| 研究生: |
戴工博 Dai, Gong-Bo |
|---|---|
| 論文名稱: |
網路多移動機械手臂之協調與同步應用 Coordination and Synchronization of Networked Mobile Manipulators |
| 指導教授: |
劉彥辰
Liu, Yen-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 移動機械手臂 、網路機器人系統 、同步控制 、協調合作 、時間延遲 |
| 外文關鍵詞: | Networked robotic system, mobile manipulators, synchronization control, coordination, cooperation, time delay |
| 相關次數: | 點閱:108 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多機器人系統相較於單一機器人系統,有更多自由度、抵抗任務失效性高等優點。近年來,許多學者提出了各種多機器人系統相關的研究,提升了機器人系統的應用性,例如:工廠中零件的組裝、救災、未知環境的探索或合作搬運等任務。在多機器人系統的控制中,結合同步控制能有效的提升機器人系統的性能與應用性;因此,在機器人領域,同步控制逐漸受到學者們的重視。隨著通訊網路的發展,結合通訊網路的多機器人系統,搭配同步控制,機器人間分享彼此的訊號,以協調機器人間的動作,使多機器人系統的效能有顯著的提升。本研究將同步控制運用於網路多移動機械手臂系統,藉此能使多移動機械手臂系統擁有更廣的應用範圍。然而,機器人間透過通訊網路分享資訊的過程,因通訊上的不確定因素,如:時間延遲、封包遺失、不同的通訊架構以及外部雜訊等因素,皆會影響網路機器人系統的穩定性與系統的表現。本研究將在不同的通訊架構以及通訊網路存在時間延遲的情況下,討論網路多移動機械手臂的同步控制。
由於目前大部分同步相關的研究,主要基於網路多移動機器人與網路多機械手臂系統來探討機器人間的同步控制,其中移動機器人的靈活性低,而機械手臂的工作空間有限。因此,本研究將提出的同步控制器應用於網路多移動機械手臂系統,使多移動機械
手臂系統擁有更好的性能與表現。為了因應當某些機器人因不可靠的通訊網路發生斷訊的情形,本研究提出分散式與擴增分散式的同步控制器,在通訊圖形為聯合連通圖形且通訊存在時間延遲的情況下,網路多移動機械手臂能達成同步,並且擁有隊形控制的功能。除此之外,在實際應用中,當系統受到外界雜訊的干擾或系統本身不確定性的影響時,會導致系統表現變差甚至造成系統不穩定。因此本研究提出了適應性同步控制器,使網路機器人系統在達成同步時,擁有更好的雜訊抑制能力。再者,考慮機器人因距離上的限制或通訊上的不確定因素,使得目標訊號無法由中央控制器傳至某些機器人的情況下,本研究提出了領導者與跟隨者式同步控制器,使網路多移動機械手臂能在通訊存在時變時間延遲的情況下達成同步,同時為了增加多移動機械手臂系統的應用性,加入了閃避障礙物的功能。此外,在以往的同步研究中,很少研究在同步控制加入力量的控制。因此,本研究提出了分散式力量同步控制器,使網路多移動機械手臂能完成合作搬運的任務。
This research addresses different kinds of control algorithms to synchronize a network of non-holonomic mobile manipulators interconnected over a variety of communication graphs. The issues of constant and time-varying delays in the communication network, possible disconnections between robots, dynamic uncertainty and inevitable external disturbances are taken into account for networked mobile manipulator system. The distributed synchronization controller is first proposed under switching topology to guarantee synchronization in the task space, and formation control are also considered. Furthermore, leaderless and leader-following consensus problems for a network of mobile manipulators are studied. Leaderless consensus control is developed by taking into account the communication delays, dynamic uncertainties and external disturbances. In order to increase applicability, a leader-following consensus controller is proposed for networked robots to track a virtual leader. Moreover, collision avoidance and formation control are considered in the consensus problem with time-varying communication delays. Furthermore, synchronization and force controls are mingles for network of mobile manipulators to achieve cooperative manipulation and transportation. Numerical examples are proposed to demonstrate the performance of the proposed control algorithms.
[1] S. Kim, A. Shukla, and A. Billard. Catching objects in flight. IEEE Transactions on Robotics, 30(5):1049-1065, Oct 2014.
[2] Big dog. http://www.bostondynamics.com/.
[3] Y. Chen, J. Lu, X. Yu, and D. J. Hill. Multi-agent systems with dynamical topologies:
Consensus and applications. IEEE Circuits and Systems Magazine, 13(3):21-34, thirdquarter 2013.
[4] D. Sun, C. Wang, W. Shang, and G. Feng. A synchronization approach to trajectory tracking of multiple mobile robots while maintaining timevarying formations. IEEE Transactions on Robotics, 25(5):1074-1086, Oct. 2009.
[5] W. Ren and N. Sorensen. Distributed coordination architecture for multi-robot formation control. Robotics and Autonomous Systems, 56(4):324-333, Aug. 2008.
[6] W. Ren. Multi-vehicle consensus with a time-varying reference state. Systems and Control Letter, 56(7/8):474-483, Mar. 2007.
[7] S.-J. Chung and J.-J. E. Slotine. Cooperative robot control and concurrent synchronization of lagrangian systems. IEEE Transactions on Robotics, 25(3):686-700, Jun. 2009.
[8] S.-J. Chung, U. Ahsun, and J.-J. E. Slotine. Application of synchronization to formation flying spacecraft: Lagrangian approach. AIAA Journal of Guidance, Control, and Dynamics, 32(2):512-526, Mar.-Apr. 2009.
[9] E. Kyrkjebo, K. Y. Pettersena, M. Wondergemb, and H. Nijmeijerb. Output synchronization control of ship replenishment operations: Theory and experiments. Control Engineering Practice, 15(6):741-755, Sep. 2007.
[10] N. Chopra, M. W. Spong, and R. Lozano. Synchronization of bilateral teleoperators with time delay. Automatica, 44(8):2142-2148, Mar. 2007.
[11] Y.-C. Liu. Control of bilateral teleoperation system for robotic manipulators with uncertain kinematics and dynamics. CYBER, 2014 IEEE 4th Annual International Conference on, pages 521-526, Jun. 2014.
[12] Z. Meng, W. Ren, Y. Cao, and Z. You. Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(1):75-88, Feb. 2011.
[13] J.-P. Richard. Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10):1667-1694, Oct. 2003.
[14] Y.-C. Liu and N. Chopra. Gravity-compensation-driven position regulation for robotic systems under input/output delays. IEEE Transactions on Control Systems Technology, 22(3):995-1005, May 2014.
[15] Y.-C. Liu. Distributed synchronization for heterogeneous robots with uncertain kinematics and dynamics under switching topologies. Journal of the Franklin Institute, 2014, in press.
[16] H. Min, S. Wang, F. Sun, and J. Zhang. Robust consensus for networked mechanical systems with coupling time delay. International Journal of Control Automation and Systems, 10(2):227-237, Apr. 2012.
[17] H. Wang. Task-space synchronization of networked robotic systems with uncertain kinematics and dynamics. IEEE Transactions on Automatic Control, 58(12):3169-3174, Dec. 2013.
[18] Y.-C. Liu and N. Chopra. Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Transactions on Robotics, 28(1):268-275, Feb. 2012.
[19] Y. Liu, H. Min, S. Wang, Z. Liu, and S. Liao. Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay. Systems and Control Letters, 64(1):119-126, Oct. 2014.
[20] H. Wang. Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica, 49(3):755-761, Dec. 2013.
[21] A. Rodriguez-Angeles and H. Nijmeijer. Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Transactions on Control Systems Technology, 12(4):542-554, July 2004.
[22] J. Tan, N. Xi, and Y. Wang. Integrated task planning and control for mobile manipulators. International Journal of Robotics Research, 22(5):337-354, May 2003.
[23] H. Kawasaki, S. Ueki, and S. Ito. Decentralized adaptive coordinated control of multiple robot arms without using a force sensor. Automatica, 42(3):481-488, Mar 2006.
[24] N. Hogan. On the stability of manipulators performing contact tasks. IEEE Journal of Robotics and Automation, 4(6):677-686, Dec 1988.
[25] S. A. Schneider and R. H. Cannon. Object impedance control for cooperative manipulation: theory and experimental results. IEEE Transactions on Robotics and Automation, 8(3):383-394, Jun. 1992.
[26] N. Chopra., D. M. Stipanovic, and M. W. Spong. On synchronization and collision avoidance for mechanical systems. American Control Conference, pages 3713-3718, Jun. 2008.
[27] G. D. White, R. M. Bhatt, and V. N. Krovi. Dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator. Robotica, 25(2):147-156, Mar. 2007.
[28] M. Boukattaya, M. Jallouli, and T. Damak. On trajectory tracking control for a nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances. Robotics and Autonomous Systems, 60(12):1640-1647, Oct. 2012.
[29] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John Wiley & Sons, Inc., New York, 2006.
[30] G. Campion, G. Bastin, and B. D'Andrea-Novel. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1):47-62, Feb. 1996.
[31] D. B. West. Introduction to graph theory. Englewood Cliffs, NJ:Prentice-Hall, 1996.
[32] C. Godsil and G. F. Royle. Algebraic Graph Theory. Springer, 2001.
[33] M. Burger. Duality and Approximation Methods for Cooperative Optimization and Control. Deutsche Nationalbibliothek, 2014.
[34] H. K. Khalil. Nonlinear Systems. Englewood Cliffs, NJ: Prentice-Hall, 2002.
[35] C. A. Deoser and M. Vidyasagar. Feedback systems: input-output properties. Academic Press, New York, 1975.
[36] W. Ren and R. W. Beard. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5):655-661, May 2005.
[37] Y.-C. Liu and N. Chopra. Control of robotic manipulators under input/output communication delays: Theory and experiments. IEEE Transactions on Robotics, 28(3):742-751, Jun. 2012.
[38] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal. Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation. In IEEE/RSJ International Conference on Intelligent Robots and System, volume 2, pages 546-553, Nov. 1996.
[39] T. G. Sugar and V. Kumar. Control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, 18(1):94-103, Feb. 2002.
[40] H. Wang. Consensus of networked mechanical systems with communication delays: A unified framework. IEEE Transactions on Automatic Control, 59(6):1571-1576, Jun. 2014.
[41] J. Brewer. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems, 25(9):772-781, 1978.
[42] R Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520-1533, Sep. 2004.
[43] D. M. Stipanovic, P. F. Hokayem, M. W. Spong, and D. D. Siljak. Cooperative avoidance control for multiagent systems. Journal of Dynamic Systems, Measurement, and Control, 129(5):699-707, Apr. 2007.
[44] D.Williams and O. Khatib. The virtual linkage: a model for internal forces in multi-grasp manipulation. Robotics and Automation, 1993. Proceedings, 1993 IEEE International Conference on, 1:1025-1030, May 1993.
[45] B. Nemec. Force control of redundant robots in unstructured environment. IEEE Transactions on Industrial Electronics, 49(1):233-240, Feb. 2002.
[46] O. Khatib. The impact of redundancy on the dynamic performance of robots. Laboratory Robotics and Automation, 8:37-48, 1996.
[47] N. Sarkar, X. Yun, and V. Kumar. Control of mechanical systems with rolling constraints application to dynamic control of mobile robots. The International Journal of Robotics Research, 13(1):55-69, Feb. 1994.