且估計可貢獻新臺幣39.6到132億元土地經濟效益。
(2)另外UMAP為基礎的掩埋場聚類框架,使用於臺灣402處掩埋場可聚類為10類,其中具有2項以上之環境加乘效應,包含7.9%為海岸邊的河口掩埋場,8.2%為斷層及濱河掩埋場,17.6%高人口密度及濱河掩埋場,而受影響較少的"健康的"掩埋場11.2%,並且發現世界濱危物種黑面琵鷺棲地與海岸掩埋場距離有重疊。另將本研究提出的聚類框架套用到英格蘭的19,801處掩埋場中,可將其聚類為110類,並且亦有類似臺灣案例中之2項以上環境加乘情況。揭示全世界的掩埋場普遍已受地球及人類活動之變動影響其對環境之風險程度,建議當前掩埋場管理亟需導入有地球及人為變動策略及具氣候調適性之模式,來因應變動地球氣候變遷、地殼變動及人口遷移之諸多改變。
2、於第二個逆向迴圈,所提出的CNNs基礎的智慧分類框架,使用於焚化底渣之研究,由正常光組成5,060個及紅外光組成5,062個影像集,探討可見光、一般白光、紅外線及弱紅外線光源下,於不同粒徑-砂石大小(<2 mm)及礫石大小(4~19 mm)的焚化底渣對於不同類型之雜質10類的品質情境,比較於不同解析度及卷積網路的長度結構之辨識能力。所建立的模式影像辨識準確率為83.1~97.3%,其中雜物於礫石大小的底渣下較不易被分辨,與此同時,不同光源會影響辨識效能及整體辨識結果,金屬也由於表面氧化之顏色改變,相較於塑膠類較不易被分辨;另外第二階段比較CNNs及RF不同技術,於10,123影像7種類別的數據集中,發現CNNs相對於RF有明顯壓倒的辨識效能(準確度CNNs為96.7%對比RF為55.8%)。但如考慮二維之辨識,即不考慮雜質類別只考慮「合格」「不合格」情況下,RF對「不合格」有88.8%到90.5%辨識準確度,揭示RF對於簡易之辨別任務仍有發展潛力。
綜合以上結果,本論文所提出之兩個逆向迴圈結合機械學習技術提出的三個智慧管理框架,包含前端的掩埋場採礦選址決策框架及風險聚類框架,搭配後端的CNNs影像辨識整合框架(尤其是垃圾經過處理後在低對比環境下之影像辨識),對於實踐一個「無掩埋」及「無煙囪」的零排放世界,提供未來具體可行且具前瞻技術發展之策略及方法。
This dissertation introduces two reverse loops in waste management aligned with the global trend of zero emissions. The first loop focuses on landfill management, employing fuzzy language (HFLTS), K-means, and Capacitated Plant Location Model (CPLM) algorithms framework for multi-criteria decision-making (MCDM) sites selection. Besides, a uniform manifold approximation and projection (UMAP) combined with the Louvain clustering framework for landfill-risk management to aid this loop. The second loop utilizes convolutional neural networks (CNNs) and Random Forest (RF), which are part of machine learning to explore image recognition for resource recovery from municipal incineration bottom ash (MIBA), minimizing landfilling. The proposed frameworks offer decision support for landfill management and systematic site selection, along with real-time decision-making tools. These innovative concepts contribute to waste management for rethinking, decision framework development, and novel technical tools. The key summaries listed as follows:
In the first reverse loop
(1) The proposed CPLM based Framework, applied to over 402 landfill cases in Taiwan, it was found that using HFLTS expert multi-decision criteria, population density has the most significant impact, followed by water bodies and coastlines, and finally, slope. Applying this to 114 landfill areas in central and southern Taiwan resulted in the identification of 17 sites for removal, 45 sites suitable for conversion into temporary facilities, reclaiming about 66 hectares of land. Estimated economic benefits range from NT$3.96 to 13.2 billion.
(2) The proposed UMAP clustering Framework research on landfills in Taiwan categorized over 400 sites by using 17 noteworthy features that transform to Landfill Suitability Index (LSI). This study clustered landfills into 10 clusters and identified several clusters with significant extreme locations, types, revealing environmental risk synergies, including estuary landfills (7.9%), fault-water-body landfills (8.2%), and densely-populated-water-body landfills (17.6%). Furthermore, a critical discovery of endangered Platalea minor habitats near these estuary landfills was made. Additionally, this work identified “healthy” landfills (11.2%). Applying the same method to 19,801 landfills in England revealed 110 categories and similar environmental risk synergies. This underscores the global impact of environmental changes on landfills, urging the adoption of strategic adaptive management to address climate change, crustal movement, and population shifts.
In the second reverse loop
The proposed of the Intelligent Waste-to-Resources Framework, employing to the MIBA, utilizing 5,060 images from visible/normal light and 5,062 images from infrared light, the research investigates the quality scenarios of 10 categories of quality, including different impure items remain in MIBA of different particle sizes (soil <2 mm and gravel, 4~19mm) under visible, white, infrared, and weak infrared light sources (called TaiChi_MIBA dataset). Models reach an accuracy ranging 83.1~97.3%. It compares the recognition performance under different resolutions (80, 160, 320 square pixels) and CNNs depths. It was observed that impurities in gravel-sized bottom ash are less distinguishable, and different light sources affect recognition capabilities and overall results. Metals, due to surface oxidation color changes, are relatively harder to distinguish compared to plastic. In the second phase comparing CNNs and RF technologies on a dataset of 10,123 images across 7 categories (called Chency_MIBA dataset), CNNs exhibited significantly superior recognition performance with an accuracy of 96.7%, while RF ranged from 55.8%. However, considering two-dimensional recognition, focusing only on "Qualified" or "Unqualified" without specific impurity categories, RF showed a recognition accuracy of 88.8% to 90.5% for "Unqualified," indicating potential for RF in simpler identification tasks.
In summary, the two reverse loops proposed in this dissertation, combining machine learning techniques, encompass a front-end framework for landfill site selection decisions and risk clustering. This is complemented by a back-end integration of CNN-based intelligent image recognition, especially in low-contrast environments post-landfilling. Together, they present a feasible and forward-looking technological development strategy for achieving a "Landfill-free" and "Stack-free" zero emission world.
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk., S., 2012. SLIC Superpixels Compared to State-of-the-art Superpixel Methods. in IEEE Transactions on Pattern Analysis and Machine Intelligence. 34(11), 2274–2282. https://doi.org/10.1109/TPAMI.2012.120.
Adedeji, O., Wang, Z., 2019. Intelligent waste classification system using deep learning convolutional neural network. Procedia Manufacturing. 35, 607–612. https://doi.org/10.1016/j.promfg.2019.05.086
Afzal, M.A.F., Sonpal, A., Haghighatlari, M., Schultz, A.J., Hachmann, J., 2019. A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules. Chem. Sci. 8374–8383. http://dx.doi.org/10.1039/C9SC02677K
Aksoy, E., San, B.T., 2019. Geographical information systems (GIS) and multi-criteria decision analysis (MCDA) integration for sustainable landfill site selection considering dynamic data source. Bulletin of Engineering Geology and the Environment 78, 779–791.
Alavi, N., Goudarzi, G., Babaei, A.A., Jaafarzadeh, N., Hosseinzadeh, M., 2013. Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: A case study in Mahshahr County, Iran. Waste Manag. Res. 31, 98–105. https://doi.org/10.1177/0734242x12456092.
Ali, S.A., Parvin, F., Al-Ansari, N., Pham, Q., Ahmad, A., Meena, S., Tran Anh, D., Huy, B., Thai, V., 2021. Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environmental Science and Pollution Research. 28. 1–23. https://doi.org/10.1007/s11356-020-11004-7.
Alkaradaghi, K., Ali, S.S., Al-Ansari, N., Laue, J., Chabuk, A., 2019. Landfill site selection using MCDM methods and GIS in the Sulaimaniyah Governorate, Iraq. Sustainability. 11, 4530. https://doi.org/10.3390/su11174530.
Allegrini, E., Maresca, A., Olsson, M.E., Holtze, M.S., Boldrin, A., Astrup, T.F., 2014. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manag. 34, 1627–1636, https://doi.org/10.1016/j.wasman.2014.05.003
Alsubaei, F.S., Al-Wesabi, F.N., Hilal, A.M., 2022. Deep learning-based small object detection and classification model for garbage waste management in smart cities and IoT environment. Appl. Sci. 12, 2281. https://doi.org/10.3390/app12052281.
Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan,Y. , Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L., 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data. 8, 53. https://doi.org/10.1186/s40537-021-00444-8.
Asefi, H., Zhang, Y., Lim, S., Maghrebi, M., 2020. An integrated approach to suitability assessment of municipal solid waste landfills in New South Wales. Australas. J. Environ. Manag. 27, 63–83. https://doi.org/10.1080/14486563.2020.1719438.
Assef, F.M., Steiner, M.T.A., Lima, E.P., 2022. A review of clustering techniques for waste management. Heliyon. 8(1), e08784. https://doi.org/10.1016/j.heliyon.2022.e08784.
Ayalew, D.A., Deumlich, D., Šarapatka, B., Doktor, D., 2020. Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data. Remote Sens. 12, 1136. https://doi.org/10.3390/rs12071136.
Ayhan, B., Kwan, C., Budavari, B., Kwan, L., Lu, Y., Perez, D., Li, J., Skarlatos, D., Vlachos, M., 2020. Vegetation detection using deep learning and conventional methods. Remote Sensing. 12(15), 2502. https://doi.org/10.3390/rs12152502
Azis, F.A., Choo, M., Suhaimi, H., Abas P.E., 2023. The Effect of Initial Carbon to Nitrogen Ratio on Kitchen Waste Composting Maturity. Sustainability. 15(7), 6191. https://doi.org/10.3390/su15076191
Babalola, A., Busu, I., 2011. Selection of landfill sites for solid waste treatment in Damaturu Town-using GIS techniques. J. Environ. Prot. 2, 1–10. https://doi.org/10.4236/jep.2011.21001.
Badran, M., El-Haggar, S., 2006. Optimization of Municipal Solid Waste Management in Port Said-Egypt. Waste Manag., 26, 534–545. https://doi.org/10.1016/j.wasman.2005.05.005.
