| 研究生: |
柯秀蓉 Ko, Hsiu-Jung |
|---|---|
| 論文名稱: |
以金奈米粒子修飾之聚雙甲基矽氧烷為基材之反相蛋白質陣列晶片之研發 AuNP-Anchored PDMS Substrate for the Development of Reverse-Phase Protein Array |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 聚雙甲基矽氧烷 、金奈米粒子 、反相蛋白質陣列 |
| 外文關鍵詞: | PDMS, gold nanoparticles, reverse-phase protein array |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質譜技術與蛋白質晶片技術已成為研究蛋白質體學的重要方法。蛋白質晶片技術可以高效地獲取生物體中的蛋白質訊息,且一次大量的樣品檢驗可減少所需成本。奈米粒子本身具有高的表面積及可與生物分子相容的優點,因此,在本研究中,以金奈米粒子修飾於聚雙甲基矽氧烷基材上,發展以此為基材之反相蛋白質陣列晶片。
我們成功地以血紅素蛋白質做為連結試劑,將金奈米粒子穩定地修飾於晶片表面上,首先針對雌激素受體ERα分析,可得到檢量線 ,線性範圍為44.6至1.67 ng/mL,求得此系統之偵測極限值為0.5 ng/mL。
針對所使用的抗體,也可以藉著反相蛋白質陣列晶片進行快速地篩選,並評估其專一性。更進一步,利用此晶片可以研究MCF-7細胞經過雌激素E2作用後,在不同時間點的蛋白質表現。使用修飾之PDMS基材製作組織晶片,可使組織平整貼附,且具有耐熱、耐有機溶劑等特性。
綜合以上實驗結果,顯示出以金奈米粒子修飾之聚雙甲基矽氧烷為基材之反相蛋白質陣列晶片,具有良好的再現性與穩定性,使用修飾後的PDMS基材製作組織晶片,也有極大的潛力。
Mass spectrometry and protein chip technology have already become important methods for proteomic research. Protein information from organisms can be gained high-efficiently by using protein chip technology. A large number of samples could be screened using protein chips at low cost. On the other hand, nanoparticles have many advantages such as large surface area and high biocompatibility. In this study, we would like to take these advantages associated with gold nanoparticles (AuNPs) in fabricating a reverse-phase protein array on AuNPs-anchored poly (dimethylsiloxane) (PDMS) substrate.
We successfully stabilized and immobilized Au nanoparticles on PDMS surface by using myoglobin as a linking agent. Recombinant estrogen receptor alpha (ERα) was first used to test our system. The calibration curve was estimated to be y=1.1451x + 2.4936 (R2=0.9954) in a linear range from 44.6 to 1.67 ng/mL and the detection limit was determined to be around 0.5 ng/mL.
We demonstrated that such modified PDMS chip could differentiate the specificity of antibodies from different sources at a high screening speed. Furthermore, we chip could be used for protein expression profiling of MCF-7 cells under 17β-estradiol (E2) treatment of different time courses. We further demonstrated that such modified PDMS chip could be used to immobilize tissue pieces smoothly and with good tolerance for heat and organic solvents.
Thus, the results confirmed that our reverse-phase protein array fabricated on AuNP-anchored PDMS substrate exhibited good reproducibility and stability. Furthermore, such modified PDMS chip holds a great potential to fabricate tissue arrays.
1.馬立人, 蔣中華, 生物晶片. 九州圖書文物有限公司. 2003
2.姜忠義, 成國祥, 奈米生物科技. 五南圖書出版股份有限公司. 2004
3.http://biochip.nchu.edu.tw/index_c.html.
4.Schena, M., et al., Quatitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science. 270(5235): p. 467-470. 1995
5.Manz, A., et al., Planar chips technology for miniaturization and integration of separation techniques into monitoring systens – capillary electrophoresis on a chip. Journal of chromatography. 593(1-2): p. 253-258. 1992
6.Fister, J.C., S.C. Jacobson, and J.M. Ramsey, Ultrasensitive cross correlation electrophoresis on microchip devices. Analytical Chemistry. 71(20): p. 4460-4464. 1999
7.Chiem, N. and D.J. Harrison, Microchip-based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline. Analytical Chemistry. 69(3): p. 373-378. 1997
8.Li, J.J., et al., Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: Application to rapid analyses of proteolytic digests. Analytical Chemistry. 71(15): p. 3036-3045. 1999
9.Burns, M.A., et al., An integrated nanoliter DNA analysis device. Science. 282(5388): p. 484-487. 1998
10.Kononen, J., et al., Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Medicine. 4(7): p. 844-847. 1998
11.Ziauddin, J. and D.M. Sabatini, Microarrays of cells expressing defined cDNAs. Nature. 411(6833): p. 107-110. 2001
12.Zhu, H. and M. Snyder, Protein chip technology. Current Opinion in Chemical Biology. 7(1): p. 55-63. 2003
13.Baptista, P., et al., Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry. 391(3): p. 943-950. 2008
14.Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 382(6592): p. 607-609. 1996
15.You, C.C., et al., Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. Nature Nanotechnology. 2(5): p. 318-323. 2007
16.Castaneda, M.T., S. Alegret, and A. Merkoci, Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis. 19(7-8): p. 743-753. 2007
17.Nagatani, N., et al., Gold nanoparticle-based novel enhancement method for the development of highly sensitive immunochromatographic test strips. Science and Technology of Advanced Materials. 7(3): p. 270-275. 2006
18.Gupta, S., et al., Characterization and optimization of gold nanoparticle-based silver-enhanced immunoassays. Analytical Chemistry. 79(10): p. 3810-3820. 2007
19.Hsieh, B.Y., et al., Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles. Analytical Chemistry. 79(9): p. 3487-3493. 2007
20.Wang, Z.P., et al., In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clinical Chemistry. 52(10): p. 1958-1961. 2006
21.Prakash, A.R., et al., Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sensors and Actuators B-Chemical. 113(1): p. 398-409. 2006
22.Kim, S.J., et al., Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip. Analytical Chemistry. 78(23): p. 8011-8019. 2006
23.Xu, F., et al., Polymer microfluidic chips with integrated waveguides for reading microarrays. Analytical Chemistry. 79(23): p. 9007-9013. 2007
24.Effenhauser, C.S., et al., Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Analytical Chemistry. 69(17): p. 3451-3457. 1997
25.Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry. 70(23): p. 4974-4984. 1998
26.http://www.rcsb.org/pdb/explore/images.do?structureId=1ERE.
27.Gustafsson, J.A., Estrogen receptor beta - a new dimension in estrogen mechanism of action. Journal of Endocrinology. 163(3): p. 379-383. 1999
28.Katzenellenbogen, B.S. and J.A. Katzenellenbogen, Estrogen receptor transcription and transactivation Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Research. 2(5): p. 335-344. 2000
29.Dadiani, M., et al., Estrogen regulation of vascular endothelial growth factor in breast cancer in vitro and in vivo: the role of estrogen receptor alpha and c-Myc. Endocrine-Related Cancer. 16(3): p. 819-834. 2009
30.Dehdashti, F., et al., PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Research and Treatment. 113(3): p. 509-517. 2009
31.Wu, X.L., et al., The Tamoxifen Metabolite, Endoxifen, Is a Potent Antiestrogen that Targets Estrogen Receptor alpha for Degradation in Breast Cancer Cells. Cancer Research. 69(5): p. 1722-1727. 2009
32.Bodas, D. and C. Khan-Malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment - An SEM investigation. Sensors and Actuators B-Chemical. 123(1): p. 368-373. 2007
33.Makamba, H., et al., Stable permanently hydrophilic protein-resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking. Analytical Chemistry. 77(13): p. 3971-3978. 2005
34.謝雅玉, 用於微晶片之聚雙甲基矽氧烷基材表面穩定化學修飾, 國立成功大學化學所碩士論文. 2005
35.王安妮, 奈米複合材料用於蛋白質體分析之研究, 國立成功大學微機電所碩士論文. 2006
36.Grabar, K.C., et al., Two-dimensional arrays of colloidal gold particles: A flexible approach to macroscopic metal surfaces. Langmuir. 12(10): p. 2353-2361. 1996
37.李昱廷, 金奈米粒子在生物晶片上之修飾及其在去氧核糖核酸及蛋白質親和作用力辨識之應用, 國立成功大學化學所博士論文. 2009
38.Li, Y.T., et al., Heme Protein Assisted Dispersion of Gold Nanoparticle Multilayers on Chips: From Stabilization to High-Density Double-Stranded DNAs Fabricated in Situ for Protein/DNA Binding. Analytical Chemistry. 81(10): p. 4076-4081. 2009
39.Paweletz, et al., Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 20: p. 1981-1989. 2001
40.Grubb, R.L., et al., Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics. 3(11): p. 2142-2146. 2003
41.Rapkiewicz, A., et al., The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. . Cancer Research. 111: p. 173-184. 2007
42.Korf, U., et al., Reverse-phase protein arrays for application-orientated cancer research. Proteomics Clinical Applications. 3(10): p. 1140-1150. 2009
校內:2013-02-04公開