簡易檢索 / 詳目顯示

研究生: 張志嘉
Chang, Chih-Chia
論文名稱: 摻雜鑭、矽之鐵酸鉍多鐵性薄膜製備與特性之研究
Fabrication and Characterization of Si-doped or La-doped BiFeO3 Multiferroics Thin Films
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 119
中文關鍵詞: 多鐵性鐵酸鉍
外文關鍵詞: Multiferroic, BiFeO3
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵酸鉍(BiFeO3,BFO)之多鐵性薄膜,具有優異磁電共存特性可用於記憶體、可調式感測器以及自旋電晶體,尤其在記憶體設計上引起廣泛的興趣。由於BFO 有極高的漏電流導致無法在室溫下量測到飽和電滯曲線,故本研究利用化學溶液鍍膜法(chemical solution deposition)製備Si與La摻雜之BFO 薄膜於鎳酸鑭下電極基板(LaNiO3/Si),以期降低漏電流的產生,並探討摻雜對薄膜之晶體結構、介電特性、鐵電性質、鐵磁性質之影響。
    由於Si 離子半徑與Fe 離子半徑差異太大,導致Si 摻雜之BFO 薄膜需於高溫熱處理後,才可驅使Si4+離子取代Fe3+離子於B site 位置。從XRD結果得知650℃熱處理下易有Bi2Fe4O9 雜相生成於BFO 薄膜中,且Si 之溶
    解度約為5 mole%。Si 摻雜可使BFO 薄膜緻密化、晶粒細化、降低孔洞生成以及表面粗糙度,導致其低頻介電損耗遠小於BFO,而具有較低之孔洞與缺陷存在,故5 mole% Si 摻雜可使BFO 薄膜漏電流密度從1.58×10-4
    (A/cm2) 降至 1.09×10-7 (A/cm2),因而在室溫下可量測到BFO 薄膜之電滯曲線,其殘留極化值與矯頑場分別為2.94 μm/cm2 以及100.1 kV/cm。此外亦發現殘留磁化率與矯頑磁場隨著Si 摻雜量上升而顯著增加的趨勢。
    La 的摻雜可抑制Bi2Fe4O9 雜相生成而使介電常數呈現上升趨勢;但當La 摻雜量達15 mole% 時,由於晶粒呈現不連續性導致低頻之介電損耗大幅增加,最終使得漏電流大幅增加。10BLFO 可得到La 摻雜之BFO 系列的最低漏電流為2.02×10-5(A/cm2),但僅較BFO 薄膜之漏電流小一個數量級,因而無法在室溫下量測到完整的電滯曲線。薄膜的殘留磁化量隨著La 摻雜量的增加而提升,但矯頑磁場則呈現下降趨勢。

    Multiferroics BiFeO3 (BFO) thin films which simultaneously coexists ferroelectricity and antiferromagnetism, have attracted extensively attention to applying on memory, tunable sensor and spin transistor. Because of the significant leakage of BiFeO3, the ferroelectric hysteresis can’t measure at room temperature. Si-doped and La-doped BFO thin films were deposited LaNiO3/Si
    substrates by chemical solution method in this study. Doping effects on crystal structure, leakage current, dielectric, ferroelectric and magnetic properties were investigated.
    Because the radius of Si4+ ion was much smaller than that of Fe3+, a high temperature annealing process was necessary to induce Si4+ ion to substitute Fe3+ ion. The annealing temperature for Si-doped BFO thin films was 650℃, but the impurity phase (Bi2Fe4O9) was always occured in BFO thin films. The solubility
    of Si ion was about 5 mole%. Si-doped in BFO thin films would make films dense, reduce crystal size, vacancies, and surface roughness. From dielectric analyses, 5BFSO thin films got a smallest tanδ at low frequency. That’s why
    leakage current densities of 5BFSO thin films were reduced from 1.58×10-4 (A/cm2) to 1.09×10-7 (A/cm2). The remnant polarization and coercive field of 5BFSO thin films which measured at room temperature were 2.94 (μm/cm2) and 100.1(kV/cm), respectively. The remnant magnetization and coercive magnetic field were increased with increasing the amounts of Si-doped in BFO thin films.
    The dopant of La would inhibit the formation of Bi2Fe4O9 phase, resulting in increasing dielectric constant. But as the amounts of La-doped in BFO thin films were increased to 15 mole%, grains appeared to be discontinuous. That’s the reason why 15BLFO had a large leakage current density. 10BLFO had the
    lowest leakage current density of 2.02×10-5(A/cm2) for La-doped in BFO thin films. But this value was still too high to have complete P-E analyses. The remnant magnetization increased as the amounts of La-doped in BFO thin films
    increased, but the coercive magnetic field was decreased as the amounts of La-doped in BFO thin films increased.

    第一章 緒論...................................................................1 1-1 前言..................................................................... 1 1-2 研究動機................................................................. 2 第二章 文獻回顧...............................................................3 2-1 鐵電材料簡介............................................................. 3 2-1-1 鈣鈦礦型之鐵電材料..................................................... 3 2-1-2 鐵電晶域與電滯曲線..................................................... 6 2-2 磁性物質簡介............................................................. 8 2-3 極化現象與介電特性...................................................... 12 2-4 漏電流機制.............................................................. 15 2-5 氧化物LaNiO3 電極....................................................... 17 2-6 多鐵性材料.............................................................. 19 2-7 BiFeO3 材料簡介......................................................... 22 2-7-1 BiFeO3 晶體結構....................................................... 22 2-7-2 BiFeO3 電性簡介....................................................... 25 2-7-3 BiFeO3 磁性簡介....................................................... 28 第三章 實驗方法與步驟........................................................30 3-1 實驗材料................................................................ 30 3-1-1 實驗藥品.............................................................. 30 3-1-2 基材清洗.............................................................. 31 3-2 LaNiO3(LNO)下電極製備................................................. 32 3-3 BiFeO3 (BFO) 薄膜製備方法............................................... 33 3-3-1 BiFeO3 化學溶液調配................................................... 33 3-3-2 旋轉塗佈與熱處理...................................................... 33 3-3-3 Pt/BFO/LNO 與 Pt/BFO/Pt 鐵電電容元件製作.............................. 34 3-4 BFO 薄膜特性檢測........................................................ 37 3-4-1 低掠角X-ray (Glancing angle XRD,GIXRD)............................... 37 3-4-2 場發掃描式電子顯微鏡(FESEM)........................................... 37 3-4-3 光電子能譜分析儀(X-ray Photo-electron Spectroscopy,XPS).............. 38 3-4-4 原子力顯微鏡(AFM)..................................................... 38 3-4-5 熱重/熱差分析(TG/DTA)................................................. 38 3-5 Pt/BFO/LNO 與Pt/BFO/Pt 鐵電電容電性檢測................................. 39 3-5-1 漏電流(I-V)測試....................................................... 39 3-5-2 介電常數-介電損耗測試(C-F)............................................ 39 3-5-3 電滯曲線 (P-E)........................................................ 39 3-6 磁性量測................................................................ 41 3-6-1 超導量子干涉儀 (SQUID) ............................................... 41 第四章 矽離子與鑭離子摻雜對BiFeO3 (BFO) .....................................42 薄膜性質之影響...............................................................42 4-1 熱處理溫度對LNO 下電極之影響............................................ 42 4-2 基板對BiFeO3 薄膜性質之影響............................................. 46 4-2-1 基板對BiFeO3 薄膜之晶體結構影響....................................... 46 4-2-2 基板對BiFeO3 薄膜微觀型態之影響....................................... 47 4-2-3 基板對BiFeO3 薄膜介電特性之影響....................................... 49 4-2-4 基板對BiFeO3 薄膜漏電流之影響......................................... 57 4-3 矽離子摻雜對BFO 薄膜之多鐵性質之影響.................................... 59 4-3-1 BiFe1-xSxO3 的熱性質.................................................. 59 4-3-2 BiFe1-xSixO3 薄膜晶體結構與分析....................................... 61 4-3-3 矽摻雜對BFO 薄膜表面形貌之影響........................................ 66 4-3-4 BiFe1-xSixO3 薄膜化學鍵結分析......................................... 72 4-3-5 BiFe1-xSixO3 薄膜之介電特性........................................... 78 4-3-6 BiFe1-xSixO3 薄膜的漏電流分析......................................... 82 4-3-7 BiFe1-xSixO3 薄膜的鐵電性質........................................... 84 4-3-8 BiFe1-xSixO3 薄膜之磁性性質........................................... 88 4-4 鑭離子摻雜對BFO 薄膜之影響.............................................. 92 4-4-1 Bi1-xLaxFeO3 薄膜之晶體結構與分析..................................... 92 4-4-2 Bi1-xLaxFeO3 薄膜之微觀結構........................................... 93 4-4-3 Bi1-xLaxFeO3 薄膜之介電特性........................................... 97 4-4-4 Bi1-xLaxFeO3 薄膜的漏電流分析......................................... 99 4-4-5 Bi1-xLaxFeO3 薄膜的鐵電性質.......................................... 100 4-4-6 Bi1-xLaxFeO3 薄膜之磁性性質.......................................... 100 4-4-7 熱處理溫度對Bi1-xLaxFeO3 薄膜之影響.................................. 105 第五章 結論.................................................................110 第六章 參考資料.............................................................112

    1. J. K. Kim, S. S. Kim, and W. J. Kim, “Phase developments, microstructures,
    and ferroelectric properties of BiFeO3 thin films prepared by a solution”,
    Integrated Ferroelectrics, 76, 103-109, 2005.
    2. S. R. Das, P. Bhattacharya, R. N. P. Choudhary, and R. S. Katiyar,” Effect
    of La substitution on structural and electrical properties of BiFeO3 thin
    film”, J.Appl. Phys. 99, 066107, 2006.
    3. Y. H. Lee, Y. M. Wu, and C. H. Lai,” Influence of La doping in multiferroic
    properties of BiFeO3 thin films, Appl. Phys. Lett. 88, 042903, 2006.
    4. Kittel, “Introduction to solid state physics”, 7th ed. (John Wiley &
    Sons),New York, Chap.13, 1996.
    5. 吳朗,電工材料(滄海書局),Chap. 5, 1998.
    6. J. F. Moulder,W. F. Stickle, “ Handbook of X-ray Photoelectron
    Sperectroscopy”, Physical electronics, inc, USA, 1995.
    7. 李雅明,固態電子學,全華科技,Chap. 4, 1995。
    8. 劉純宇,BiFeO3鐵電薄膜之製備與特性研究。國立成功大學材料科學系
    所碩士論文, 2005。
    9. B. Prince, “Emerging Memories-Technologies and Trend”, Kluwer
    Academic Publishers, Chap. 4, 2002
    10. R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer
    Academic, London, Chap. 1-3, 1997
    11. J. F. Scott, and C. A. Araujo, “Ferroelectric memory”, Science, 246,
    1400,1989.
    12. 張立德、牟季美,奈米材料與奈米結構,滄海書局,台中市,Chap.3,2002.
    13. A. V. ZalesskiÏ, A. A. Frolov, T. A. Khimich, and A. A. Bush,“Composit-
    ion Induced Transition of Spin-Modulated Structure into a Uniform
    Antiferromagnetic State in a Bi1 –xLaxFeO3 System Studied Using 57Fe
    NMR”, Physical of solid state, 45(1), 141-145, 2003.
    14. M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics
    and related materials, Oxford University Press, New York, 2001.
    15. B.T. Batthais and A. V. Hippel,”Domain structure and dielectric response
    of Barium Titanate single crystal”, Phys. Rev. 73, 1378-1384, 1948.
    16. A. V. Hippel, “Ferroelectricity, Domain Structure, and Phase Transitions
    of Barium Titanate“, Rev. Modern Phys. 22, 221-237, 1950.
    17. S. Tamura, Y. Omura and S. Nakahara, “Effect of Silicon Addition on
    Electrical Properties of SrBi2Ta2O9 Thin Films”, J. J. Appl. Phys. 43
    (11B),7871, 2004.
    18. J. Harjuoja, S. Väyrynen, M. Putkonen, L. Niinistö, E. Rauhala,
    “Crystallization of bismuth titanate and bismuth silicate grown as thin
    films by atomic layer deposition”, J. Cry. Growth 286, 376, 2006.
    19. Y. Xu, “Ferroelectric Materials and their Applications”, North Holland,
    Amsterdam, 1991.
    20. B. D. Cullity, “Elements of X-ray Diffraction” 2nd Ed., Wiley, New York,
    1978.
    21. 金重勳,”磁性技術手冊”,中華民國磁性技術學會出版,Chap.2,2004.
    22. C. P. D. Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films:
    Synthesis and Basic Properties ” ,Gordon and Breach Publishers, 193-194,
    1996.
    23. S. Wolf and R. N. Tauber, ”Silicon Processing for the VLSI Era”,
    published by Lattice Press , CA Sunset Beach, 384, 1986.
    24. E. A. Kneer , D. P. Birnie , R. D. Schrimpf , J. C. Podlesny , and G.
    Teowee , ”Investigation of Surface Roughness and Hillock Formation on
    Platinized Substrates Used for Pt/PZT/Pt Capacitor Fabrication” ,
    Integrated Ferroelectrics, 7, 61, 1995.
    25. K. Sreenivas , I. Reaney , T. Maeder , and N. Setter ,”Investigation of
    Pt/Ti Bilayer Metallization on Silicon for Ferroelectric Thin Film
    Integration ” , J.Appl. Phys.,75(1), 232, 1994.
    26. R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer, and W. Hoesler, Mater.
    Res. Soc. Symp. Proc., 243, 123, 1992.
    27. C. R. Cho, David A. Rayne, and S. L Cho, ” Solution deposition and
    heteroepitaxial crystallization of LaNiO3 electrodes for integrated
    ferroelectric devices”, Appl. Phys. Lett.71(20), 3013-3115, 1997.
    28. A. Li, C. Ge, and P. Lu, “Preparation of perovskite conductive LaNiO3
    f0ilms by metalorganic decomposition“,Appl. Phys. Lett. 68(10), 1347-1349,
    1996.
    29. K. S. Hwang, H. A. Park, B. Soojung, B. A. Kang, Y. H. Kim, “Growth of
    Bismuth Titanate films on textured oxide electrode by spin coating-
    pyrolysis”, J. Sol-Gel Sci. & Tech. 23, 67-72, 1998.
    30. J. Z. and H. Chen, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin
    films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2/Si
    substrates”,Appl. Phys. Lett. 82, 442-444, 2003.
    31. B. J. Kim, J. Lee, J. B. Yoo, “Sol-gel derived (La, Sr)CoO3 thin films on
    silica glass”, Thin Solid Film ,341, 13-17, 1999.
    32. S. M. Yoon, E. Tokumitsu, H. Ishiwara, “Preparation of PbZrxTi1−xO3/ La1−x
    SrxCoO3 heterostructures using the sol-gel method and their electrical
    properties”, Appl. Surface Science ,117-118, 447-452, 1998.
    33. M. Kuwabara, S.Takahashi and T. Kuroda, ” Preparation of ferroelectric
    BaTiO3 thin films on polycrystalline BaPbO3 substrates by sol-gel
    processing and their electrical properties”, Appl. Phys. Lett.,62(25),
    3372-3374, 1993.
    34. F. Wang, A. Uusimaki, S. Leppavuori and H. Zhang, “Preparation of
    conductive barium metaplumbate thin film using solution method”,
    Materials Research Bulletin, 31(1), 37, 1996.
    35. 李奕賢, 鐵酸鉍複鐵式薄膜之晶體成長與分析。國立清華大學材料科學
    系所博士論文Chap.3-7, (2005).
    36. M. Fiebig, T.Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev,
    “Observation of coupled magnetic and electric domains”, Nature (London)
    419, 818-820, 2002.
    37. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.
    Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin,
    K. M. Rabe, M. Wuttig, and R. Ramesh, ” Epitaxial BiFeO3 Multiferroic
    Thin Film Heterostructures”, Sience, 299, 1719-1722, 2003.
    38. W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, and N.
    D. Mathur, ” Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”,
    Sience, 307, 1203, 2005.
    39. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
    “Magnetic control of ferroelectric polarization”, Nature (London) 426,
    55-58, 2003.
    40. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura,
    “Magnetocapacitance effect in multiferroic BiMnO3”, Phys. Rev. B, 67,
    180401, 2003.
    41. N. N. Krainik., Sov. Phys. 8, 654 ,1966.
    42. I. G. Ismailzade, Soviet Sov. Phys. 11, 747 ,1967.
    43. V.A. Murashav, D.N. Rakov, V.M. Ionov, I.S. Dubenko, Y.U. Titov,
    Ferroelectrics 162, 11, 1994.
    44. Y. F. Popov, A. M. Kadomtseva, G. P. Vorobev, A. K. Zvezdin, “ The
    nature of the dielectric and magnetic properties of BiFeO3”,
    Ferroelectrics,162, 135, 1994.
    45. F. Kubel and H. Schmid, “Strucure of a ferroelectric and ferroelastic
    monodomain crystal of the pervoskite BiFeO3”, Acta Crystallogr B, 46, 698,
    1990.
    46. C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James,
    “ The atomic structure of BiFeO3”, Solid State Commun. 7, 701, 1969.
    47. N. A. Spaldin and M. Fiebig, “The Renaissance of Magnetoelectric
    Multiferroics”, Science, 309, 391-392, 2005.
    48. G. D. Achenbach, R. Gerson, W. J. James, “Preparation of Single-Phase
    Polycrystalline BiFeO3”, J. Am. Ceram. Soc. 50, 437, 1967.
    49. O. Muller and R. Roy, “The Major Ternary structural Families”, Springer,
    New York, 1974.
    50. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, “Specific features of
    BiFeO3 formation in a mixture of Bismuth and Iron oxides”, Russian
    Journal of General Chemistry, 73(11), 1676-1680, 2003.
    51. N. A. Hill,” Why Are There so Few Magnetic Ferroelectrics? ”, J. Phys.
    Chem. B 104, 6694 ,2000.
    52. J. R. Teague, R. Gerson, and W. J. James, “ Dielectric hysteresis in
    single crystal”, Solid State Comm. 12, 1073, 1970.
    53. C. T. Munoz, J. P. Rivera, A. Monnier, and H. Schmid,” A Replica
    Technique in the Study of Chemical Precipitation Processes”, Jpn. J. Appl.
    Phys. 24, 1051-1053, 1985.
    54. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu,
    “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics
    synthesized by rapid liquid phase sintering”,Applied Phys. Lett, 84,
    1731-1733, 2004.
    55. V. R. Palkar, K. G. Kumara, S. K. Malik,” Observation of room-temperature
    magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin
    films”, J. Phys. 58, 1003 ,2002.
    56. K. Y. Yun, M. Noda, and M. Okuyama,” Prominent ferroelectricity of
    BiFeO3 thin films prepared by pulsed-laser deposition”, Appl. Phys. Lett.
    83,3981, 2003.
    57. K. Y. Yun, M. Noda, and M. Okuyama, H. Saeki, H. Tabata. and K. Saito,”
    Structural and multiferroic properties of BiFeO3 thin films at room
    temperature”, J. Appl. Phys. 96, 3399-3403, 2004.
    58. R. Ueno, S. Okaura, H. Funakubo and K. Saito, ”Crystal Structure and
    Electrical Properties of Epitaxial BiFeO3 Thin Films Grown by Metal
    Organic Chemical Vapor Deposition”, J. J. Appl. Phys. 44(39), L1231-
    L1233, 2005.
    59. Y. H. Lee, J. M. Wu, Y. C. Chen, Y. H. Lu, and H. N. Lin, “Surface
    Chemistry and Nanoscale Characterizations of Multiferroic BiFeO3 Thin
    Films”, Electrochemical and Solid-State Letters, 8(10), F43-F47, 2005.
    60. K. Ueda, H. Tabat and T. Kawai, ” Coexistence of ferroelectricity and
    ferromagnetism in BiFeO3–BaTiO3 thin films at room temperature”, Appl.
    Phys. Lett., 75, 555 ,1999.
    61. H. S. Gu, J. M. Xue, X. Gao, J. Wang, “Doping effects of BiFeO3 in layered
    perovskite SrBi2Nb2O9”, Materials Chemistry and Physics, 75, 105 ,2002.
    62. C. Cheon, J. Seog, K. Pyung, W. Jang, ” Ferroelectric and Magnetic
    Properties of PrFeO3-PbTiO3 and PrFeO3-BiFeO3-PbTiO3 Thin Films”, J. J.
    Appl. Phys, 41, 6777-6780, 2002.
    63. X. Qi, J. Dho, R. Tomov, “Greatly reduced leakage current and conduction
    mechanism in aliovalent-ion-doped BiFeO3”, Appl. Phys. Lett., 86, 062903 ,
    2005.
    64. H. Uchida, R. Ueno, H. Nakaki, H Funakubo and S. Koda, “Ion
    Modification for Improvement of Insulating and Ferroelectric Properties of
    BiFeO3 Thin Films Fabricated by Chemical Solution Deposition”, J. J. Appl.
    Phys., 44(18), L561-L563, 2005.
    65. A. A. Gippius, D. F. Khozeev, E. N. Morozova, and A. V. Zalessky,Phys.
    Stat. Sol. 196(1), 221, 2003.
    66. C. Ederer and N. A. Spaldin, “Weak ferromagnetism and magnetoelectric
    coupling in bismuth ferrite”, Phys. Rev. B 71, 060401, 2005.
    67. C. Ederer and N. A. Spaldin, “Influence of strain and oxygen vacancies on
    the magnetoelectric properties of multiferroic bismuth ferrite”, Phys.
    Rev. B71, 224103 ,2005.
    68. D. Lee, M. G. Kim, S. Ryu, and H. M. Jang, “Epitaxially grown
    La-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett. 86,
    222903, 2005.
    69. I. Sosnowska, W. Schafer, W. Kockelmann, K. H. Andersen, and I. O.
    Troyanchuk, “Crystal structure and spiral magnetic ordering of BiFeO3
    doped with manganese”, Appl. Phys. A: Mater. Sci. Process. 74,
    S1040-S1042, 2002.
    70. X. M. Liu, S. Y. Fu, C. J. Huang, “Synthesis and magnetic characterization
    of novel CoFe2O4–BiFeO3 nanocomposites”, Materials Science and
    Engineering B 121, 255–260, 2005.
    71. B. U. M. Rao and G. Srinivasan, “Static and high frequency magnetic
    properties of amorphous BiFeO3–CuFe2O4 compounds”, J. Appl. Phys., 70,
    6317, 1991.
    72. V. R. Palkar, S. Chattopadhyay, P. Ayyub, M. Multani, S. K. Paranjape, V.
    Siruguri, “A study of the structure and composition of Si-doped PbTiO3”,
    Materials Letters, 32, 171-174, 1997.
    73. Z. G. Zhu, G. R. Li, L.Y. Zheng, Q. R. Yin, “Microstructure, domain
    morphology and piezoelectric properties of Si-doped Pb(Mn1/3Sb2/3)O3–
    Pb(Zr,Ti)O3 systems”, Materials Science and Engineering B, 119, 46-50,
    2005.
    74. P. Bomlai, N. Sirikulrat, T. Tunkasiri, “Microstructures and positive
    temperature coefficient resistivity (PTCR) characteristics of high silicon
    addition barium-strontium titanate ceramics”, J. maters. sci., 39, 1831-
    1835, 2004.
    75. M. Qvarford, S. Soderholm, G. Chiaia, R. Nyholm, J. N. Anderson, I. Lindau,
    U. O. Karlsson, L. Leonyuk, A. Nilsson, and Martensson, “Doping
    dependence of the O 1s core-level photoemission in Bi-Sr-Ca-Cu-O
    superconductors”, Phys. Rev. B 53, R14753, 1996.
    76. C. Hinnen, C. N. V. Houng, and P. Mrrcus, “A comparative X-ray
    photoemission study of Bi2Sr2CaCu2O8+δ and Bi1.6Pb0.4Sr2CaCu2O8+δ'”, J.
    Electron Spectrosc. Relat. Phenom. 73, 293, 1995.
    77. M. M. Kumar and V. R. Palkar, “Ferroelectricity in a pure BiFeO3
    Ceramic”, Apl. Phys. Lett. 76, 2764, 2000.
    78. X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, “Greatly
    reduced leakage current and conduction mechanism in aliovalent-ion-doped
    BiFeO3”, Appl.Phys. Lett. 86, 062903,2005.
    79. K. Asami, T. Osaka, T. Tamanobe, I. Koiwa, “Metallic bismuth on
    strontium-bismuth tantalate thin films for ferroelectric memory
    application”, Surf. Interface Anal, 30, 391-395, 2000.
    80. T. Kijima and H. Ishiwara, “Si-Substituted Ultrathin Ferroelectric
    Films”, Jpn. J. Appl. Phys., 41, L716–L719, 2002.
    81. M. Yamaguchi, K. Hiraki, T. Nagatomo and Y. Masuda, “Preparation and
    Properties of Bi2SiO5/Si Structures”, J. J. Appl. Phys., 39, 5512–5516,
    2000.
    82. S. Tamura, Y. Omura and S. Nakahara, “Effect of Silicon Addition on
    Electrical Properties of SrBi2Ta2O9 Thin Films”, J. J. Appl. Phys., 43,
    7871–7875, 2004.
    83. Y. Idemoto, T. Miyahara, N. Koura, T. Kijima, H. Ishiwara, “Crystal
    structure and ferroelectric properties of (Bi,La)4(Ti,Si)3O12 as a bulk
    ferroelectric material”, Solid State Communications 128, 255–259, 2003.
    84. Y. H. Lee, C. S. Liang, and J. M. Wu, “Crystal Growth and
    Characterizations of Highly Oriented BiFeO3 Thin Films”, Electrochem.
    Solid State Lett.,11, F55-F57, 2005.
    85. B. G. Chae, Y. S. Yang, S. H. Lee, M. S. Jang, S. J. Lee, S. H. Kim, W. S.
    Baek, “Comparative analysis for the crystalline and ferroelectric
    properties of Pb(Zr,Ti)O3 thin films deposited on metallic LaNiO3 and Pt
    electrodes”, S.C. Kwon, Thin Solid Films, 410, 107-113, 2002.
    86. M. S. Chen, J. M. Wu, T. B. Wu, “Effects of (100)-Textured LaNiO3
    Electrode on Crystallization and Properties of Sol-Gel-Derived
    Pb(Zr0.53Ti0.47)O3 Thin Films”, J. J. Appl. Phys. 34, 4870 , 1995.
    87. S. Y. Chen, and C. L. Sun, “Ferroelectric characteristics of oriented Pb
    (Zr1–xTix)O3 films”, J. Appl. Phys. 90, 2970, 2001.
    88. W. D. Kingery, H. K. Brown, and D. R. Uhlmann, Introduction to ceramics,
    2nd Ed., John Wiley and Sons, New York, Chap. 2, 1976.
    89. W. D. Callister, Jr., Materials Science and Engineering, 4th ed. Wiely, New
    York, Chap. 3-4, 1985.
    90. M. E. Lines and A. M. Glass, “Principles and applications of
    ferroelectrics and related materials”, Oxford University Press, New York,
    Chap. 2-5, 2001.
    91. J. A. C. Bland and B. Heinrich, “Ultrathin Magnetic Structure Ⅰ”,
    Springer-Verlag, Chap. 3,1994
    92. G. A. Smolenskii and I. E. Chupis, Sov, Phys. Usp. 25, 475, 1982.

    下載圖示 校內:2009-07-26公開
    校外:2011-07-26公開
    QR CODE