Baek, J., Choi, Y., 2019. Deep neural network for ore production and crusher utilization prediction of truck haulage system in underground mine. Appl. Sci. 9. 4180. https://doi.org/10.3390/app9194180.
Bahrani, S., Ebadi, T., Ehsani, H., Maknoon, R., 2016. Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, case study: Shabestar, Iran. Environ. Earth Sci. 75, 337. https://doi.org/10.1007/s12665-015-5146-4.
Baldasano, J.M., Gassó, S., Pérez, C., 2003. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system. Waste Manag. 23(9), 795–806. https://doi.org/10.1016/S0956-053X(03)00087-4.
Barak, S., Mokfi, T., 2019. Evaluation and selection of clustering methods using a hybrid group MCDM. Expert Syst. Appl. 138(112), 817.
Barakat, A., Hilali, A., El Baghdadi, M., Touhami, F., 2017. Landfill site selection with GIS-based multi-criteria evaluation technique. A case study in Béni Mellal-Khouribga Region, Morocco. Enviro. Earth Sci. 76. 413. https://doi.org/10.1007/s12665-017-6757-8.
Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J., 2012. A state-of-the-art survey of TOPSIS applications, Expert Systems with Applications. 39(17), 13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056.
Belkina, A.C., Ciccolella, C.O., Anno, R., Halpert, R., Spidlen, J., Snyder-Cappione, J.E., 2019. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 10, 5415. https://doi.org/10.1038/s41467-019-13055-y.
Bernard, S., Adam, S., Heutte, L., 2007. Using Random Forests for Handwritten Digit Recognition. Ninth International Conference on Document Analysis and Recognition, 1043–1047. https://doi.org/10.1109/ICDAR.2007.4377074.
Bilgilioglu, S.S., Gezgin, C., Orhan, O., Karakus, P., 2022. A GIS-based multi-criteria decision-making method for the selection of potential municipal solid waste disposal sites in Mersin, Turkey. Environ. Sci. Pollut. Res. 29, 5313–5329. https://doi.org/10.1007/s11356-021-15859-2.
Blasenbauer, D., Huber, F., Lederer, J., Quina, M.J., Blanc-Biscarat, D., Bogush, A., Bontempi, E., J., Blondeau, Chimenos, J.M., Dahlbo, H., Fagerqvist, J., Giro-Paloma, J., Hjelmar, O., Hyks, J., Keaney, J., Lupsea-Toader, M., O’Caollai, C.J., Orupõld, K., Pająk, T., Simon, F.G., Svecova, L., Šyc, M., Ulvang, R., Vaajasaari, K., van Caneghem, J., van Zomeren, A., Vasarevičius, S., Wégner, K., Fellner, J., 2020. Legal situation and current practice of waste incineration bottom ash utilization in Europe. Waste Manag. 102, 868–883. https://doi.org/10.1016/j.wasman.2019.11.031.
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of communities in large networks. J. Stat. Mech. P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008.
Boonmee, C., Arimura, M., Asada, T., 2018. Location and allocation optimization for integrated decisions on post-disaster waste supply chain management: On-site and off-site separation for recyclable materials, International Journal of Disaster Risk Reduction. 31, 902–917. https://doi.org/10.1016/j.ijdrr.2018.07.003.
Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L., 2013. The crucial role of waste-to-energy technologies in enhanced landfill mining: a technology review. J. Clean. Prod. 55, 10–23. https://doi.org/10.1016/j.jclepro.2012.05.032.
Bottou, L., 2010. Large-Scale machine learning with Stochastic Gradient Descent. Proc. of COMPSTAT. https://doi.org/10.1007/978-3-7908-2604-3_16.
Boyacı, Ç.A., Şişman, A., Sarıcaoğlu, K., 2021. Site selection for waste vegetable oil and waste battery collection boxes: A GIS-based hybrid hesitant fuzzy decision-making approach. Environ. Sci. Pollut. Res. 28, 17431–17444. https://doi.org/10.1007/s11356-020-12080-5.
Brand, J.H., Spencer, K.L., 2020. Will flooding or erosion of historic landfills result in a significant release of soluble contaminants to the coastal zone? Sci. Total Environ. 724, 138150. https://doi.org/10.1016/j.scitotenv.2020.138150.
Brand, J.H., Spencer, K.L., O'Shea, F.T., Lindsay, J.E., 2018. Potential pollution risks of historic landfills on low-lying coasts and estuaries. Wiley Interdiscip. Rev.: Water. 5, e1264. https://doi.org/10.1002/wat2.1264.
Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324.
Buragohain, A., Mali, B., Saha, S., Singh, P.K., 2022. A deep transfer learning based approach to detect covid-19 waste. Internet Technol. Lett. 5(3), e327. https://doi.org/10.1002/itl2.327.
Burlakovs, J., Kriipsalu, M., Klavins, M., Bhatnagar, A., Vincevica-Gaile, Z., Stenis, J., Jani, Y., Mykhaylenko, V., Denafas, G., Turkadze, T., Hogland, M., Rudovica, V., Kaczala, F., Rosendal, R.M., Hogland, W., 2017. Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization. Resources, Conservation and Recycling. 123, 73–84. https://doi.org/10.1016/j.resconrec.2016.07.007.
Burlakovs, J., Jani, Y., Kriipsalu, M., Vincevica-Gaile, Z., Kaczala, F., Celma, G., Ozola, R., Rozina, L. Rudovica, V., Hogland, M., Viksna, A., Pehme, K., Hogland, W., Klavins, M., 2018. On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. J. Clean. Prod. 186, 81–90. https://doi.org/10.1016/j.jclepro.2018.03.102.
Calderón Márquez, A.J., Cassettari Filho, P.C., Rutkowski, E.W., Lima Isaac, R., 2019. Landfill mining as a strategic tool towards global sustainable development. J. Clean. Prod. 226, 1102–1115. https://doi.org/10.1016/j.jclepro.2019.04.057.
Caneghem, J., Van, Acker, K.V., Greef, J.D, Wauters, G., Vandecasteele, C., 2019. Waste-to-energy is compatible and complementary with recycling in the circular economy Clean Techn. Environ. Policy. 21, 925–939. https://doi.org/10.1007/s10098-019-01686-0.
Carver, S.J.,1991. Integrating multi-criteria evaluation with geographical information systems, International Journal of Geographical Information Systems. 5(3), 321–339. https://doi.org/10.1080/02693799108927858.
Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L., 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. arXiv:1508.00092v1.
Chabok, M., Asakereh, A., Bahrami, H., Jaafarzadeh, N.O., 2020. Selection of MSW landfill site by fuzzy-AHP approach combined with GIS: Case study in Ahvaz, Iran. Environ. Monit. Assess. 192, 433. https://doi.org/10.1007/s10661-020-08395-y.
Chakrabarty, D., 2023. One planet, many worlds : the climate parallax, Brandeis University Press, Waltham, Massachusetts. https://muse.jhu.edu/book/111120.
Chang, N., Lu, H., Wei, L., 1997. GIS technology for vehicle routing and scheduling in solid waste collection systems. J. Environ. Eng. 123, 901–33.
Chang, N.B., Parvathinathan, G., Breeden, J,B., 2008. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manag. 87(1), 139–153. https://doi.org/10.1016/j.jenvman.2007.01.011.
Chatzouridis, C., Komilis, D., 2012. A methodology to optimally site and design municipal solid waste transfer stations using binary programming, Resources, Conservation and Recycling. 60, 89–98. https://doi.org/10.1016/j.resconrec.2011.12.004.
Chen, C.S., Tu, C.H., Chen, S.J., Chen, C.C., 2016. Simulation of groundwater contaminant transport at a decommissioned landfill site—A case study, Tainan City, Taiwan. International journal of environmental research and public health, 13(5), 467. https://doi.org/10.3390/ijerph13050467.
Chen, C.L., Lee, T.C., Liu, C.H., 2019. Beyond sectoral management: Enhancing Taiwan's coastal management framework through a new dedicated law, Ocean & Coastal Management. 169, 157–164. https://doi.org/10.1016/j.ocecoaman.2018.12.022.
Chen, C.Y., Yu., T.T., 2023. Towards a circular economy: Recapturing battery, metal, and plastic from soil-size and gravel-size municipal solid waste incineration bottom ash using convolutional neural networks. J. Clean. Prod. 139737. https://doi.org/10.1016/j.jclepro.2023.139737.
Chen, D., Zhang, Y., Xu, Y., Nie, Q., Yang, Z., Sheng, W., Qian, G., 2022. Municipal solid waste incineration residues recycled for typical construction materials-a review. RSC advances. 12(10), 6279–6291. https://doi.org/10.1039/d1ra08050d.
Chen, J.R., Zhao, Y.T., Wei, G.W., 2019. Evolutionary de rham-hodge method arXiv preprint arXiv:1912.12388 (Computers in Biology and Medicine Volume 131, 104264 UMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets. https://doi.org/10.1016/j.compbiomed.2021.104264.
Chen, W.Y., Zhao, Y., You, T., Wang, H., Yang, Y., Yang, K., 2021. Automatic detection of scattered garbage regions using small unmanned aerial vehicle low-altitude remote sensing images for high-altitude natural reserve environmental protection Environ. Sci. Technol. 55(6), 3604–3611. https://doi.org/10.1021/acs.est.0c04068.
Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing. 54, 1–20. https://doi.org/10.1109/TGRS.2016.2584107.
Cheng, Y.S., Yu, T.T., Son, N.T., 2021. Random forests for landslide prediction in tsengwen river watershed, Central Taiwan. Remote Sensing. 13(2), 1–11, 199. https://doi.org/10.3390/rs13020199.
Coelho, L.M.G., Lange, L.C., 2018. Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resources, Conservation and Recycling. 128, 438–450. https://doi.org/10.1016/j.resconrec.2016.09.026.
Collective Responsibility 2017, available at website: https://www.coresponsibility.com/shanghai-landfills-closures/ (last access 24.04.23)
Costa, A.M., Marotta Alfaia, R.G. de S., Campos, J.C., 2019. Landfill leachate treatment in Brazil – An overview. Journal of Environmental Manag. 232, 110–116. https://doi.org/10.1016/j.jenvman.2018.11.006.
CZMA, Coastal Zone Management Act promulgated in 2015 in Taiwan. available at websites: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=D0070222 (last access 24.04.23).
Danthurebandara, M., Van, P.S., Vanderreydt, I., Van, A.K., 2015. Assessment of environmental and economic feasibility of enhanced landfill mining. Waste Manag. 45, 434–447. https://doi.org/10.1016/j.wasman.2015.01.041.
Darminto, M.R., Chu, H.J., 2019. Mapping landslide release area using Random Forest Model. IOP Conference Series: Earth and Environmental Science. 389(1), 012038. https://doi.org/10.1088/1755-1315/389/1/012038.
Davtalab, O., Kazemian, A., Yuan, X., Khoshnevis, B., 2022. Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection. J. Intell. Manuf. 33, 771–784. https://doi.org/10.1007/s10845-020-01684-w.
Delgado, O.B., Mendoza, M., Granados, E.L., Geneletti, D., 2008. Analysis of land suitability for the siting of inter-municipal landfills in the Cuitzeo Lake Basin, Mexico. Waste Manag. 28(7), 1137–1146. https://doi.org/10.1016/j.wasman.2007.07.002.
Demesouka, O.E., Vavatsikos, A.P., Anagnostopoulos, K.P., 2013. Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study. Waste Manag. 33(5), 1190–1206. https://doi.org/10.1016/j.wasman.2013.01.030.
Dogo, E.M., Afolabi, O.J., Twala, B., 2022. On the Relative Impact of Optimizers on Convolutional Neural Networks with Varying Depth and Width for Image Classification. Applied Sciences. 12(23), 11976. https://doi.org/10.3390/app122311976.
Donevska, K.R., Gorsevski, P.V., Jovanovski, M., Peševski, I., 2012. Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ Earth Sci. 67, 121–131. https://doi.org/10.1007/s12665-011-1485-y.
Dorrity, M.W., Saunders, L.M., Queitsch, C., Fields, S., Trapnell, C., 2020. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 11, 1537. https://doi.org/10.1038/s41467-020-15351-4.
Dou, X., Ren, F., Nguyen, M.Q., Ahamed, A., Yin, K., Chan, W.P., Victor Chang, W.C., 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews. 79, 24–38. https://doi.org/10.1016/j.rser.2017.05.044.
Dubey, A., Chakrabarti, M., Pandit, D., 2016. Landfill Mining as a Remediation Technique for Open Dumpsites in India. Procedia Environmental Sciences. 35, 319–327. https://doi.org/10.1016/j.proenv.2016.07.012.
Ebistu, T.A., Minale, A.S., 2013. Solid waste dumping site suitability analysis using geographic information system (GIS) and remote sensing for Bahir Dar Town, North Western Ethiopia. Academic Journals. 7(11), 976–989. https://doi.org/10.5897/AJEST2013.1589.
Eghtesadifard, M., Afkhami, P., Bazyar, A., 2020. An integrated approach to the selection of municipal solid waste landfills through GIS, K-Means and multi-criteria decision analysis. Environmental Research. 185,109348. https://doi.org/10.1016/j.envres.2020.109348.
Einhäupl, P., Krook, J., Svensson, N., Van Acker, K., Van Passel, S., 2019. Eliciting stakeholder needs – An anticipatory approach assessing enhanced landfill mining. Waste Manag. 98, 113–125. https://doi.org/10.1016/j.wasman.2019.08.009.
Einhäupl, P., Van Acker, K., Peremans, H., Van Passel, S., 2021. The conceptualization of societal impacts of landfill mining – A system dynamics approach. J. Clean. Prod. 296, 126351. https://doi.org/10.1016/j.jclepro.2021.126351.
EOSDIS map 2020, available at website: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse (last access 24.04.23).
EPA Taiwan, 2020, “Incineration Plants Awarded for Great Performance in Energy Production and Bottom Ash Recycling” available at website: https://www.epa.gov.tw/eng/F7AB26007B8FE8DF/fc6fffd1-456c-4256-887b-d47999af7f3c (accessed 1, November, 2023).
Ersoy, H., Bulut, F., 2009. Spatial and multi-criteria decision analysis-based methodology for landfill site selection in growing urban regions. Waste management & research. 27, 489–500. https://doi.org/10.1177/0734242X08098430.
Esguerra, J.L., Laner, D., Svensson, N., Krook, J., 2021. Landfill mining in Europe: Assessing the economic potential of value creation from generated combustibles and fines residue. Waste Manag. 126, 221–230. https://doi.org/10.1016/j.wasman.2021.03.013.
Eskandari, M., Homaee, M., Mahmodi, S., 2012. An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Manag. 32(8), 1528–1538. https://doi.org/10.1016/j.wasman.2012.03.014.
Etoh, J., Kawagoe, T., Shimaoka, T., Watanabe, K., 2009. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material. Waste manag. 29(3), 1048–1057. https://doi.org/10.1016/j.wasman.2008.08.002.
Fakour, H., Lo, S.L., Lin, T.F., 2016. Impacts of Typhoon Soudelor (2015). on the water quality of Taipei, Taiwan. Sci. Rep. 6, 25228. https://doi.org/10.1038/srep25228.
Ferronato, N., Torretta, V., 2019. Waste Mismanagement in Developing Countries: A Review of Global Issues. International journal of environmental research and public health. 16(6), 1060. https://doi.org/10.3390/ijerph16061060.
Feyzi, S., Khanmohammadi, M., Abedinzadeh, N., Aalipour, M., 2019. Multicriteria decision analysis FANP based on GIS for siting municipal solid waste incineration power plant in the north of Iran. Sustain Cities Soc. 47, 101513. https://doi.org/10.1016/j.scs.2019.101513.
Frändegård, P., Krook, J., Svensson, N., 2015. Integrating remediation and resource recovery: On the economic conditions of landfill mining. Waste Manag. 42, 137–147. https://doi.org/10.1016/j.wasman.2015.04.008.
Frändegård, P., Krook, J., Svensson, N., Eklund, M., 2013. A novel approach for environmental evaluation of landfill mining. J. Clean. Prod. 55., 24–34. https://doi.org/10.1016/j.jclepro.2012.05.045.
Fulton, M., Hong, J., Islam, M.J., Sattar, J., 2020. Trash-ICRA19: A bounding box labeled dataset of underwater trash. Data Repository for the. University of Minnesota. https://doi.org/10.13020/x0qn-y082.
Gallagher, L., Ferreira, S., Convery, F., 2008. Host community attitudes towards solid waste landfill infrastructure: comprehension before compensation. J. Environ. Plan. Manag. 51, 233–257. https://doi.org/10.1080/09640560701864878.
Galupino, J., Gallardo, R., Elevado, K.J., 2018. Artificial Neural Network (ANN) modeling of concrete mixed with waste ceramic tiles and fly ash. International Journal of GEOMATE. 15. https://doi.org/10.21660/2018.51.58567.
Gary, T., Mindy, Y., 2016. TrashNet dataset. Github repository. https://github.com/garythung/trashnet.(accessed 3 December 2022).
Gbanie, S.P., Tengbe, P.B., Momoh, J.S., Medo, J., Kabba, V.T.S., 2013. Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): case study Bo, Southern Sierra Leone. Appl. Geogr. 36, 3–12. https://doi.org/10.1016/j.apgeog.2012.06.013.
Geology Act, 2010. Construction and Planning Agency, Ministry of the Interior (CPA) in Taiwan. Available at websites: https://data.gov.tw/en and https://eland.cpami.gov.tw/CAMN/Web_GIS (last access 24.04.22).
Ghose, M.K., Dikshit, A.K., Sharma, S.K., 2006. A GIS based transportation model for solid waste disposal – A case study on Asansol municipality. Waste Manag. 26(11), 1287–1293. https://doi.org/10.1016/j.wasman.2005.09.022.
Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. http://www.deeplearningbook.org.
Guirado, E., Tabik, S., Alcaraz-Segura. D., Cabello, J., Herrera, F., 2017. Deep-learning Versus OBIA for Scattered Shrub Detection with Google Earth Imagery: Ziziphus lotus as Case Study. Remote Sensing Remote Sens. 9, 1220. https://doi.org/10.3390/rs9121220.
Gundupalli, S.P., Hait, S., Thakur, A., 2017. A review on automated sorting of source- separated municipal solid waste for recycling. Waste Manag. 60, 56–74. https://doi.org/10.1016/j.wasman.2016.09.015.
Gupta, G., Datta, M., Ramana, G.V., Alappat, B. J., Bishnoi, S., 2021. Contaminants of concern (CoCs) pivotal in assessing the fate of MSW incineration bottom ash (MIBA): First results from India and analogy between several countries. Waste Manag. 135, 167–181. https://doi.org/10.1016/j.wasman.2021.08.036
He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385v1. https://doi.org/10.48550/arXiv.1512.0338.
He, P.J., Liyao, C., Shao, L.M., Zhang, H., Lü, F., 2019. Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate. Water Research. 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060.
Henderson, J.V., Storeygard, A., Weil, D.N., 2010. Measuring Economic Growth from Outer Space. American Economic Review. July 2009. https://doi.org/10.1257/aer.102.2.994.Source:RePEc.
Hermann, R., Baumgartner, R.J., Vorbach, S., Ragossnig, A., Pomberger, R., 2015. Evaluation and selection of decision-making methods to assess landfill mining projects. Waste Manag. Res. 33, 822–832. https://doi.org/10.1177/0734242X15588586.
Hernández Parrodi, J. C., Raulf, K., Vollprecht, D., Pretz, T., Pomberger, R., 2019. Case study on enhanced landfill mining at msg landfill in Belgium: mechanical processing of fine fractions for material and energy recovery. Detritus. (0), 1. https://doi.org/10.31025/2611-4135/2019.13878.
Hjelmar, O., Holm, J., Crillesen, K., 2007. Utilisation of MSWI bottom ash as sub-base in road construction: First results from a large-scale test site. Journal of Hazardous Materials. 139(3), 471–480. https://doi.org/10.1016/j.jhazmat.2006.02.059
Hogland, W., Hogland, M., Marques, M., 2011. Enhanced landfill mining: material recovery, energy utilization and economics in the EU (Directive) perspective. in Proceedings International Academic Symposium on Enhanced Landfill Mining, Houthalen-Helchteren, 233–247.
Hoogmartens, R., Eyckmans, J., Van Passel, S., 2016. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams. Waste Manag. 55, 345–354. https://doi.org/10.1016/j.wasman.2016.03.052.
Hozumi, Y., Wang, R., Yin, C.C., Wei, G.W., 2021. UMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets, Computers in Biology and Medicine. 131, 104264. https://doi.org/10.1016/j.compbiomed.2021.104264.
Hsiao, S.C., Chiang, W.S., Jang, J.H., Wu, H.L., Lu, W.S., Chen, W.B., Wu, Y.T., 2021. Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas. Science of the Total Environment. 764, 144439. https://doi.org/10.1016/j.scitotenv.2020.144439.
Huang, C.M., Yang, W.F., Ma, H.W., Song, Y.R., 2006. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag. 26(9), 979–987, https://doi.org/10.1016/j.wasman.2005.09.015.
Huang, J., Pretz, T., Bian, Z., 2010. Intelligent solid waste processing using optical sensor based sorting technology. In Proceedings of the 3rd International Congress on Image and Signal Processing. Yantai, China. IEEE. 1657–1661. https://doi.org/10.1109/CISP.2010.5647729.
Huang, Xu, Zhang, J., Sresakoolchai, J., Kaewunruen, S., 2021. Machine learning aided design and prediction of environmentally friendly rubberised concrete. Sustainability. 13(4), 1691. https://doi.org/10.3390/su13041691.
Hu, Y.F., Zhang, Q., Zhang, Y., Yan, H., 2018. A Deep Convolutional Neural Network Method for Land Cover Mapping: A Case Study of Qinhuangdao, China. Remote Sensing. Remote Sens. 10, 2053. https://doi.org/10.3390/rs10122053.
Hwang, C.L., Yoon, K., 1981. Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, New York.
Ismail, S., Taib, A.M., Rahman, N.A., Hasbollah, D.Z.A, Ramli, A.B., 2019. Slope Stability of Landfill with Waste Degradation. International Journal of Innovative Technology and Exploring Engineering. 9(1), 393-398. https://doi.org/10.35940/ijitee.A4148.119119.
Jain, A.K., Dubes, R.C., 1998. Algorithms for clustering data. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Jain, M., Kumar, A., Kumar, A., 2023. Landfill mining: A review on material recovery and its utilization challenges. Process. Saf. Environ. 169, 948–958. https://doi.org/10.1016/j.psep.2022.11.049.
Jamshidi-Zanjani, A., Rezaei, M., 2017. Landfill site selection using combination of fuzzy logic and multi-attribute decision-making approach. Environmental Earth Sciences. 76. https://doi.org/10.1007/s12665-017-6774-7.
Jimmy, Hendry, Sukiman, Angin, J.T.K.P., Suryati, L., Lusiah., 2020. Decision support system with the HFLTS method in student achievement selection. 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT). 287–290. https://doi.org/10.1109/MECnIT48290.2020.9166639.
Jing, Z., Fan, X., Zhou, L., Fan, J., Zhang, Y., Pan, X., Ishida, E.H., 2013. Hydrothermal solidification behavior of municipal solid waste incineration bottom ash without any additives. Waste manag. 33(5), 1182–1189. https://doi.org/10.1016/j.wasman.2013.01.038
Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Phil. Trans. Math. Phys. Eng. Sci. 374, 2065. https://doi.org/10.1098/rsta.2015.0202.
Jones, P.T., Tielemans, Y., 2010. Enhanced Landfill Mining and the Transition to Sustainable Materials Management: Proceedings International Academic Symposium on Enhanced Landfill Mining. Available on: http://www.elfm-symposium.eu/downloads.php. (accessed 30, May, 2023).
Jones, P.T., Geysen, D., Tielemans, Y., Van, P.S., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N., 2013. Enhanced landfill mining in view of multiple resource recovery: A critical review. J. Clean. Prod. 55, 45–55. https://doi.org/10.1016/j.jclepro.2012.05.021.
Joseph, A. M., Snellings, R., Van den Heede, P., Matthys, S., De Belie, N., 2018. The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials. 11(1), 141. https://doi.org/10.3390/ma11010141.
Kaartinen, T., Sormunen, K., Rintala, J., 2013. Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J. Clean. Prod. 55, 56–66. https://doi.org/10.1016/j.jclepro.2013.02.036.
Kamaruddin, M.A., Yusoff, M.S., Rui, L.M., Isa, A.M., Zawawi, M.H., Alrozi, R. 2017. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ. Sci. Pollut. Res. 24, 26988–27020. https://doi.org/10.1007/s11356-017-0303-9.
Kamdar, I., Ali, S., Bennui, A., Techato, K., Jutidamrongphan, W., 2019. Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resources, Conservation and Recycling. 149, 220–235. https://doi.org/10.1016/j.resconrec.2019.05.027.
Kanchababhan, T.E., Mohaideen, J.A., Srinivasan, S., Sundaram, V.L.K., 2011. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality. Waste Manag. Res. 29, 323–39. https://doi.org/10.1177/0734242X10366272.
Kao, H., Chen, W.P., 2000. The Chi-Chi Earthquake Sequence: Active, Out-of-Sequence Thrust Faulting in Taiwan. Science. 288, 5475, 2346–49. http://www.jstor.org/stable/3075583.
Karadimas, N.V., Loumos, V.G., 2008. GIS-based modeling for the estimation of municipal solid waste generation and collection. Waste Management & Research. 26(4), 337–346. https://doi.org/10.1177/0734242X07081484.
Karimi, D., Dou, H., Warfield, S.K., Gholipour, A., 2020. Deep learning with noisy labels:exploring techniques and remedies in medical image analysis. arXiv:1912.02911v4. https://doi.org/10.48550/arXiv.1912.02911.
Karimi, N., Ng, K.T.W., Richter, A., 2022. Integrating Geographic Information System network analysis and nighttime light satellite imagery to optimize landfill regionalization on a regional level. Environ. Sci. Pollut. Res. 29, 81492–81504. https://doi.org/10.1007/s11356-022-21462-w.
Khambra, G., Shukla, P., 2021. Novel machine learning applications on fly ash based concrete: An overview. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.07.262.
Kharat, M.G., Kamble, S.J., Raut, R.D., Kamble, S.S., 2016. Identification and evaluation of landfill site selection criteria using a hybrid Fuzzy Delphi, Fuzzy AHP and DEMATEL based approach. Model. Earth Syst. Environ. 2, 98. https://doi.org/10.1007/s40808-016-0171-1.
Kim, B., Kim, S., Sahoo, S., 2006. Waste collection vehicle routing problem with time windows. Comput. Oper. Res. 33, 3624–42. https://doi.org/10.1016/j.cor.2005.02.045.
Kim, K.R., Owens, G., 2010. Potential for enhanced phytoremediation of landfills using biosolids--a review. J. Environ. Manag. 91(4), 791–7. https://doi.org/10.1016/j.jenvman.2009.10.017.
Kokoulin, A.N., Uzhakov, A.A., Tur, A.I., 2020. The automated sorting methods modernization of municipal solid waste processing system. In: Proceedings of the International Russian Automation Conference. IEEE, 1074–1078. https://doi.org/10.1109/RusAutoCon49822.2020.9208039.
Kontos, T.D., Dimitrios, P.K., Halvadakis, C.P., 2005. Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Manag. 25(8), 818–832. https://doi.org/10.1016/j.wasman.2005.04.002.
Kopatz, V., Wen, K., Kovács, T., Keimowitz, A.S., Pichler, V., Widder, J., Vethaak, A.D., Hollóczki, O., Kenner, L., 2023. Micro- and Nanoplastics Breach the Blood–Brain Barrier (BBB): Biomolecular Corona’s Role Revealed. Nanomaterials. 13(8), 1404. https://doi.org/10.3390/nano13081404.
Kowsari, K., Bari, N., Vichr, R., Farhad A. Goodarzi. 2017. FSL-BM: Fuzzy Supervised Learning with Binary Meta-Feature for Classification. arXiv:1709.09268v2. https://doi.org/10.48550/arXiv.1709.09268.
Krinitzsky, E., Hynes, M., Franklin, A., 1997. Earthquake safety evaluation of sanitary landfills. Engineering Geology. 46, 143–156. https://doi.org/10.1016/S0013-7952(96)00108-1.
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 60, 84–90. https://doi.org/10.1145/3065386.
Krook, J., Svensson, N., Eklund, M., 2011. Landfill mining: A critical review of two decades of research. Waste Manag. 32, 513–520. https://doi.org/10.1016/j.wasman.2011.10.015.
Krook, J., Svensson, N., Van, P.S., Van, A,K., 2018. How to evaluate (enhanced) landfill mining: A critical review of recent environmental and economic assessments. Proceedings of the 4th International Symposium on Enhanced Landfill Mining. 317–332. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152872 (accessed 1 November 2022).
Krówczyńska, M., Wilk, E., Pabjanek, P., Zagajewski, B., Meuleman, K., 2016. Mapping asbestos-cement roofing with the use of APEX hyperspectral airborne imagery: Karpacz area, Poland–a case study. MISCELLANEA GEOGRAPHICA – REGIONAL STUDIES ON DEVELOPMENT. 20(1), 41–46. https://doi.org/10.1515/mgrsd-2016-0007.
Krówczyńska, M., Raczko, E., Staniszewska, N., Wilk, E.. 2020. Asbestos—Cement roofing identification using remote sensing and convolutional neural networks (CNNs). Remote Sensing. 12(3), 408. https://doi.org/10.3390/rs12030408.
Kumsetty, N.V., Nekkare, A.B., Kamath, S.S., Kumar, M.A., 2022. Trashbox: trash detection and classification using quantum transfer learning Proceedings of the 31st Conference of Open Innovations Association (FRUCT). 125–130. https://doi.org/10.23919/FRUCT54823.2022.9770922.
Kundariya, N., Mohanty, S.S., Varjani, S., Ngo, H.H., Wong, J.W.C., Taherzadeh, M.J., Chang, J.S., Ng, H.Y., Kim, S.H., Bui, X.T., 2021. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology. 342, 125982. https://doi.org/10.1016/j.biortech.2021.125982.
Kuo, N.W., Ma, H.W., Yang, W.F., Hsiao, T.Y., Huang, C.M., 2007. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan. Waste Manag. 27, 1673–1679. https://doi.org/10.1016/j.wasman.2006.11.009.
Lamers, F.J.M., van den Berg, J.W., Born, J.G.P., 1997. Environmental Certification of Bottom Ashes from Coal Fired Power Plants and of Bottom Ashes from Municipal Waste Incineration. Studies in Environmental Science. 71, 735–748. https://doi.org/10.1016/S0166-1116(97)80257-9.
Laner, D., Cencic, O., Svensson, N., Krook, J., 2016. Quantitative analysis of critical factors for the climate impact of landfill mining Environ. Sci. Technol. 50(13), 6882–6891. https://doi.org/10.1021/acs.est.6b01275.
Laner, D., Esguerra, J.L., Krook, J., Horttanainen, M., Kriipsalu, M., Rosendal, R.M., Stanisavljević, N., 2019. Systematic assessment of critical factors for the economic performance of landfill mining in Europe: what drives the economy of landfill mining?Waste Manag. 95, 674–686. https://doi.org/10.1016/j.wasman.2019.07.007.
Laner, D., Fellner, J., Brunner, P.H., 2009. Flooding of municipal solid waste landfills — An environmental hazard? Sci. Total Environ. 407, 3674–3680. https://doi.org/10.1016/j.scitotenv.2009.03.006.
Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D., 1997. Face recognition: A convolutional neural-network approach. IEEE Trans Neural Netw. 8(1), 98–113. https://doi.org/10.1109/72.55419.
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. in Proceedings of the IEEE. 86(11), 2278–2324. https://doi.org/10.1109/5.726791.
Lelieveld, J., Crutzen, P.J., Brühl, C., 1993. Climate effects of atmospheric methane. Chemosphere. 26(1–4), 739–768. https://doi.org/10.1016/0045-6535(93)90458-H.
Li, J., Fang, H., Fan, L., Yang, J., Ji, T., Chen, Q., 2022. RGB-D fusion models for construction and demolition waste detection. Waste Manag. 139, 96–104. https://doi.org/10.1016/j.wasman.2021.12.021.
Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q., 2018. Deep learning for remote sensing image classification: A survey. WIREs Data Mining Knowl Discov. 8, e1264. https://doi.org/10.1002/widm.1264.
Licht, L.A., Isebrands, J.G., 2015. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass and Bioenergy. 28(2), 203–218. https://doi.org/10.1016/j.biombioe.2004.08.015.
Lin, K., Zhao, Y., Gao, X., Zhang, M., Zhao, C., Peng, L., Zhang, Q., Zhou, T., 2022. Apply sorting. Environ Sci. Pollut. Res. 29, 91081–91095. https://doi.org/10.1007/s11356-022-22167-w.
Lin, K., Zhao, Y., Wang, L., Shi, W.J., Cui, F.F., Zhou, T., 2023. MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal solid waste sorting. Front. Environ. Sci. Eng. 17, 77. https://doi.org/10.1007/s11783-023-1677-1.
Lin, M., Chen, Q., Yan, S.C., 2014. Network In Network. arXiv preprint arXiv.1312.4400. https://doi.org/10.48550/arXiv.1312.4400.
Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y., 2019. Fast interpolation-based t-sne for improved visualization of single-cell rna-seq dataNat. Methods. 16(3), 243–245.
Liu, H., Li, W., Xia, X.G., Zhang, M., Tao, R., 2021. Superpixelwise Collaborative-Representation Graph Embedding for Unsupervised Dimension Reduction in Hyperspectral Imagery. in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 14, 4684–4698. https://doi.org/10.1109/JSTARS.2021.3077460.
Liu, T., Sun, Y., Wang, C., Zhang, Y.Y., Qiu, Z., Gong, W., Lei, S., Tong, X., Duan, X., 2021. Unmanned aerial vehicle and artificial intelligence revolutionizing efficient and precision sustainable forest management. J. Clean. Prod. 311, 127546. https://doi.org/10.1016/j.jclepro.2021.127546.
Lober, D.J., 1996. Why not here?: The importance of context, process, and outcome on public attitudes toward siting of waste facilities. Society & Natural Resources. 9(4), 375–394. https://doi.org/10.1080/08941929609380981.
Lober, D.J., Green, D.P., 1994. NIMBY or NIABY: a Logit Model of Opposition to Solid-wastedisposal Facility Siting. J. Enviro. Manag. 40(1), 33–50. https://doi.org/10.1006/jema.1994.1003.
Louis, G.E., 2004. A Historical Context of Municipal Solid Waste Management in the United States. Waste Management & Research. 22(4), 306–322. https://doi.org/10.1177/0734242X04045425.
Lu, W., Chen, J., 2022. Computer vision for solid waste sorting: a critical review of academic research. Waste Manag. 142, 29–43. https://doi.org/10.1016/j.wasman.2022.02.009.
Lu, Y., Yang, B., Gao, Y., Xu, Z., 2022. An automatic sorting system for electronic components detached from waste printed circuit boards. Waste Manag. 137, 1–8. https://doi.org/10.1016/j.wasman.2021.10.016.
Lucas, H.I., Garcia Lopez, C., Hernández Parrodi, J.C., Vollprecht, D., Raulf, K., Pomberger, R., Pretz, T., Friedrich, B., 2019. Quality Assessment of Nonferrous Metals Recovered from Landfill Mining: A Case Study in Belgium. Detritus. 08-December 2019(0), 1. https://doi.org/10.31025/2611-4135/2019.13879.
Lv, Z., Hu, Y., Zhong, H., Wu, J., Li, B., Zhao, H., 2010. Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds) Web Information Systems and Mining. WISM 2010. Lecture Notes in Computer Science. 6318. https://doi.org/10.1007/978-3-642-16515-3_21.
Ma, S., Zhou, C., Pan, J., Yang, G., Sun, C., Liu, Y., Chen, X., Zhao, Z., 2022. Leachate from municipal solid waste landfills in a global perspective: characteristics, influential factors and environmental risks. J. Clean. Prod. 333, 130234. https://doi.org/10.1016/j.jclepro.2021.130234.
Maciel, F.J., Jucá, J.F.T., 2011. Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil. Waste Manag. 31(5), 966–977. https://doi.org/10.1016/j.wasman.2011.01.030.
MacQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations. In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). California: University of California Press.
Mahini, A.S., Gholamalifard, M., 2006. Siting MSW landfills with a weighted linear combination methodology in a GIS environment. Int. J. Environ. Sci. Technol. 3, 435–445. https://doi.org/10.1007/BF03325953.
Majchrowska, S., Mikołajczyk, A., Ferlin, M., Klawikowska, Z., Plantykow, M.A., Kwasigroch, A., Majek, K., 2022. Deep learning-based waste detection in natural and urban environments. Waste Manag. 138, 274–284. https://doi.org/10.1016/j.wasman.2021.12.001.
Mallick, J., 2021. Municipal solid waste landfill site selection based on Fuzzy-AHP and geoinformation Techniques in Asir Region Saudi Arabia. Sustainability. 13, 1538. https://doi.org/10.3390/su13031538.
Mao, W.L., Chen, W.C., Fathurrahman, H.I.K., Lin, Y.H., 2022. Deep learning networks for real-time regional domestic waste detection. J. Clean. Prod. 344, 131096. https://doi.org/10.1016/j.jclepro.2022.13109.
Mao, W.L., Chen, W.C., Wang, C.T., Lin, Y.H., 2021. Recycling waste classification using optimized convolutional neural network, Resources, Conservation and Recycling. 164, 105132. https://doi.org/10.1016/j.resconrec.2020.105132.
Martin, E., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 226–231.
Martin, A., Scott, I., 2003. The Effectiveness of the UK Landfill Tax. Journal of Environmental Planning and Management. 46, 673–689. https://doi.org/10.1080/0964056032000138436.
Matos, A.M., Sousa-Coutinho, J., 2022. Municipal solid waste incineration bottom ash recycling in concrete: Preliminary approach with Oporto wastes, Construction and Building Materials. 323, 126548. https://doi.org/10.1016/j.conbuildmat.2022.126548.
McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and projection for dimension reduction. Journal of Open Source Software. 3(29), 861. https://doi.org/10.21105/joss.00861.
Melinte, D.O., Travediu, A.M., Dumitriu, D.N., 2020. Deep convolutional neural networks object detector for real-time waste identification. Applied Sciences. 10(20), 7301. https://doi.org/10.3390/app10207301.
Melo, A., Calijuri, M.L., Duarte, I., Azevedo, R., Lorentz, J., 2006. Strategic Decision Analysis for Selection of Landfill Sites. Journal of Surveying Engineering-asce - J. Surv. Eng-Asce. 132. https://doi.org/10.1061/(ASCE)0733-9453(2006)132:2(83).
Meraner, A., Ebel, P., Zhu, X.X., Schmitt, M., 2020. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. Journal of Photogrammetry and Remote Sensing. 166, 333–346. https://doi.org/10.1016/j.isprsjprs.2020.05.013.
Milošević, D., Medeiros, A., Stojkovic Piperac, M., Cvijanović, D., Soininen, J., Milosavljević, A., Predic, B., 2021. The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Science of The Total Environment. 815. 152365. https://doi.org/10.1016/j.scitotenv.2021.152365.
Ministry of Economic Affairs, Geology Act, 2010, available at websites: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=J0020052(last access 24.04.23).
Minor, S.D., Jacobs, T.L., 1994. Optimal Land Allocation for Solid and Hazardous Waste Landfill Siting. Journal of Environmental Engineering. 120, 1095–1108. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:5(1095).
Mitra, A. 2020. Detection of Waste Materials Using Deep Learning and Image Processing, California State University San Marcos 2020, master degree thesis. https://scholarworks.calstate.edu/downloads/gx41mn74q (accessed 1, November, 2022)
Moeinaddini, M., Khorasani, N., Danehkar, A., Darvishsefat, A.A., Zienalyan, M., 2010. Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (Case study: Karaj). Waste Manag. 30(5), 912–920.
Mohanty, S.P., Czakon, J., Kaczmarek, K.A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., Luo, D., Prasad, M., Fleer, S., Göpfert, J.P., Tandon, A., Mollard, G., Rayaprolu, N., Salathe, M., Schilling, M., 2020. Deep Learning for Understanding Satellite Imagery: An Experimental Survey, Methods published: 16. https://doi.org/10.3389/frai.2020.534696.
Mönkäre, T., Palmroth, M.R.T., Sormunen, K., Rintala, J., 2019. Scaling up the treatment of the fine fraction from landfill mining: Mass balance and cost structure. Waste Manag. 87, 464–471. https://doi.org/10.1016/j.wasman.2019.02.032.
Muri, H.I.D., Hjelme, D.R., 2021. Classification of municipal solid waste using deep convolutional neural network models applied to multispectral images. In: Proceedings of the Automated Visual Inspection and Machine Vision IV. SPIE. https://doi.org/10.1117/12.2590224.
Nammari, D.R., Marques, M., Hogland, W., Mathiasson, L., Thörneby, L., Mårtensson, L., Marques, M., 2007. Emissions from baled municipal solid waste: II. Effects of different treatments and baling techniques on the emission of volatile organic compounds. Waste Management & Research. 25(2), 109–118. https://doi.org/10.1177/0734242X07071132.
Nascimento, V.F., Loureiro, A. I.S., Andrade, P.R., Guasselli, L.A., Ometto, J.P.B., 2021. A Worldwide Meta-Analysis Review of Restriction Criteria for Landfill Siting Using Geographic Information Systems. Waste Management & Research. 39(3), 409–26. https://doi.org/10.1177/0734242X20962834.
Nicholls, R.J., Beaven, R.P., Stringfellow, A., Monfort, D., Le Cozannet, G., Wahl, T., Gebert, J., Wadey, M., Arns, A., Spencer, K., Reinhart, D., Heimovaara, T., Santos, V.M., Enríquez, A.R., N Cope, S., 2021. Coastal landfills and rising sea levels: A challenge for the 21st century. Front. Mar. Sci. 8, 202. https://doi.org/10.3389/fmars.2021.710342.
Njoku, P.O., Edokpayi, J.N., Odiyo, J.O., 2019. Health and Environmental Risks of Residents Living Close to a Landfill: A Case Study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public. Health. 16(12), 2125. https://doi.org/10.3390/ijerph16122125.
Njue, C.N., Cundy, A.B., Smith, M., Green, I.D., Tomlinson, N., 2012. Assessing the impact of historical coastal landfill sites on sensitive ecosystems: A case study from Dorset, Southern England. Estuarine, Estuar. Coast. Shelf Sci. 114, 166–174. https://doi.org/10.1016/j.ecss.2012.08.022.
O’Shea, F.T., Cundy, A.B., Spencer, K.L., 2018. The contaminant legacy from historic coastal landfills and their potential as sources of diffuse pollution. Mar. Pollut. Bull. 128, 446–455. https://doi.org/10.1016/j.marpolbul.2017.12.047.
Ofterdinger, U., MacDonald, A.M., Comte, J.C., Young, M.E.. 2019. Groundwater in fractured bedrock environments: managing catchment and subsurface resources. London, UK, Geological Society of London. 1-9. http://dx.doi.org/10.1144/SP479-2018-170.
Ololade, O.O., Mavimbela, S., Oke, S.A., Makhadi, R., 2019. Impact of Leachate from Northern Landfill Site in Bloemfontein on Water and Soil Quality: Implications for Water and Food Security. Sustainability. 11(15), 4238. https://doi.org/10.3390/su11154238.
Ortner, M.E., Knapp, J., Bockreis, A., 2014. Landfill mining: objectives and assessment challenges. Proceedings of the Institution of Civil Engineers-Waste and Resource Management. 167, 51–61. https://doi.org/10.1680/warm.13.00012.
Osra F.A., Kajjumba, G.W., 2019. Landfill site selection in Makkah using geographic information system and analytical hierarchy process. Waste Manag. Res. 38(3), 245-253. https://doi.org/10.1177/0734242X19833153.
Ota, Y., Huang, C.Y., Yuan, P.B., Sugiyama, Y., Lee, Y.H., Watanabe, M., Sawa, H., Yanagida, M., Sasaki, S., Suzuki, Y., Tang, H.S., Shu, U.T., Yang, S.Y., Hirouchi, D., Taniguchi, K., 2001. Trenching Study at the Tsautun Site on the Central Part of the Chelungpu Fault, Taiwan. Journal of Geography. 110, 698–707. https://doi.org/10.5026/jgeography.110.5_698.
Ota, Y., Watanabe, M., Suzuki, Y., Sawa, H., 2003. Active Fault along the Chelungpu Fault, Central Taiwan, Especially its Close Coincidence with the Location of the 1999 Chichi Earthquake Fault. Journal of Geography. 112. 18–34. https://doi.org/10.5026/jgeography.112.18.
Ouma, Y.O., Kipkorir, E.C., Tateishi, R., 2011. MCDA-GIS integrated approach for optimized landfill site selection for growing urban regions: an application of neighborhood-proximity analysis. Ann GIS 17(1), 43–62.
Özkan, B., Özceylan, E., Sarıçiçek, İ., 2019. GIS-based MCDM modeling for landfill site suitability analysis: A comprehensive review of the literature. Environ. Sci. Pollut. Res. 26, 30711–30730. https://doi.org/10.1007/s11356-019-06298-1.
Özkan, B., Sarıçiçek, İ., Özceylan, E., 2020. Evaluation of landfill sites using GIS-based MCDA with hesitant fuzzy linguistic term sets. Environ. Sci. Pollut. Res. 27, 42908–42932. https://doi.org/10.1007/s11356-020-10128-0.
Pan, S.Y., Du, M.A., Huang, I.T, Liu, I.H., Chang, E.E., Chiang, P.C., 2015. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: a review. J. Clean. Prod., 108, 409–421. https://doi.org/10.1016/j.jclepro.2015.06.124 .
Park, J.S., Park, Y.J., Heo, J., 2007. Solidification and recycling of incinerator bottom ash through the addition of colloidal silica (SiO2) solution. Waste Manag. 27(9), 1207–1212. https://doi.org/10.1016/j.wasman.2006.08.010.
Parmar, A., Katariya, R., Patel, V., 2019. A Review on Random Forest: An Ensemble Classifier. International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI). https://doi.org/10.1007/978-3-030-03146-6_86.
Passamani, G., Ragazzi, M., Torretta, V., 2016. Potential SRF generation from a closed landfill in northern Italy. Waste Manag. 47(partB), 157–163. https://doi.org/10.1016/j.wasman.2015.07.024.
Pavani, D.I., Ennes Cicerelli, R., de Almeida, T., Almeida, T., 2019. Allocation of sanitary landfill in consortium: strategy for the Brazilian municipalities in the State of Amazonas. Environ. Monit. Assess. 191, 39. https://doi.org/10.1007/s10661-018-7146-9.
Pantoja, R., Catelan, M., Pichara, K., Protopapas, P., 2022. Semi-supervised classification and clustering analysis for variable stars. Monthly Notices of the Royal Astronomical Society. 517(3), 3660–3681. https://doi.org/10.1093/mnras/stac2715.
Penteliuc, M., Frincu, M., 2019. Prediction of Cloud Movement from Satellite Images Using Neural Networks. 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). https://doi.org/10.1109/SYNASC49474.2019.00038.
Pritt, M., Chern, G., 2017. Satellite Image Classification with Deep Learning. IEEE Applied Imagery Pattern Recognition Workshop (AIPR). https://doi.org/10.1109/AIPR.2017.8457969.
Qi, C., Wu, M., Lu, X., Zhang, Q.L., Chen, Q.S., 2022. Comparison and determination of optimal machine learning model for predicting generation of coal fly ash. Crystals. 12(4), 556. https://doi.org/10.3390/cryst12040556.
Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., van Gerven, T., Spooren, J., 2013. Characterization of landfilled materials: screening of the enhanced landfill mining potential. J. Clean. Prod. 55, 72–83.
Rahimi, S., Hafezalkotob, A., Monavari, S.M., Hafezalkotob, A., Rahimi, R., 2020. Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. J. Clean. Prod. 248, 119186. https://doi.org/10.1016/j.jclepro.2019.119186.
Rahman, M.W., Islam, R., Hasan, A., Bithi, N.I., Hasan, M.M., Rahman, M.M., 2022. Intelligent waste management system using deep learning with IoT. Journal of King Saud University - Computer and Information Sciences. 34(5), 2072–2087. https://doi.org/10.1016/j.jksuci.2020.08.016.
Rahmat, Z.G., Niri, M.V., Alavi, N., Goudarzi, G., Babaei, A.A., Baboli, Z., Hosseinzadeh, M., 2017. Landfill site selection using GIS and AHP: a case study: Behbahan, Iran. KSCE J. Civ. Eng. 21(1), 111–118.
Ramanath, A., Muthusrinivasan, S., Xie, Y., Shekhar, S., Ramachandra, B., 2019. NDVI versus CNN features in deep learning for land cover classification of aerial images. IEEE International Geoscience and Remote Sensing Symposium. 2019. 6483–6486, https://doi.org/10.1109/IGARSS.2019.8900165.
Rawat, M., Singh, U.K., Mishra, A.K., Subramanian, V., 2008. Methane emission and heavy metals quantification from selected landfill areas in India. Environ Monit Assess. 137(1-3), 67–74. https://doi.org/10.1007/s10661-007-9729-8.
Razak, H.A., Naganathan, S., Hamid, S.N., 2009. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material. Journal of hazardous materials. 172(2-3), 862–867. https://doi.org/10.1016/j.jhazmat.2009.07.070.
Read, A., Hudgins, M., Harper, S., Phillips, P., Morris, J., 2001. The successful demonstration of aerobic landfilling: The potential for a more sustainable solid waste management approach?Resources, Conservation and Recycling. 32(2), 115–146. https://doi.org/10.1016/S0921-3449(01)00053-2.
Robinson, C., Hohman, F., Dilkina, B., 2017. A Deep Learning Approach for Population Estimation from Satellite Imagery. arXiv:1708.09086v1. https://www.researchgate.net/publication/319391488.
Rodríguez, R.M., Martı́nez, L., Herrera, F., 2013. A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 241, 28–42. https://doi.org/10.1016/j.ins.2013.04.006.
Rosenberg, Matt. "Population Density Information and Statistics." ThoughtCo, Aug. 28, 2020. http://thoughtco.com/population-density-overview-1435467. (last access 24.04.23).
Saaty, T.L. (1980) The Analytic Hierarchy Process. McGraw-Hill, New York.
Sabour, M.R., Alam, E., Hatami, A.M., 2020. Environmental and economic assessment of enhanced landfill mining in Tehran. Environ. Sci. Pollut. Res. 27, 34469–34483. https://doi.org/10.1007/s11356-020-09458-w.
Sadek, S., El-Fadel, M., Freiha, F., 2006. Compliance factors within a GIS‐based framework for landfill siting. International Journal of Environmental Studies. 63, 71–86. https://doi.org/10.1080/00207230600562213.
Sahoo, A.K., Pradhan, C., Das, H., 2020. Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In: Rout, M., Rout, J.K., Das, H. (Eds.), Nature Inspired Computing for Data Science. 201–212. https://doi.org/10.1007/978-3-030-33820-6_8.
Salman-Mahiny, A., Gholamalifard, M., 2006. Siting MSW landfills with a weighted linear combination methodology in a GIS environment. International Journal of Environmental Science and Technology. 3. https://doi.org/10.1007/BF03325953.
Samsudin, S.H., Shafrim, H.Z.M., Hamedianfar, A., Mansor, S., 2015. Spectral feature selection and classification of roofing materials using field spectroscopy data. Society of Photo-Optical Instrumentation Engineers (SPIE). https://doi.org/10.1117/1.JRS.9.095079.
Sejuti, Z.A., Islam, M.S., 2023. A hybrid CNN and NN approach for identification of COVID-19 with 5-fold cross validation. Sensors International. 4, 100229. https://doi.org/10.1016/j.sintl.2023.100229.
Shahabi, H., Keihanfard, S., Ahmad, B.B., Amiri, M.J.T., 2013. Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences. 71. https://doi.org/10.1007/s12665-013-2816-y.
Shallue, C.J., Vanderburg, A.M., 2017. Identifying exoplanets with deep learning: A five planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. arXiv: Earth and Planetary Astrophysics. https://doi.org/10.48550/arXiv.1712.05044.
Shannon, C.E., 1948. A Mathematical Theory of Communication. The Bell System Technical Journal. 27, 379–423.
Šyc, M., Simon, F.G., Hykš, J., Braga, R., Biganzoli, L., Costa, G., Funari, V., Grosso, M., 2020. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. Journal of Hazardous Materials. 393, 122433. https://doi.org/10.1016/j.jhazmat.2020.122433.
Sainburg, T., McInnes, L., Gentner, T.Q., 2021. Parametric UMAP Embeddings for Representation and Semisupervised Learning. Neural. Comput. 33(11), 2881–2907. doi: https://doi.org/10.1162/neco_a_01434.
Shoji, D., Noguchi, R., Otsuki, S., Hino, H., 2018. Classification of volcanic ash particles using a convolutional neural network and probability. Sci. Rep. 8, 8111. https://doi.org/10.1038/s41598-018-26200-2.
Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T. , Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016. Mastering the game of Go with deep neural networks and tree search. Nature. 529, 484–489. https://doi.org/10.1038/nature16961.
Simard, P.Y., Steinkraus, D., Platt, J.C., 2003. Best practices for convolutional neural networks applied to visual document analysis. Seventh International Conference on Document Analysis and Recognition. Proceedings. 958–963. https://doi.org/10.1109/ICDAR.2003.1227801.
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015), 1–14.
Sohoo, I., Ritzkowski, M., Sultan, M., Farooq, M., Kuchta, K., 2022. Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan. Sustainability. 14(6), 3364. https://doi.org/10.3390/su14063364.
Soil and water Conservation Act, 2016. Council of Agriculture,Taiwan, CAT. Available at websites: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=M0110001 (last access 24.04.23).
Song, S.M., 1999. Stackless Waste Material Renewal Process Technology. CLEAN TECHNOLOGY. 5(1), l–15.
Song, Y., Huang, Z., Shen, C., Shi, H., Lange, D.A., 2020. Deep learning-based automated image segmentation for concrete petrographic analysis, Cement and Concrete Research. 135, 106118. https://doi.org/10.1016/j.cemconres.2020.106118.
Soroudi, M., Omrani, G., Moataar, F,. Jozi, S., 2018. A comprehensive multi-criteria decision making-based land capability assessment for municipal solid waste landfill sitting. Environmental Science and Pollution Research. 25. https://doi.org/10.1007/s11356-018-2765-9.
Spigolon, L.M., Giannotti, M., Larocca, A.P., Russo, M.A., Souza, N.D.C., 2018. Landfill siting based on optimisation, multiple decision analysis, and geographic information system analyses. Waste Manag Res. 36(7), 606–615. https://doi.org/10.1177/0734242X18773538.
Sterkens, W., Diaz-Romero, D., Goedem´e, T., Dewulf, W., Peeters, J.R., 2021. Detection and recognition of batteries on x-ray images of waste electrical and electronic equipment using deep learning. Resour. Conserv. Recycle. 168, 105246 https://doi.org/10.1016/j.resconrec.2020.105246.
Sua, J.G., Dadvand, P., Nieuwenhuijsen, M.J., Bartoll, X., Jerrett, M., 2019. Associations of green space metrics with health and behavior outcomes at different buffer sizes and remote sensing sensor resolutions. Environment International. 126, 162–170. https://doi.org/10.1016/j.envint.2019.02.008.
Suescum-Morales, D., Silva, R.V., Bravo, M., Jiménez, J.R., Fernández-Rodríguez, J.M., Brito, J., 2022. Effect of incorporating municipal solid waste incinerated bottom ash in alkali-activated fly ash concrete subjected to accelerated CO2 curing. J. Clean. Prod. 370, 133533. https://doi.org/10.1016/j.jclepro.2022.133533.
Suflita, J.M., Gerba, C.P., Ham, R.K., Palmisano, A.C., Rathje, W.L., Robinson, J.A., 1992. The world's largest landfill. Environ. Sci. Technol. 26, 1486–1495. https://doi.org/10.1021/es00032a002.
Syakur, M., Khotimah, B., Rohman, E., Satoto, B.D., 2018. Integration K-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conf. Ser.: Mater. Sci. Eng. 336, 012017. https://doi.org/336.012017.10.1088/1757-899X/336/1/012017.
Syam, S.S., Côté, M.J., 2010. A location–allocation model for service providers with application to not-for-profit health care organizations. Omega. 38(3–4), 157–166. https://doi.org/10.1016/j.omega.2009.08.001.
Tavares, G., Zsigraiová, Z., Semiao, V., 2011. Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Manag. 31(9), 1960–1972. https://doi.org/10.1016/j.wasman.2011.04.013.
The Straitstimes, 2022, India's huge landfills go up in flames amid record-breaking temperatures, available at website: https://www.straitstimes.com/asia/south-asia/indias-huge-landfills-go-up-in-flames-amid-record-breaking-temperatures. (last access 24.04.23)
Tirkolaee, E.B., Torkayesh, A.E., 2022. A Cluster-based Stratified Hybrid Decision Support Model under Uncertainty: Sustainable Healthcare Landfill Location Selection. Appl. Intell. https://doi.org/10.1007/s10489-022-03335-4.
Topraklı, A.Y., Adem, A., Dağdeviren, M., 2016. A courthouse site selection method using hesitant fuzzy linguistic term set: A case study for Turkey. Procedia Comput. Sci. 102, 603–610. https://doi.org/10.1016/j.procs.2016.09.449.
Torkayesh, A.E., Rajaeifar, M.A., Rostom, M., Malmir, B., Yazdani, M., Suh, S., Heidrich, O., 2022. Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies. Renew. Sust. Energ. Rev. 112819, 1364–0321, https://doi.org/10.1016/j.rser.2022.112819.
Tsai, C.H., Shen, Y.H., Tsai, W.T., 2020. Analysis of current status and regulatory promotion for incineration bottom ash recycling in Taiwan. Resources. 9, 117. https://doi.org/10.3390/resources9100117.
Tsai, W.T., 2019. Promoting the circular economy via waste-to-power (WTP) in Taiwan. Resources. 8, 95. https://doi.org/10.3390/resources8020095.
United Nations, 2018. 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed 12 February 2023).
USEPA (1997) ‘Landfill Reclamation’. United States Environmental Protection Agency (USEPA).
Van der Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. Journal of machine learning research, 9(11).
Van der Zee, D.J., Achterkamp, M.C., de Visser, B.J., 2004. Assessing the market opportunities of landfill mining. Waste Manag. 24(8), 795–804. https://doi.org/10.1016/j.wasman.2004.05.004.
Van Passel, S., Dubois, M., Eyckmans, J., de Gheldere, S., Ang, F., Jones, P.T., Van Acker, K., 2013. The economics of enhanced landfill mining: private and societal performance drivers. J. Clean. Prod. 55(92–102). https://doi.org/10.1016/j.jclepro.2012.03.024.
Vollprecht, D., Hernández Parrodi, J.C., Lucas, H.I., Pomberger, R., 2020. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Mechanical processing, physico-chemical and mineralogical characterization of fine fractions <4.5 mm. Detritus. 10, 26–43. https://doi.org/10.31025/2611-4135/2020.13940.
Wagner, T.P., Raymond, T., 2015. Landfill mining: Case study of a successful metals recovery project. Waste Manag. 45, 448–457. https://doi.org/10.1016/j.wasman.2015.06.034.
Waldner, F., Diakogiannis, F.I., 2020. Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network. Remote Sensing of Environment. 245, 111741. https://doi.org/10.1016/j.rse.2020.111741.
Wang, G., Qin, L., Li, G., Chen, L., 2009. Landfill site selection using spatial information technologies and AHP: A case study in Beijing, China, Journal of Environmental Manag. 90(8), 2414–2421. https://doi.org/10.1016/j.jenvman.2008.12.008.
Wang, Y., Huang, H., Rudin, C., Shaposhnik, Y., 2020. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization. arXiv:2012.04456. https://doi.org/10.48550/arXiv.2012.04456.
Water Resource Agency in Taiwan. available at website: https://data.gov.tw/en (last access 24.04.23).
Wei, G., 2000. Wavelets generated by using discrete singular convolution kernels. J. Phys. Math. Gen. 33(47), 8577. https://doi.org/10.1088/0305-4470/33/47/317.
Wen, Z., Zhou, C., Pan, J., Nie, T., Zhou, C., Lu, Z., 2021. Deep learning-based ash content prediction of coal flotation concentrate using convolutional neural network. Minerals Engineering. 174, 107251. https://doi.org/10.1016/j.mineng.2021.107251.
Weng, Y.C., Fujiwara, T., Houng, H.J., Sun, C.H., Li, W.Y., Kuo, Y.W., 2015. Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: experiences from the Asia–Pacific region. J. Clean. Prod. 104, 364–373. https://doi.org/10.1016/j.jclepro.2015.05.014.
Winterstetter, A., Wille, E., Nagels, P., Fellner, J., 2018. Decision making guidelines for mining historic landfill sites in Flanders. Waste Manag. 77, 225–237. https://doi.org/10.1016/j.wasman.2018.03.049.
Winterstetter, A., Laner, D., Rechberger, H., Fellner, J., 2015. Framework for the evaluation of anthropogenic resources: A landfill mining case study – Resource or reserve? Resources, Conservation and Recycling. 96, 19–30. https://doi.org/10.1016/j.resconrec.2015.01.004.
Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems. 2(1–3), 37–52. https://doi.org/10.1016/0169-7439(87)80084-9.
Wolfsberger, T., Pinkel, M., Polansek, S., Sarc, R., Hermann, R., Pomberger, R., 2016. Landfill mining: Development of a cost simulation model. Waste Management & Research. 34(4), 356–367. https://doi.org/10.1177/0734242X16628980.
World Bank, 2020. Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management (accessed 12 February 2023).
Wu, T.W., Zhang, H., Peng, W., Lü, F., He, P.J., 2023. Applications of convolutional neural networks for intelligent waste identification and recycling: A review. Resources, Conservation and Recycling. 190, 106813. https://doi.org/10.1016/j.resconrec.2022.106813.
Wu, H., Zhao, J., 2018. Automated visual helmet identification based on deep convolutional neural networks, Editor(s): Mario R. Eden, Marianthi G. Ierapetritou, Gavin P. Towler. Computer Aided Chemical Engineering. 44, 2299–2304. https://doi.org/10.1016/B978-0-444-64241-7.50378-5.
Xia, W., Jiang, Y., Chen, X., Zhao, R., 2022. Application of machine learning algorithms in municipal solid waste management: a mini review. Waste Manag. Res. 40(6), 609–624. https://doi.org/10.1177/0734242×211033716.
Xu, X.L., Xie, Z.M., Yang, Z.Y., Li, D.F., Xu, X.M., 2020. A t-SNE Based Classification Approach to Compositional Microbiome Data. Frontiers in Genetics. 11. 2020-December-14. https://doi.org/10.3389/fgene.2020.620143.
Yadav, V., Sherly, M.A., Ranjan, P., Tinoco, R.O., Boldrin, A.B., Damgaard, A., Laurent, A., 2020. Framework for quantifying environmental losses of plastics from landfills. Resour. Conserv. Recycl. 161, 104914. https://doi.org/10.1016/j.resconrec.2020.104914.
Yal, G., Akgün, H., 2014. Landfill site selection utilizing TOPSIS methodology and clay liner geotechnical characterization: A case study for ankara, turkey. Bulletin of Engineering Geology and the Environment. 73(2), 369–388. http://dx.doi.org/10.1007/s10064-013-0562-8.
Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K., 2018. Convolutional neural networks: An overview and application in radiology. Insights Imaging. 9, 611–629. https://doi.org/10.1007/s13244-018-0639-9.
Yang, S., Zhao, J., Ostrowski, K.A., Javed, M.F., Ahmad, A., Khan, M.I., Aslam, F., Kinasz, R., 2022. Prediction of compressive strength of fly-ash-based concrete using ensemble and non-ensemble supervised machine-learning approaches. Applied Sciences. 12(1), 361. https://doi.org/10.3390/app12010361.
Yavuz, M., Oztaysi, B., Onar, S.C., Kahraman, C., 2015. Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst. Appl. 42(5), 2835–2848. https://doi.org/10.1016/j.eswa.2014.11.010.
Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., Burke, M., 2020. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. NATURE COMMUNICATIONS. 11, 2583. https://doi.org/10.1038/s41467-020-16185-w.
Yıldırım, Ü., Güler, C., 2016. Identification of suitable future municipal solid waste disposal sites for the Metropolitan Mersin (SE Turkey) using AHP and GIS techniques. Environ Earth Sci. 75, 101. https://doi.org/10.1007/s12665-015-4948-8.
Yildirim, V., 2012. Application of raster-based GIS techniques in the siting of landfills in Trabzon Province, Turkey: A case study. Waste Management & Research. 30(9), 949–960. https://doi.org/10.1177/0734242X12445656.
Yildirim, V., Memisoglu, T., Bediroglu, S., Colak, H. E., 2018. Municipal Solid Waste Landfill Site Selection Using Multi-Criteria Decision Making and GIS: Case Study of Bursa Province. Journal of Environmental Engineering and Landscape Management. 26(2), 107–119. https://doi.org/10.3846/16486897.2017.1364646.
Yiwen, C., Yu, Y.T., Meng, F.J., Deng, X.Q., Cao, L., Fox, A., 2021. Migration routes, population status and important sites used by the globally threatened Black-faced Spoonbill (Platalea minor): a synthesis of surveys and tracking studies. Avian Research. 12. https://doi.org/10.1186/s40657-021-00307-z.
Yu, L., Wang, Z.Y., Tian, S.W., Ye, F., Ding, J., Kong, J., 2017. Convolutional neural networks for water body extraction from Landsat imagery. International Journal of Computational Intelligence and Applications. 16(1), 1750001. https://doi.org/10.1142/S1469026817500018.
Yu, T.T., Chen, C.Y., Wu, T.H., Chang, Y.C., 2023. Application of high-dimensional uniform manifold approximation and projection (UMAP) to cluster existing landfills on the basis of geographical and environmental features. Science of The Total Environment. 904, 2023, 167013. https://doi.org/10.1016/j.scitotenv.2023.167013.
Yu, T.T., Cheng, Y.S., Peng, W.F., Lee, P.L., 2018. Analysis of the temporal and spatial controlling factors in affecting the accuracy of landslide predicting models in Taiwan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information. 42, 579–582.
Yu, T.T., Lin, Y.C., Lan, S.C., Yang, Y.E., Wu, P.Y., Lin, J.C., 2022. Mapping Asbestos-Cement corrugated roofing tiles with imagery cube via machine learning in Taiwan. Remote Sensing. 14(14), 3418. https://doi.org/10.3390/rs14143418.
Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H.,Tan, W., Yang, Q., Wang, J., 2020. Deep learning in environmental remote sensing: achievements and challengesRemote Sens. Environ. 241, 111716. https://doi.org/10.1016/j.rse.2020.111716.
Zambrano-Monserrate, M.A., Ruano, M.A., Ormeño-Candelario, V., 2021. Determinants of municipal solid waste: A global analysis by countries' income level. Environ. Sci. Pollut. Res. 28(44), 62421–62430. https://doi.org/10.1007/s11356-021-15167-9.
Zhang, Z.Y, Qiu, S.S., Zhou, J., Huang, J.G., 2022. Monitoring of MSW Incinerator Leachate Using Electronic Nose Combined with Manifold Learning and Ensemble Methods. Chemosensors. 10, 506. https://doi.org/10.3390/chemosensors10120506.
Zhou, C.B., Fang, W.J., Xu, W.Y., Cao, A., Wang, R.S., 2014. Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J. Clean. Prod. 80, 80–86. https://doi.org/10.1016/j.jclepro.2014.05.083.
Zhou, C.B., Xu, W.Y., Gong, Z., Fang, W.J., Cao, A., 2015b. Characteristics and Fertilizer Effects of Soil-Like Materials from Landfill Mining. CLEAN - Soil, Air, Water. 43. https://doi.org/10.1002/clen.201400510.
Zhou, C.B, Gong, Z., Hu, J., Cao, A., Liang, H., 2015. A cost-benefit analysis of landfill mining and material recycling in China. Waste Manag. 35, 191–198. https://doi.org/10.1016/j.wasman.2014.09.029.
Zhou, H., Yu, X., Alhaskawi, A., Dong, Y.Z., Wang, Z.W., Jin, Q.J, Hu, X.L., Liu, Z.Y., Kota, V.G., Abdulla, M.H.A.H., Ezzi, S.H.A., Qi, B.J., Li, J., Wang, B.X., Fang, J.Y., Lu, H., 2022. A deep learning approach for medical waste classification. Sci. Rep. 12, 2159. https://doi.org/10.1038/s41598-022-06146-2.
Zhu, J., Wei, Z., Luo, Z., Yu, L., Yin, K., 2021. Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus. Environmental pollution. 287, 117618. https://doi.org/10.1016/j.envpol.2021.117618.
[dataset] Bobulski, J., Piatkowski, J., 2018. Plastic waste database of images–WaDaBa. http://wadaba.pcz.pl/.
[dataset] Ferdous, M., Ahsan, S.M.M., 2022. Surgical waste detection dataset. Figshare. https://doi.org/10.6084/m9.figshare.19575676.v3.
[dataset] Kumsetty, N.V., Nekkare, A.B., S, S.Kamath, M, A.Kumar, 2022b. TrashBox dataset. Github repository. https://github.com/nikhilvenkatkumsetty/TashBox.
校內:2025-12-31公開