簡易檢索 / 詳目顯示

研究生: 劉育良
Liu, Yu-Liang
論文名稱: 實現於印刷電路板之雙頻高增益全向性天線
Implemented On a Printed PCB Dual Band High-Gain Omni-Directional Antenna
指導教授: 李文熙
Lee, Wen-Hsi
黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 並聯式陣列線性推疊式陣列天線螺旋天線
外文關鍵詞: Parallel array, linear and stack-based array antenna, helical antenna
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計一雙頻高增益全向性天線,採用並聯陣列和串聯陣列來完成此設計。第二章使用並聯式陣列的架構,透過推疊的方式,擠壓天線場型,使天線增益提升,達到高增益的效果。使用並聯式陣列天線架構,需設計成每個單元間會向位差為零,這樣才可達到高增益的效果。因設計所需天線面積較大,故第三章將天線設計為線性推疊式陣列天線架構,設計架構簡易且能到高增益全向性場型,但由於陣列形式的天線的設計,必須克服頻寬窄、輻射效率較低及增益大小有限等問題,每個單元間需使用微帶線連接,為降低線路的損耗,板材必須使用介電係數較低的材質來製作,使天線特性能夠最佳化,大幅增加了天線的成本。
    本文第四章為了改善陣列架構的缺點,降低天線成本,克服頻寬窄、輻射效率較低及增益大小有限等問題,將天線材質設定為FR4,並改變天線設計為螺旋式偶極天線,設計架構簡易且能減少微帶線所造成的損耗,降低天線成本,達到寬頻高增益並全向性的特性。

    關鍵字:並聯式陣列、線性推疊式陣列天線、螺旋天線

    SUMMARY
    Based on the above results, although a variety of architecture has its own advantages, but if based on performance and price considerations, will choose a third architecture design direction, not because of the design factors microstrip lines, resulting in efficiency gains and simulation gap, this architecture is easier to adjust the conditions to meet the requirements, it could save development costs and improve work efficiency.
    Keywords: Parallel array, linear and stack-based array antenna, helical antenna
    INTRODUCTION
    Increasing application of wireless transmission advances, it has been inseparable from the web of life. Booming popularity of smartphones and the rise of a large number of transmission and application data, the phone is no longer just a device to call, as if into a portable computer, will increase the user's wireless network dependent. Remote monitoring, intelligent home appliances make life more closely with wireless transmission, the signal of the user requirements are relatively improved, not only to be able to load a lot of influence transmission, but also to the future development of quality reception without dead ends, but also wireless products aims.
    MATERIALS AND METHODS
    The paper designs a dual band High-Gain Omin-Directional antenna and adopts the parallel array and the series array to fulfill this design. In the first chapter, it uses the framework of the parallel array and a stack-based method to squeeze the antenna field. Thus, the antenna gain is improved and achieves the effect of high gain. With the antenna framework of parallel array, the phase difference between each unit shall be designed to be zero so as to reach the high gain result. For the reason that the required area of antenna for design is relatively large, the third chapter designs the antenna into an antenna framework of linear and stack-based array. This designed framework is easy and reaches the high gain omni field. Nevertheless, due to the design of array antenna, problems like narrow bands, the relatively low radiant efficiency and gains shall be solved. Units shall be connected with each other by microstrip lines. Furthermore, in order to decrease the loss of circuits, one shall use materials with low dielectric coefficient to make panels and optimize the antenna performance. This, however, substantially increases costs of antennas.

    RESULTS AND DISCUSSION
    In order to improve shortcomings of the array framework, decrease costs of antennas and solve problems like narrow bands, the relatively low radiant efficiency and gains, the fourth chapter of this paper sets the materials of antennas as FR4 and change the design of antennas as helical antenna. The easy design of framework can decrease the loss caused by microstrip lines and reduce costs of antennas to achieve the character of broadband, high-gain and Omni-Directional.
    CONCLUSION
    The third architecture design direction, not because of the design factors microstrip lines, resulting in efficiency gains and analog gap, this architecture is easier to adjust, meet the required conditions, they could save development costs and improve work efficiency.

