簡易檢索 / 詳目顯示

研究生: 連志原
Lien, Chih-Yuan
論文名稱: 應用於顯示上的低複雜度影像處理技術之設計與實現
The Design and Implementation of Low-Complexity Image Processing Methods for Display
指導教授: 陳培殷
Chen, Pei-Yin
楊中平
Young, Chung-Ping
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 128
中文關鍵詞: 脈衝雜訊影像縮放影像處理低複雜度
外文關鍵詞: VLSI, image processing, low complexity, image scaling, impulse noise
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著視訊多媒體的蓬勃發展與通訊技術的進步,各種包含語音、影像與圖片之多媒體通訊應用皆不斷推陳出新。而許多消費性電子產品都加入了顯示照片或影片的功能。然而,影像通常會在取得的過程或是傳送的階段受到雜訊的污染,而造成了影像視覺品質的降低,所以去除雜訊的技術是影像處理上非常重要的一個議題。對於許多需要滿足即時處理的嵌入式應用產品來說,去雜訊技術的硬體實作是不可或缺的;然而對消費者來說,當他們在選擇消費性電子產品時,價格往往是最重要的考量。因此,在本論文中,我們希望能研發出一個低成本的去雜訊技術之硬體實作。
    此外,影像縮放技術亦是多媒體通訊應用中一項十分重要的課題,它已經廣泛的被使用於許多的應用,比如:高畫質數位電視,液晶電視,數位錄放影機,影印機,醫學影像等等。當要顯示的影像解析度不同於目的設備所設定的解析度大小時,就需要使用到影像縮放技術。舉例來說,當我們需要在高畫質電視裡顯示解析度較小的影像時就需要將影像放大到符合該裝置的解析度,而如果需要在小尺寸可攜式液晶顯示器裡顯示較高畫質的影像,就需要將該影像縮小。在許多實際的即時顯示設備中,影像縮放技術一般都加在使用者端的設備中,也因此,一個簡單且適合以低成本VLSI硬體實作的影像縮放技術是非常必要的。本論文即針對此應用於多媒體顯示的兩大領域進行探討。
    針對影像去雜訊技術,在本論文中我們提出了一個能保留影像邊緣特性的雜訊移除演算法(SEPD)及其硬體實作,來移除fixed-valued脈衝雜訊。這個方法的計算複雜度很低,而且它所需的記憶體緩衝區只有兩列影像大小的寬度,所以整個的硬體成本極低。此方法會先以一個小的工作視窗來偵測此像素是否為雜訊點,並找尋此工作視窗中存在的邊緣方向,最後利用所偵測出的邊緣線來預估此像素的重建值。若此像素被偵測為雜訊點,則以此重建值取代它。所以SEPD可以有效的保留影像邊緣特性。實驗結果顯示我們的方法不論在主客觀數據上都比現行的方法來的好。此外,我們也提出了這個設計的管線化VLSI架構,根據SYNOPSYS的Design Vision和TSMC’s 0.18μm的標準元件庫合成結果,此電路每秒處理量可以達到167百萬像素/秒的速度。
    在影像縮放技術方面,我們提出一個參考影像邊緣的面積像素影像縮放演算法及其硬體實作。我們定義了一個改良的 area-pixel 模型,這個模型採用整數的參數作為運算,且藉由捕捉來源影像局部特徵的特性,更精準的估算出目標像素值。實驗的結果也顯示,此方法可以有效的保留住影像的邊緣特徵,而且在影像品質及數據比較上都比傳統的方法有更好的表現。因為我們的方法只需要低複雜度的運算且運算極有規律,因此非常適合VLSI硬體的實作。針對此,我們提出了一個高效能的七級管線化的硬體架構。根據SYNOPSYS的Design Vision和TSMC’s 0.18μm的標準元件庫合成結果,此電路所需的邏輯閘數目為10.4K,且運作速度可以到達 200 MHz 。

    The fundamental characteristics of multimedia system are that they incorporate continuous media such as voice, full-motion video, and graphics. Many electronic devices need the display technique to show photos and/or videos. However, images are often corrupted by impulse noise during image acquisition and transmission. Thus, the denoising technique becomes a very important issue in image preprocessing. For real-time embedded applications, the VLSI implementation of denoising process is necessary and should be considered. For customers, cost is usually the most important issue while choosing consumer electronic products. Therefore, we hope to focus on low-cost denoising implementation in this dissertation.
    Furthermore, the scaling algorithm is a very important subject in image processing. It has been used in many applications such as HDTV, LCD-TVs, digital video camcorders, copy-print machines, medical imaging and so on. It is indispensable when the resolution of an image generated by a source device is different from the screen resolution of a target display. For example, we have to enlarge images to fit HDTV or to scale them down to fit the mini-size portable LCD panel. In many practical real-time applications, the scaling process is included in end-user equipment, so a good lower-complexity scaling technique, which is simple and suitable for low-cost VLSI implementation, is needed. In this dissertation, we focus on these two topics for display.
    On the denoising topic, we propose a simple edge-preserved denoising technique (SEPD) and its VLSI implementation for removing fixed-valued impulse noise. The design requires only low computational complexity and two line memory buffers. Its hardware cost is quite low. SEPD can preserve the edge features efficiently by finding a directional edge existed in the window centered on the current pixel and using the edge to determine the reconstructed value of current pixel. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art impulse denoising techniques. The VLSI architectures of the proposed design were implemented by using Verilog HDL. We used SYNOPSYS Design Vision to synthesize the designs with TSMC’s 0.18μm cell library. Synthesis results show that the proposed design yields a processing rate of about 167 M samples/second.
    On the scaling topic, we present an edge-oriented area-pixel scaling processor. We define a modified area-pixel model with only fixed-point coefficients and implement it with the proper and low-cost VLSI circuit. A simple edge catching technique is adopted to preserve the image edge features effectively so as to achieve better image quality. Compared with the previous low-complexity techniques, our method performs better in terms of both quantitative evaluation and visual quality. The seven-stage VLSI architecture for the proposed design was implemented and synthesized by using Verilog HDL and Synopsys Design Compiler, respectively. In our simulation, the circuit can achieve 200 MHz with 10.4K gate counts by using TSMC 0.18μm technology.

    CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 MOTIVATION 3 1.3 ORGANIZATION 6 CHAPTER 2 IMAGE DENOISING AND SCALING TECHNIQUES 7 2.1 INTRODUCTION 7 2.2 NOISE TYPES 8 2.2.1 Impulse noise 8 2.2.2 Gaussian noise 9 2.2.3 Rayleigh noise 9 2.3 IMAGE DENOISING METHODS 10 2.4 IMAGE SCALING METHODS 13 CHAPTER 3 A LOW-COST VLSI IMPLEMENTATION FOR EFFICIENT REMOVAL OF IMPULSE NOISE 19 3.1 INTRODUCTION 19 3.2 THE PROPOSED SEPD 20 3.3 VLSI IMPLEMENTATION OF SEPD 26 3.4 IMPLEMENTATION OF REDUCED SEPD 34 3.5 IMPLEMENTATION RESULTS AND COMPARISONS 38 3.6 CONCLUDING REMARKS 66 CHAPTER 4 A NOVEL IMAGE SCALING ALGORITHM BASED ON AREA-PIXEL MODEL 67 4.1 INTRODUCTION 67 4.2 THE PROPOSED METHOD 68 4.3 SIMULATION RESULTS 79 4.4 CONCLUDING REMARKS 88 CHAPTER 5 VLSI IMPLEMENTATION OF AN EDGE-ORIENTED IMAGE SCALING PROCESSOR 89 5.1 INTRODUCTION 89 5.2 HARDWARE IMPLEMENTATION ISSUES FOR AREA-PIXEL MODEL 90 5.3 THE PROPOSED LOW-COMPLEXITY ALGORITHM 92 5.4 VLSI ARCHITECTURE 102 5.5 SIMULATION RESULTS AND CHIP IMPLEMENTATION 108 5.6 CONCLUDING REMARKS 116 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 117 6.1 CONCLUSIONS 117 6.2 FUTURE WORK 118 REFERENCES 119 PUBLICATION LISTS 127

    [1] W. K. Pratt, Digital Image Processing. New York: Wiley-Interscience, 1991.
    [2] T. Nodes and N. Gallagher, “Median filters: some modifications and their properties,” IEEE Trans. ASSP, vol. ASSP-30, no. 5, pp. 739-746, Oct. 1982.
    [3] S.-J. Ko and Y.-H. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Trans. Circuits Syst., vol. 38, no. 9, pp. 984-993, Sept. 1991.
    [4] H. Hwang and R. Haddad, “Adaptive median filters: new algorithms and results,” IEEE Trans. Image Process., vol. 4, no. 4, pp. 499-502, 1995.
    [5] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,” Pattern Recognit. Lett., vol. 15, pp. 341-347, 1994.
    [6] S. Zhang and M.A. Karim, “A new impulse detector for switching median filter,” IEEE Signal Process. Lett., vol. 9, no. 11, pp. 360-363, Nov. 2002.
    [7] I. Aizenberg, and C. Butakoff, “Effective impulse detector based on rank-order criteria,” IEEE Signal Process. Lett., vol. 11, no. 3, pp. 363-366, Mar. 2004.
    [8] W. Luo, “Efficient removal of impulse noise from digital images,” IEEE Trans. Consumer Electron., vol. 52, no. 2, pp. 523-527, May 2006.
    [9] W. Luo, “An efficient detail-preserving approach for removing impulse noise in images,” IEEE Signal Process. Lett., vol. 13, no. 7, pp. 413-416, July 2006.
    [10] K.S. Srinivasan and D. Ebenezer, “A new fast and efficient decision-based algorithm for removal of high-density impulse noises,” IEEE Signal Process. Lett., vol. 14, no. 3, pp. 189-192, Mar. 2007.

    [11] S.-C. Hsia, “Parallel VLSI design for a real-time video-impulse noise-reduction processor,” IEEE Trans. Very Large Scale Integration Systems, vol. 11, no. 4, pp. 651-658, Aug. 2003.
    [12] I. Andreadis and G. Louverdis, “Real-time adaptive image impulse noise suppression,” IEEE Trans. Instrumentation and Measurement, vol. 53, no. 3, pp. 798-806, June 2004.
    [13] V. Fischer, R. Lukac and K. Martin, “Cost-Effective Video Filtering Solution for Real-Time Vision Systems,” EURASIP Journal on Applied Signal Processing, vol. 13, pp. 2026-2042, 2005.
    [14] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of impulse noise from highly corrupted images,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Process, vol. 46, pp. 78–80, Jan. 1999.
    [15] R.H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1479-1485, Oct. 2005.
    [16] P.-E. Ng and K.-K. Ma, “A switching median filter with boundary discriminative noise detection for extremely corrupted images,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1506-1516, June 2006.
    [17] N. I. Petrovic and V. Crnojevic, “Universal impulse noise filter based on genetic programming,” IEEE Trans. Image Process., vol. 17, no. 7, pp. 1109-1120, July 2008.
    [18] R. H. Chan, C. Hu and M. Nikolova, “An iterative procedure for removing random-valued impulse noise,” IEEE Signal Process. Lett., vol. 11, no, 12, pp. 921-924, Dec. 2004.

    [19] C.-Y. Lee, P.-W. Hsieh, and J.-M. Tsai, “High-speed median filter designs using shiftable content-addressable memory,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 544-549, Dec. 1994.
    [20] C.-T. Chen, L.-G. Chen, and J.-H. Hsiao, “VLSI implementation of a selective median filter,” IEEE Trans. Consumer Electron., vol. 42, no. 1, pp. 33-42, Feb. 1996.
    [21] 0.18μm TSMC/Artisan memory compiler, http://www.artisan.com.
    [22] I. Pitas and A. Venetsanopoulos, Nonlinear Digital Filters: Principles and Applications. Boston, MA: Kluwer, 1990.
    [23] S.-J. Ko and Y.-H. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Trans. Circuits Syst., vol. 38, no. 9, pp. 984-993, Sept. 1991.
    [24] M. Nikolova, “A Variational Approach to Remove Outliers and Impulse Noise,” Journal of Mathematical Imaging and Vision, vol. 20, no. 1-2, pp. 99-120, 2004.
    [25] L. Bar, N. Sochen, and N. Kiryati, “Image deblurring in the presence of impulsive noise,” International Journal of Computer Vision, vol. 70, no. 3, pp. 279-298, 2006.
    [26] P. Civicioglu, “Using Uncorrupted Neighborhoods of the Pixels for Impulsive Noise Suppression With ANFIS,” IEEE Trans. Image Process., vol. 16, no. 3, pp. 759-773, Mar. 2007.
    [27] J.A. Guerrero-Colon, L. Mancera, and J. Portilla, “Image Restoration Using Space-Variant Gaussian Scale Mixtures in Overcomplete Pyramids,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 27-41, Jan. 2008.
    [28] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, NJ: Prentice-Hall, 2002.
    [29] A. K. Jain, Fundamentals of Digital Image Processing, NJ: Prentice-Hall, 1989.

    [30] T.-H. Chen, Y.-C. Chiou and C.-T. Huang, “A small-size Chinese font display by perception-based method,” IEEE Int. Conf. Image Process., vol. 4, pp. 2407-2410, Oct. 2004.
    [31] S. Fifman, “Digital rectification of ERTS multispectral imagery,” in Proc. Significant Results Obtained from Earth Resources Technology Satellite-1, vol. 1, pp. 1131-1142, 1973.
    [32] J. A. Parker, R. V. Kenyon and D. E. Troxel, “Comparison of interpolation methods for image resampling,” IEEE Trans. Medical Imaging, vol. 2, no. 3, pp. 31-39, 1983.
    [33] C.-H. Kim, S.-M. Seong, J.-A. Lee and L.-S. Kim, “Winscale: An image scaling algorithm using an area pixel model,” IEEE Trans. Circuits & Systems for Video Technology, vol. 13, no. 6, pp. 549-553, June 2003.
    [34] I. Andreadis and A. Amanatiadis, “Digital image scaling,” IEEE Instrumentation and Measurement Tech. Conf., vol. 3, pp. 2028-2032, May 2005.
    [35] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoustics, Speech and Signal Process., vol. ASSP-26, no. 6, pp. 508-517, Dec. 1978.
    [36] H.-C. Pu, S.-F. Liang, and C.-T. Lin, “A HVS-directed neural-network-based image resolution enhancement scheme for image resizing,” Image Processing and Pattern Recognition, vol. 15, no.4, pp. 605-615, 2007.
    [37] M. Li and T. Q. Nguyen, “Markov random field model-based edge-directed image interpolation,” IEEE Trans. Image Process., vol. 17, no. 7, pp. 1121-1128, July 2008.
    [38] D. D. Muresan and T. W. Parks, “Adaptively quadratic (AQua) image interpolation,” IEEE Trans. Image Process., vol. 13, no. 5, pp. 690-698, May 2004.
    [39] S. G. Chang, Z. Cvetkovic and M. Vetterli, “Locally adaptive wavelet-based image interpolation,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1471-1485, June 2006.
    [40] L.-J. Wang, W.-S. Hsieh, and T.-K. Truong, “A fast computation of 2-D cubic-spline interpolation,” IEEE Signal Processing Letters, vol.11, no.9, pp.768 - 771, Sep. 2004.
    [41] J. Shi and S. E. Reichenbach, “Image interpolation by two-dimensional parametric cubic convolution,” IEEE Trans. Image Process., vol. 15, no. 7, pp. 1857-1870, July 2006.
    [42] S. Carrato and L. Tenze, “A high quality 2× image interpolator,” IEEE Signal Processing Letters, vol. 7, no. 6, pp. 132-134, June 2000.
    [43] C.-C. Lin, Z.-C. Wu, W.-K. Tsai, M.-H. Sheu and H.-K. Chiang, “The VLSI Design of Winscale for Digital Image Scaling,” IEEE Int. Conf. Intelligent Information Hiding and Multimedia Signal Process., vol. 2, pp. 511-514, Nov. 2007.
    [44] K. T. Gribbon and D. G. Bailey, “A novel approach to real-time bilinear interpolation,” in Proc. of 2nd IEEE Int. Conf. Electronic Design, Test and Applications, pp 126-131, Jan. 2004.
    [45] G. Ramponi, “Warped distance for space-variant linear image interpolation,” IEEE Trans. Image Process., vol. 8, no. 5, pp. 629-639, May 1999.
    [46] S. Yuan, M. Abe, A. Taguchi, and M. Kawamata, “High accuracy WaDi image interpolation with local gradient features,” Int. Sympo. Intelligent Signal Process. and Communication System, pp. 85-88, Dec. 2005.
    [47] E. Aho, J. Vanne, K. Kuusilinna and T. D. Hamalainen, “Comments on Winscale: an image-scaling algorithm using an area pixel Model,” IEEE Trans. Circuits & Systems for Video Technology, vol. 15, no. 3, pp. 454-455, Mar. 2005.
    [48] Z. Zhang, Y. Zhao, “Multiple Description Image Coding Based on Fractal,” International Journal of Innovative Computing, Information and Control, vol.3, no.6(B), pp.1615-1623, 2007.

    [49] C. Chang, C. Lin and Y. Hu, “An SVD oriented watermark embedding scheme with high qualities for the restored images,” International Journal of Innovative Computing, Information and Control, vol.3, no.3, pp.609-620, 2007.
    [50] Chang, C. C., T. Lu, Y. F. Chang and C. T. Lee, “Reversible data hiding schemes for deoxyribonucleic acid (DNA) medium,” International Journal of Innovative Computing, Information and Control, vol.3, no.5, pp.1145-1160, 2007.
    [51] J. Li, S. Chu, J. Ho and J. Pan, “Adaptive data-dependent matrix norm based Gaussian kernel for facial feature extraction,” International Journal of Innovative Computing, Information and Control, vol.3, no.5, pp.1263-1272, 2007.
    [52] T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: Interpolation methods in medical image processing,” IEEE Trans. Medical Imaging, vol. 18, no. 11, pp. 1049-1075, 1999.
    [53] C. Weerasnghe, M. Nilsson, S. Lichman and I. Kharitonenko, “Digital zoom camera with image sharpening and suppression,” IEEE Trans. Consumer Electronics, vol. 50, no. 3, pp. 777-786, Aug. 2004.
    [54] J. K. Han, S. U. Baek, “Parametric Cubic Convolution Scalar for Enlargement and Reduction of Image,” IEEE Trans. Consumer Electronics, vol.46, pp. 247-256, May 2000.
    [55] L.J. Wang, W.S. Hsieh, and T.K. Truong, “A Fast Computation of 2-D Cubic-Spline Interpolation,” IEEE Signal Processing Letters, vol.11, no.9, pp.768 - 771, Sep. 2004.
    [56] H. A. Aly and E. Dubois, “Image up-sampling using total-variation regularization with a new observation model,” IEEE Trans. Image Processing, vol. 14, pp. 1647-1659, Oct. 2005.
    [57] T. Feng, W. L. Xie and L. X. Yang, “An architecture and implementation of image scaling conversion,” in Proc. IEEE Int. Conf. ASIC, pp. 409-410, 2001.
    [58] M. A. Nuno-Maganda and M. O. Arias-Estrada, “Real-time FPGA-based architecture for bicubic interpolation: an application for digital image scaling,” in Proc. IEEE Int. Conf. Reconfigurable Computing and FPGAs, pp. 8-11, 2005.

    無法下載圖示 校內:2029-07-07公開
    校外:2029-07-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE