簡易檢索 / 詳目顯示

研究生: 謝文明
Shien, Wen-Ming
論文名稱: 氧化鋅透明薄膜電晶體之特性研究
The properties research of ZnO based Transparent Thin-Film Transistors
指導教授: 張允崇
Chang, Yun-Chorng
李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 47
中文關鍵詞: 薄膜電晶體氧化鋅
外文關鍵詞: TFT, ZnO
相關次數: 點閱:50下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討增強型下閘極氧化鋅透明薄膜電晶體之特性,藉由改變含微量鋁金屬之氧化鋅通道層厚度和改變氧化鋅含微量鋁金屬之鋁含量,並對不同閘源極電壓下之汲源極電流-汲源極電壓關係、固定汲源極電壓之汲源極電流-閘源極電壓關係、元件照光穩定性及元件熱穩定性進行分析。
    在通道層厚度方面,由於電子通道在通道層底部形成,欲連接到源/汲極,必須再經過半導體層厚度,載子的流動需要經過這個低導電性的區域,將於此區域造成許多壓降,所以將通道層減薄,使得經過低導電性的路徑變短。本論文改變厚度分別為100nm、75nm、50nm、25nm及10nm,其中以厚度25nm為最佳,場效載子移動率達32.5cm2/V-s,電流開關比(Ion/Ioff)為107。
    探討不同共濺鍍鋁射頻功率,分別為12.5W、25W及37.5W,其中鋁射頻功率為25W及37.5W,在VGS=0時汲源極電流皆不為零,尤其共濺鍍鋁射頻功率37.5W其電流更是增大需多,且沒有飽和的現象。所以共濺鍍鋁射頻功率12.5W為最佳。
    探討元件光穩定方面,照光波段為400nm~700nm,在汲源極電流-閘源極電壓關係中,發現隨著照光的波長越短,光電效應越顯著,汲源極電流及關閉電流隨著變大。
    在元件熱穩定性方面,分別對元件進行25oC、50oC、75oC及100oC量測,發現線性區的阻值,隨溫度變大而變大,所以在汲源極電流-閘源極電壓關係中,在閘源極電壓為正偏時,電流隨溫度變大而有變小之趨勢;在閘源極電壓為負偏時,關閉電流隨溫度變大而變大。

    The purpose of this research is to investigate the Bottom-gate-type and enhancement-mode thin film transistors with the Al slightly doped ZnO films as the active channel layers. This research changed the different amount of Al slightly doped ZnO films and the thickness of the Al slightly doped ZnO films and investigated electrical characteristics of the device including IDS-VDS and IDS-VGS, the thermal stability and the optical stability.
    The carries passed through the channel layer which were low electric conductivity. Because carries were induced at bottom of the channel layer, the region between source and drain were low electric conductivity. This research were changed the cannel thickness with 100nm, 75nm, 50nm, 25nm and 10nm. The thickness of 25nm is better than the others. The bottom-gate-type TFTs operated in enhancement mode with a field-effect mobility of 32.5 cm2 /V-s, an on-off current ratio of ~107.
    This research changed the different amount of co-sputtered Al slightly doped ZnO films with the Al RF power of 12.5W, 25W and 37.5W. When the Al RF power were 25W and 37.5W at VGS=0, IDS were not turned off and saturation. Especially, IDS was larger with the Al RF power of 37.5W. So the Al RF power of 25W was better than the others.
    The TTFT was illuminated with 400nm, 500nm, 600nm and 700nm wavelengths for optical stability. The log10 IDS-VGS curves exhibits that the IDS and photoelectric effect were larger and obvious with the shorter illuminated wavelengths.
    The TTFT was measured with 25oC, 50oC, 75oC and 100oC for thermal stability. The IDS-VDS curves exhibits that the resistance of linear region was larger with larger temperature so IDS was littler. The log10 IDS-VGS curves exhibits IDS was larger with larger temperature when VGS was negative.

    中文摘要..…………………………………………………...Ⅰ Abstract (English) ………………………………………….. III 致謝…………………………………………………………. V 目錄……………………………………………………...…...VI 表目錄…..………………………………………….…….... VIII 圖目錄……………………………………………….……….IX 第一章 緒論...........................................................................................1 1.1 透明薄膜電晶體之發展及近況..…………………………………...1 1.2 透明薄膜電晶體與傳統薄膜電晶體之比較.....................................2 參考文獻..………………………………………………………………..4 第二章 理論........................................................................................6 2.1 薄膜電晶體之工作原理…………….................................................6 2.1.1薄膜電晶體與金氧半場效電晶體的比較…………………...7 2.2薄膜電晶體之元件特性.......................................................................8 2.2.1薄膜電晶體之電流特性……………………………………....8 2.2.2薄膜電晶體之載子移動率…………………………………....9 參考文獻…………..……………………………………………………12 第三章 透明薄膜電晶體製程.........................................................13 3.1 結構...................................................................................................13 3.2 元件製作...........................................................................................13 3.2.1 閘極製作……………………………………….…...………13 3.2.2 高台製作................................................................................15 3.2.3高濃度層、汲極與源極………………………………………16 參考文獻………………………………………………………………..22 第四章 薄膜及元件特性與量測....................................................23 4.1 高濃度薄膜特性研究…………….…………………………..……23 4.2 氧化鋅含微量鋁金屬及氧化鋅通道層直流特性之比較……..….24 4.3 不同通道層厚度氧化鋅含微量鋁金屬通道層直流特性量測之比較…………………………………………………………………..25 4.4 不同鋁金屬含量之氧化鋅通道層直流特性之比較…………………………………………………………………..26 4.5 氧化鋅含微量鋁金屬通道層之照光直流特性量測…………………………………………………………………..27 4.6 氧化鋅含微量鋁金屬通道層之變溫直流特性量測…………………………………………………………………..28 參考文獻…..……………………………………………………....……45 第五章 結論.........................................................................................46

    [1.1] M. W. J. Prins, K. G. Holz, G. Mller, J. F. M. Cillessen, and J. B. Giesbers,“ A ferroelectric transparent thin-film transistor”, Appl. Phys. Lett., vol. 68, pp. 3650-3653, (1996).
    [1.2] S. Kobayashi, S. Nonomura, T. Ohmori, K. Abe, S. Hirata, T. Uno, T. Gotoh, and S. Nitta, “Optical and electrical properties of amorphous and microcrystalline GaN films and their application to transpatent TFT”, Appl. Surf. Sci., vol. 113/114, pp. 480-484, (1997).
    [1.3] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett., vol. 82, pp. 733-735, (2003).
    [1.4] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, Jpn. J. Appl. Phys., vol. 93, pp. 1624-1630, (2003).
    [1.5] H. S. Bae, M. H. Yoon, J. H. Kim, and S. Im, “Photodetecting properties of ZnO-based thin-film transistors”, Appl. Phys. Lett., vol. 83, pp. 5313-5315, (2003).
    [1.6] H. S. Bae, J. H. Kim, and S. Im, “Mobility enhancement in ZnO-based TFTs by H treatment”, Electrochem. Solid-State Lett., vol. 7, pp. G279-G281, (2004).
    [1.7] Q. J. Yao and D. J. Li, “Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer”, J. Non-Crystalline Solids, vol. 351, pp. 3191-3194, (2005).
    [1.8] K. Lee, J. H. Kim, and S. Im, “Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric”, Appl. Phys. Lett., vol. 88, no. 023504, (2006).
    [1.9] R. Navamathavan, E. J. Yang, J. H. Lim, D. K. Hwang, J. Y. Oh, J. H. Yang, J. H. Jang, and S. J. Parka, “Effects of electrical bias stress on the performance of ZnO-based TFTs fabricated by RF magnetron sputtering”, J. Electrochem. Soci., vol. 153, pp. G385-G388, (2006).
    [1.10] H. S. Bae, S. Im and J. H. Songb, “Device isolation of ultraviolet-detecting ZnO-based transistors using energetic B ions”, J. Electrochem. Soci., vol. 153, pp. G791-G794, (2006).
    [2.1] 戴亞翔, “TFT-LCD 面板的驅動與設計”, 五南出版社, 新竹, (2008)。
    [2.2] S. M. Sze,“Physics of semiconductor device”, New York: John Wiley & Sons, second ed. (1981).
    [2.3] A. C. Tickle,“Thin film transistors”, New York: Wiley & Sons, (1969).
    [2.4] D. K. Schroder, “Semiconductor Material and Device Characterization”, A Wiley-Interscience Publication, Arizona (1998).
    [3.1] S. M. Sze,“Physics of semiconductor device”, New York: John Wiley & Sons, second ed. (1981).
    [3.1] 戴亞翔, “TFT-LCD 面板的驅動與設計”, 五南出版社, 新竹, (2008)。
    [4.1] M. Chen, Z. L. Pei, X. Wang, C. Sun and L. S. Wen “Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A, vol. 19, pp. 963-970, (2001).
    [4.2] B. Y. Oh, M. C. Jeong, W. Lee and J. M. Myoung “Properties of transparent conductive ZnO:Al films prepared by co-sputtering”, J. Cryst. Growth, vol. 274, pp. 453–457, (2005).
    [4.3] L. W. Lai and C. T. Lee, “Investgation of Optical and Electrical Properties of ZnO Thin Films” Mat. Chem. Phys., vol. 110, pp. 393-396, (2008).
    [4.4] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices”, The Press Syndicate of The University of Cambridge, London, (1998).
    [4.5] S. Masuda, K. Kitamura, Y. Okumura and S. Miyatake, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys., vol. 93, pp. 1624-1630, (2003)
    [4.6] H.S. Bae and S. Im, “Ultraviolet detecting properties of ZnO-based thin film transistors”, Thin Solid Films, vol. 469-470, pp. 75-79, (2004).
    [4.7] O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoc, “High Temperature Characteristics of AlGaN/GaN Modulation Doped Field-Effect Transistors.”, Appl. Phys. Lett., vol. 69, pp. 3872-3874, (1996).
    [4.8] S. M. Sze,“Physics of semiconductor device”, New York: John Wiley & Sons, second ed. (1981).

    下載圖示 校內:2013-08-06公開
    校外:2013-08-06公開
    QR CODE