    摘要…………………………………………...……………………………….……….I 英文摘要……………………………………………………………………………...II 致謝……….................................V 文字目錄……...………………………………………………………………....VI 圖目錄…………………………………………………………………………....…..VIII 第一章 序論 (Introduction) 1.1 研究背景............................................1 1.2 研究目的與動機.......................................3 1.3 論文內容提要.........................................6 第二章 應用饋路網路之雙頻高增益全向性天線 ( Dual Band High-Gain Applications Feed Network of Omni-Directional Antenna ) 2.1 概述............................................8 2.2 天線設計............................................10 2.3 實驗結果與分析......................................12 2.4 心得與討論..........................................20 第三章 雙頻高增益全向性天線設計(I) ( Dual Band High-Gain Applications of Omni-Directional Antenna) 3.1 概述...............................................21 3.2 天線設計............................................23 3.3 實驗結果與分析......................................25 3.4 心得與討論..........................................33 第四章 雙頻高增益全向性天線設計(II) ( Dual Band High-Gain Applications of Omni-Directional Antenna) 4.1 概述...............................................34 4.2 天線設計............................................37 4.3 實驗結果與分析......................................39 4.4 心得與討論..........................................47 第五章 結論(Conclusions)...............................48 參考文獻(References)..........................................50

    [1]. 60-GHz High-gain and Wideband Antenna Arrays with Electromagnetic Band-Gap Reflector for Handset Applications and Antenna Arrays Based on Composite Right/Left-Handed Transmission Line
    [2]. An Optimized Antenna Array Beam Pattern for CDMA System
    [3]. Hang Wong, Ka-Leung Lau, and Kwai-Man Luk, ” Design of Dual-Polarized L-Probe Patch, ” IEEE Trans. Antennas Propagat., Vol. 52, No. 1, pp.45-52, Jan. 2004.
    [4]. Kyoung-Joo Lee,Tae-Hak Lee, Jung-Woo Baik, and Young-Sik Kim, ”Inductance loaded circular patch antenna for switchable circularly polarization,” RF and Microwave Conference (RFM), 2011 IEEE International , pp.223,225, 12-14 Dec. 2011.
    [5]. Characteristics of Microstrip Arrays and Designs of Two-element Dual-frequency icrostrip Arrays
    [6]. Abbas Pirhadi, Hadi Bahrami, and Javad Nasri, “Wideband High Directive Aperture Coupled Microstrip Antenna Design by Using a FSS Superstrate Layer, ” IEEE Trans.Antennas Propag. Vol. 60, No.4, April 2012.
    [7]. Realizing Microstrip Patch Antenna Array on Ball Grid Array Package
    [8]. Development of Multi-Layered Antenna Array Feed for Multi-Beam Reflector Applications
    [9]. Jong-Hwan Lee, and Jong-Myung Woo, “Design of a L-type aperture coupled circular polarization patch antenna with a single feed,”Antennas, Propagation and EM Theory, 2000. Proceedings. ISAPE 2000. 5th International Symposium on , pp.14,17, 15-18 Aug. 2000.
    [10]. The Design of Ring Antenna Array of the Circular Polarization Microstrip Antenna
    [11]. A High-Gain Dual-Band Circularly Polarized Antenna
    [12]. Yongxing Che, Xinyu Hou ,and Peng Zhang, “ Design of Multiple FSS Screens with Dissimilar Periodicities for Directivity Enhancement of A Dual-band Patch Antenna ,” Antennas Propagation and EM Theory (ISAPE), 2010 9th International Symposium on, pp.319-322, 2010.
    [13]. Design of a CPW-fed Circularly Polarized Antenna and a Single-layer Planar Inverted-F Antenna with Dual-band Operation
    [14]. DUAL-BAND CLOSELY STACKED CIRCULARLY POLARIZED ANTENNA
    [15]. T. W. Chiou, and K. L. Wong, “Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization,” IEEE Trans. Antennas Propagat., vol. 50, pp. 399-401, March 2002
    [16]. EBG-dipole array antenna creating beam-tilt for base-station applications
    [17]. L. P. Chi, S. S. Bor, S. M. Deng, C. L. Tsai, P. H. Juan, and K.W. Liu, “A Wideband Wide-Strip Dipole Antenna For Circularly Polarized Wave Operations,” Progress In Electromagnetics Research, PIER 100, pp. 69-82, 2010.
    [18]. 60 GHz band 2×4 dipole array antenna using multi stacked organic substrates structure
    [19]. M. Davidovitz and Y. T. Lo, "Rigorous analysis of a circular patch antenna excited by a microstrip transmission line," IEEE Trans. Antennas Propag., vol. 37, no.8, pp. 949-958, Aug. 1989.
    [20]. C. R. Huang, J. H. Huang, and C. F. Jou, "Dual-band circularly polarized slotted monopole antenna," in Microwave Conference Proceedings, Melbourne. VIC, 2011, pp. 1866-1869.
    [21]. HUANG,CHIH-YU"Design of High Gain Antennas for WLAN Applications"
    [22]. Jui-Ching Cheng"High Gain Dual-polarization Microstrip Antenna Array for 5 GHz Band
    [23]. Zarreen Aijaz , s.c. Shrivastava, &;quot;Aperture Coupled Microstrip Slot Antenna,&;quot; Recent Advances in Microwave Theory and Applications, 2008
    [24]. A.A. Serra, P. Nepa, G. Manara, G. Tribellini and S. Cioci, &;quot;A Wide-Band Dual-Polarized Stacked Patch Antenna,&;quot; IEEE Antennas And Wireless Propagation Letters, Vol.6, 2007
    [25]. W.R. Deal, N. Kaneda, J. Sor, Y. Qian, T. Itoh, “A New Quasi-Yagi Antenna for Planar Active Antenna Arrays,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 910-918, Jun. 2000.
    [26]. Huynh. T., K. F. Lee, “Single-layer single patch wideband microstrip antenna,” Electron. Lett., Vol.31, no. 1, 1995, pp.1310-1312.
    [27]. An Yi, Lv Xin, Gao Benqing, “Developing a kind of microstrip array antenna with beam squint,” Proceedings. ISAPE 2000. 5th International Symposium on Antennas, Propagation and EM Theory, 2000., pp. 443-446, Aug. 2000.
    [28]. Chien-Hung Chou”Design of High Gain Antennas for LTE Applications”
    [29]. A. Yi, L Xin and B. Q Guo, “Developing a kind of microstrip array antenna with beam squint,” Proceeding. ISAPE 2000. 5th International Symposium on Antennas, Propagation and EM Theory, 2000., pp. 443-446, Aug. 2000.
    [30]. K. L. Wong, F. R. Hsiao and T. W. Chiou, “Omnidirectional planer dipole array antenna,” IEEE Trans. Antennas Propag., vol. 52, No. 2, pp. 624-628, Feb. 2004
    [31]. W. S. Chen, Y. C. Chang, H. T. Chen, F. S. Chang and H. C. Su, “Novel design of printed monopole antenna for WLAN/WiMAX applications,” 2007 IEEE Antennas and Propagation International Symposium, vol. 1, pp. 306-309, Jun. 2007.
    [32]. L. Li, X. Chen, R. Khazaka,and K. Wu, “A transition from substrate integrated waveguide (SIW) to rectangular waveguide,” Asia Pacific Microwave Conference, 2605-2608, 2009.
    [33]. S. Srikanth and G. Behrens, “A new broadband short-backfire antenna as a prime
    focus feed single and dual band,” in Proc. IEEE Antennas Propagat. So. Int. Symp., 2007, pp. 3684–3687.
    [34]. Wei-Heng Huang” High-Gain and Dual-Polarization Dipole Antenna”
    [35]. B . Q . Wu and K . M . Luk, “A broadband dual-polarized magneto-electric dipole antenna with simple feeds ”, IEEE Antenna and Wirelless Propagation Letters,pp.60-63,Dec. 2009.

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE