| 研究生: |
薇馬德維卡 Verma, Devika |
|---|---|
| 論文名稱: |
利用NICER 望遠鏡數據研究超軟X射線源 NICER Observations of Nearby Supersoft X-Ray Sources |
| 指導教授: |
李君樂
Li, Kwan-Lok |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 超軟X射線源 、中子星 、白矮星雙星系統 、NICER 、X射線光譜分析 、黑體 |
| 外文關鍵詞: | Supersoft X-ray sources, Neutron Star, White dwarf binaries, NICER, X-ray spectral analysis, Blackbody |
| 相關次數: | 點閱:48 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超軟X射線源(SSSs)因其獨特的光譜特性,主要在軟X射線波段(即低於1 keV)發射,長期以來一直是天體物理研究的焦點,因為它們與白矮星雙星系統的各種演化 階段相關聯,並且可能提供我們洞悉關於白矮星的吸積過程。在本研究中,我們利 用中子星內部成分探測器(NICER)收集的數據研究了五個恆久的超軟X射線源, 分別是 RX−J0019.8+2156、RX J0925.7−4758、1E−0035.4-7230、1E−0056.8-7154 和CAL 83。超軟X射線源的色溫一般在 20–100 eV 之間,光度低於 3 × 10^38 erg s−1,與具有穩核燃燒的吸積白矮星一致。 在X射線光譜分析中,大多數超軟X射線源的黑 體溫度在觀測中是穩定的,但其中一些則顯示出顯著的溫度變化,這表明吸積過程 可以在以周或月為單位的時間尺度上的變化。我們的研究調查了各種背景天空的光 譜模型在提高X射線光譜分析的準確性以及有效性,採用的模型包括 3C50、太空氣 候和SCORPEON模型。研究強調了在X射線光譜分析中採用最佳背景天空建模的重要 性。我們還發現,一些超軟X射線源在X射線光變曲線中表現出強烈的可變性。更有趣 的是,在多個中子星內部成分探測器的數據資料中,我們在 RX-J0019.8+2156 中發現 了疑似的週期信號,週期為1118秒,這可能是白矮星的自轉週期。此次觀測活動的結 果有可能顯著推進我們對超軟X射線源及其X射線光譜/時脈特性的認知,在該領域做 出重要貢獻。
Supersoft X-ray sources (SSSs), known for their distinct spectral properties emitting predominantly at the soft X-ray band (i.e., below 1 keV), have remained a focal point in astrophysical studies due to their association with various evolutionary stages of white dwarf binaries and potential insights into white dwarf accretion processes. In this study, we utilize data collected by the Neutron Star Interior Composition Explorer (NICER) to study five persistent SSSs, RX−J0019.8+2156, RX J0925.7−4758, 1E−0035.4-7230, 1E−0056.8-7154, CAL 83 in close proximity. The color temperatures of the SSS are 20–100 eV, and luminosities below 3 × 10^38 erg s−1 are consistent with accreting white dwarfs (WDs) with steady nuclear burning. In the X-ray spectral analyses, most of the blackbody temperatures of the SSSs were stable among the observations, but some of them showed significant temperature changes, indicating that the accretion process can vary on weekly/monthly timescales. Our research investigates the effectiveness of various background models for improving spectral analysis accuracy, and the adopted model are 3C50, Space Weather, and SCORPEON models. The study highlights the importance of optimal background modelling in X-ray spectral analysis. We also find that some SSSs exhibited strong variability in the X-ray light curves. More interestingly, a possible periodic signal approximately ∼1100 seconds from RX−J0019.8+2156, which could be the spin period of the white dwarf, was found in multiple NICER datasets. These results from the campaign have the potential to significantly promote our understanding of SSSs particularly their X-ray spectral/timing properties, making important contributions to the field.
[1] Riccardo Giacconi, Herbert Gursky, Frank R Paolini, and Bruno B Rossi. Evidence for X-rays from Sources Outside the Solar System. Physical Review Letters, 9(11):439, 1962.
[2] Walter Lewin and Michiel Van der Klis. Compact Stellar X-ray Sources, volume 39 Cambridge University Press, 2006.
[3] CM Becker, RA Remillard, SA Rappaport, and JE McClintock. Bipolar Jets and Orbital Dynamics of the Supersoft X-ray Source RX J0019.8+2156. The Astrophysical Journal, 506(2):880, 1998.
[4] Andrew C Fabian. Observational Evidence of Active Galactic Nuclei Feedback Annual Review of Astronomy and Astrophysics, 50:455–489, 2012.
[5] Malcolm S Longair. High Energy Astrophysics. Cambridge university press, 2010.
[6] J Greiner, G Hasinger, and P Kahabka. ROSAT Observation of Two Supersoft Sources in the Large Magellanic Cloud. Astronomy and Astrophysics (ISSN 00046361), vol. 246, no. 1, June 1991, p. L17-L20., 246:L17–L20, 1991.
[7] P Kahabka and EPJ Van Den Heuvel. Luminous Supersoft X-ray Sources. Annual Review of Astronomy and Astrophysics, 35(1):69–100, 1997.
[8] EPJ Van den Heuvel, D Bhattacharya, K Nomoto, and SA Rappaport. Accreting White Dwarf Models for CAL 83, CAL 87 and Other Ultrasoft X-ray Sources in the LMC. Astronomy and Astrophysics, 262:97–105, 1992.
[9] Knox S Long, David J Helfand, and David Andrew Grabelsky. A Soft X-ray Study of the Large Magellanic Cloud. Astrophysical Journal, Part 1, vol. 248, Sept. 15, 1981, p. 925-944., 248:925–944, 1981.
[10] Jochen Greiner. Catalog of Supersoft X-ray Sources. New Astronomy, 5(3):137141, 2000.
[11] G¨unther Hasinger. Supersoft X-ray Sources. In AIP Conference Proceedings, volume 308, pages 611–630. American Institute of Physics, 1994.
[12] Roberto Soria and Albert Kong. Revisiting the ultraluminous supersoft source in m101: an optically thick outflow model. Monthly Notices of the Royal Astronomical Society, 456(2):1837–1858, 2016.
[13] Peter Kahabka. Supersoft X-ray Sources. Advances in Space Research, 38(12):28362839, 2006.
[14] Frits Paerels, Andrew P Rasmussen, HW Hartmann, J Heise, AC Brinkman, CP De Vries, and JW Den Herder. A high resolution spectroscopic observation of cal 83 with xmm-newton/rgs. Astronomy & Astrophysics, 365(1):L308–L311, 2001.
[15] K Ebisawa, T Rauch, and D Takei. X-ray energy spectra of cal87. Astronomische Nachrichten: Astronomical Notes, 331(2):152–155, 2010.
[16] J-U Ness, Julian Paul Osborne, M Henze, A Dobrotka, JJ Drake, VARM Ribeiro, Sumner Starrfield, E Kuulkers, E Behar, M Hernanz, et al. Obscuration effects in super soft-source x-ray spectra. Astronomy & Astrophysics, 559:A50, 2013.
[17] Keith C Gendreau, Zaven Arzoumanian, and Takashi Okajima. The Neutron star Interior Composition ExploreR (NICER): an Explorer Mission of Opportunity for Soft X-ray Timing Spectroscopy. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, volume 8443, pages 322–329. SPIE, 2012.
[18] J Greiner and W Wenzel. Optical Variability of the Supersoft Source RX J0019.8+2156. arXiv preprint astro-ph/9411113, 1994.
[19] K Beuermann, K Reinsch, H Barwig, V Burwitz, D de Martino, K-H Mantel, MW Pakull, EL Robinson, AD Schwope, H-C Thomas, et al. Discovery of a Galactic Supersoft Binary X-ray Source. Astronomy and Astrophysics 294L, L1-L4 (1995), 294, 1995.
[20] John M. Dickey and Felix J. Lockman. H I in the galaxy. Annual Review of Astronomy and Astrophysics, 28:215–261, January 1990.
[21] Alan M Levine, Hale V Bradt, Deepto Chakrabarty, Robin HD Corbet, and Robert J Harris. An extended and more sensitive search for periodicities in rossi x-ray timing explorer/all-sky monitor x-ray light curves. The Astrophysical Journal Supplement Series, 196(1):6, 2011.
[22] C Motch, G Hasinger, and W Pietsch. Discovery of a Luminous Galactic Supersoft X-ray Source in the ROSAT All-Sky Survey. Astronomy and Astrophysics (ISSN 0004-6361), vol. 284, no. 3, p. 827-838, 284:827–838, 1994.
[23] Gurtina Besla. The Orbits and Total Mass of the Magellanic Clouds. arXiv preprint arXiv:1511.03346, 2015.
[24] Samyaday Choudhury, Annapurni Subramaniam, Andrew A Cole, and Young Jong Sohn. Photometric Metallicity Map of the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 475(4):4279–4297, 2018.
[25] FD Seward and Melanie Mitchell. X-ray Survey of the Small Magellanic Cloud. Astrophysical Journal, 1981.
[26] P Kahabka, W Pietsch, and G Hasinger. Super-soft X-ray Sources in the Fields of the Magellanic Clouds. Astronomy and Astrophysics, Vol. 288, p. 538-550 (1994), 288:538–550, 1994.
[27] P. Kahabka, A. N. Parmar, and H. W. Hartmann. A BeppoSAX Observation of the Supersoft Source 1E 0035.4-7230, 1999.
[28] Qingde Wang. N67 as an X-ray Bright Planetary Nebula in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 252(1):47P–49P, 1991.
[29] Smitha Subramanian and Annapurni Subramaniam. Depth Estimation of the Large and Small Magellanic Clouds. Astronomy & Astrophysics, 496(2):399–412, 2009.
[30] J Heise, A Van Teeseling, and P Kahabka. The Spectra and Luminosity of Super Soft X-ray Sources. Astronomy and Astrophysics 288L, L45-L48 (1994), 288, 1994.
[31] DM Elmegreen and BG Elmegreen. The Location of Star-Forming Regions in Barred Magellanic-Type Galaxies. Astronomical Journal, vol. 85, Oct. 1980, p. 1325 1327., 85:1325–1327, 1980.
[32] Roeland P van der Marel and Maria-Rosa L Cioni. Magellanic Cloud Structure from Near-Infrared Surveys. I. The Viewing Angles of the Large Magellanic Cloud. The Astronomical Journal, 122(4):1807, 2001.
[33] M. Orio, K. Gendreau, M. Giese, G. J. M. Luna, J. Magdolen, S. Pei, B. Sun, E. Behar, A. Dobrotka, J. Mikolajewska, Dheeraj R. Pasham, and T. E. Strohmayer. NICER Monitoring of Supersoft X-Ray Sources. The Astrophysical Journal, 932(1):45, June 2022.
[34] G Pietrzy´nski, D Graczyk, A Gallenne, W Gieren, IB Thompson, B Pilecki, P Karczmarek, M G´orski, K Suchomska, M Taormina, et al. A Distance to the Large Magellanic Cloud that is Precise to One Per Cent. Nature, 567(7747):200–203, 2019.
[35] Wolfgang Pietsch, Martin Henze, Frank Haberl, Margerita Hernanz, Gloria Sala, Dieter H Hartmann, and Massimo Della Valle. Nova M31N 2007-12b: Supersoft X rays Reveal an Intermediate Polar? Astronomy & Astrophysics, 531:A22, 2011.
[36] P Kahabka and W Pietsch. X-ray Binary Systems in the Small Magellanic Cloud. arXiv preprint astro-ph/9706075, 1997.