簡易檢索 / 詳目顯示

研究生: 黃玉君
Huang, Yu-Jun
論文名稱: 探討Jun活性區域結合蛋白1和B型肝炎病毒表面抗原pre-S2突變體之交互作用區域
Identification of functional domains for interactions between JAB1 and the hepatitis B virus surface antigen pre-S2 mutant
指導教授: 黃溫雅
Huang, Wenya
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 交互作用表面抗原
外文關鍵詞: pre-S2, HBV, JAB1
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在台灣慢性B型肝炎病毒感染是造成肝細胞癌最重要的因素。慢性B型肝炎病毒感染的過程中,病毒的表面抗原會因為免疫壓力的篩選而衍生出突變型,稱之為大型B型肝炎病毒表面抗原pre-S突變型。其中一種突變型因為在表面抗原S基因上的pre-S2區域有部分序列缺失,因而稱之為大型B型肝炎病毒表面抗原pre-S2突變型,近來被認為和肝細胞癌的發展相關。因為大型B型肝炎病毒表面抗原pre-S2突變型會引起氧化壓力、造成染色體不穩定性、並且使得肝細胞容易形成結節,這些現象在在顯示它可能參與在癌化的過程當中。為釐清大型B型肝炎病毒表面抗原pre-S2突變型在肝細胞癌化過程所扮演的角色,過去我們實驗室利用酵母菌雙雜交法找出和它有交互作用的蛋白質,其中之一為Jun活性區域結合蛋白1 (JAB1),兩者的結合能力也另外利用免疫沉澱法確認屬實,在功能上,我們發現兩者間的交互作用會造成細胞質中的JAB1從連結的MIF脫離並且往細胞核聚集,細胞核中累積大量的JAB1進而造成p27的降解增加,p27無法持續抑制CDK2-cyclin E/CDK2-cyclin A複合體,使得RB被磷酸化,啟動下游基因表現,促使細胞週期持續進行進入S期。JAB1的功能已經被證實,但是JAB1引起的種種現象是否是因為它和大型B型肝炎病毒表面抗原pre-S2突變型直接交互作用而造成的,仍須更直接的證據來支持,因此我的研究目標就是要去尋找出大型B型肝炎病毒表面抗原pre-S2突變型和JAB1直接交互作用的區域。首先我們將大型B型肝炎病毒表面抗原pre-S2突變型創造出幾個部份序列缺失的Clone,將其接入具有GAL4 DNA結合區域的載體pGBKT7中,其中五個突變型是以原生型大型B型肝炎病毒表面抗原當做模板,將大型B型肝炎病毒表面抗原pre-S2突變型在pre-S2區域的基因缺失區域的五十四個核苷酸分成更小的三部份,創造出 LHBS wt △125-134,LHBS wt △130-138和LHBS wt △135-143,而 LHBS wt M120I則是模擬中間起始碼位置由ATG突變成ATA,LHBS wt N123Q代表可能被破壞掉的N-醣化區域 (N-glycosylation site),另外的八個突變型是利用大型B型肝炎病毒表面抗原pre-S2突變型為模型,將其面向細胞質的區域做一序列缺失而創造出LHBS pre-S2 △1-60,LHBS pre-S2 △1-119,LHBS pre-S2 △1-145,LHBS pre-S2 △1-174,LHBS pre-S2 △203-254,LHBS pre-S2 △203-228,LHBS pre-S2 △229-254和LHBS pre-S2 △361-381 。JAB1基因則是接入具有GAL4 活化區域的載體pACT2上,最後送入酵母菌Y187或AH109中進行酵母菌雙雜交篩選。我們的結果顯示大型B型肝炎病毒表面抗原pre-S2突變型失去其胺基酸序列61到119會完全喪失它和JAB1的結合能力。在pre-S2區域的部分序列缺失都還是能和JAB1有交互作用,因此我們認為pre-S2區域上的序列缺失可能改變了整個蛋白的結構組成,使得原先被包埋在內的區域暴露出來,而外露的區域正好能和JAB1有交互作用。我們期望可以透過此研究對B型肝炎病毒有關的致癌機轉有更進一步的了解,並且找到更好的治療方法。

    Chronic hepatitis B virus (HBV) infection is the major cause for hepatocellular carcinoma (HCC) in Taiwan. In the late stages of chronic HBV infection, the pre-S mutant large surface antigen (LHBS) emerges naturally. The pre-S2 mutant LHBS, partially deleted in the pre-S2 region of the surface gene, has been shown predisposed to HCC. The pre-S2 mutant LHBS induces oxidative stress, genomic instabilities, and nodular proliferation of hepatocytes, indicating that it regulates the tumorigenic processes. By using yeast two-hybrid and co-immunoprecipitation assays, we found that Jun activation domain-binding protein 1 (Jab1) is directly associated with pre-S2 mutant LHBS. In our previous study, we found that Jab1 interacts with pre-S2 mutant LHBS and results in p27 degradation, Rb phosphorylation, and S phase progression. In this study, we want to map the domains on pre-S2 mutant LHBS to interact with Jab1. We constructed the partially deleted pre-S2 mutant LHBS genes into the yeast two-hybrid vector pGBKT7, which contains the GAL4 DNA-binding domain. And the Jab1 gene was cloned into pACT2, which contains the GAL4-activation domain. The pair-wise interactions were tested between Jab1 and each pre-S2 mutant LHBS clones by yeast two-hybrid assays in Y187 or AH109 cells. Our data have shown that deletion of amino acid sequences 61 to 119 in the pre-S2 mutant LHBS gene lost its interaction activities with Jab1 completely. In addition, three partial deleted LHBS constructs, covered patient’s pre-S2 deletions, did not loss the interaction activities with Jab1. It is suggested that the deletion in pre-S2 region of the LHBS gene may disrupt the intramolecular interactions of LHBS and expose Jab1 interaction domains. Through these studies, we hope the role of JAB1 as regard to the pre-S2 mutant LHBS-induced HCC can be further understood.

    目錄 中文摘要-----------------------------------------------I 英文摘要-----------------------------------------------II 誌謝---------------------------------------------------III 目錄---------------------------------------------------IV 表目錄-------------------------------------------------VI 圖目錄-------------------------------------------------VI 附錄---------------------------------------------------VII 自述---------------------------------------------------VIII 第一章 緒論 1.1 B型肝炎病毒------------------------------------------1 1.2 B型肝炎病毒生活史------------------------------------2 1.3 B型肝炎病程與診斷------------------------------------3 1.4 B型肝炎病毒與肝癌------------------------------------5 1.5 B型肝炎表面抗原--------------------------------------8 1.6 Pre-S2 mutant大型表面抗原與其致癌機轉----------------9 1.7 酵母菌雙雜交法 (yeast two-hybrid)的原理及應用--------11 1.8 Jun活性區域結合蛋白1 (JAB1)--------------------------12 1.9 研究動機---------------------------------------------14 第二章 實驗材料與方法 2.1 細胞株和實驗藥品-------------------------------------16 2.2 酵母菌雙雜交試驗 (yeast two-hybrid assay)------------16 2.2.1 Clone 製-----------------------------------------16 2.2.2 大腸桿菌的質體轉化-------------------------------22 2.2.3 小量質體抽取-------------------------------------22 2.2.4 酵母菌的質體轉化---------------------------------23 2.2.5 酵母菌蛋白質的萃取與定量-------------------------24 2.2.6 西方墨點法---------------------------------------25 2.2.7 -galactosidase濾紙試驗 (-galactosidase filter assay)--------26 第三章 結果 3.1 酵母菌雙雜交試驗-------------------------------------27 3.1.1 以西方墨點測試送入酵母菌Y187及AH109的質體之表現--27 3.1.2 在pre-S2區域的核苷酸缺失對於大型B型肝炎病毒表面抗原的影響-------------------------------------------27 3.1.3在pre-S1區域後半段的核苷酸序列是負責與JAB1交互作用的功能性區域--------------------------------------29 第四章 討論--------------------------------------------32 參考文獻-------------------------------------------------36 表目錄 表1. 酵母菌雙雜交試驗所使用的質體------------------------43 表 2. 使用在質體製備的引子序列 (primer sequences)--------46 圖目錄 圖1. 大型B型肝炎病毒表面抗原原生型 (wild type)和pre-S2突變型-------------------------------------------------48 圖2. 酵母菌雙雜交法原理----------------------------------49 圖3. 酵母菌雙雜交法實驗流程圖----------------------------50 圖4. 酵母菌Y187以及AH109---------------------------------51 圖5. 酵母菌雙雜交法使用的原生型大型B型肝炎病毒表面抗原突變型--------------------------------------------------52 圖6. 酵母菌雙雜交法使用的大型B型肝炎病毒表面抗原pre-S2突變型及結果摘要----------------------------------------53 圖7. 酵母菌雙雜交法使用的JAB1突變型----------------------54 圖8. 以西方墨點測試送入酵母菌Y187的質體之表現------------55 圖9. 以西方墨點測試送入酵母菌AH109的質體之表現-----------56 圖10. β-galactosidase濾紙試驗的結果----------------------57 圖11. 酵母菌雙雜交篩選結果-------------------------------58 圖12. 酵母菌雙雜交篩選結果-------------------------------59 圖13. Model----------------------------------------------60 附錄 附1. B型肝炎病毒顆粒-------------------------------------61 附2. B型肝炎病毒生命週期---------------------------------62 附3. 毛玻璃狀肝細胞--------------------------------------63 附4. B型肝炎病毒表面抗原---------------------------------64 附5. B型肝炎病毒感染病程中pre-S突變抗原的發生率----------65 附6. 大型B型肝炎病毒表面抗原pre-S突變型引起肝炎 (HCC)有關機轉的模型------------------------------------------66 附7. JAB1/CSN5藉由p27調控細胞週與AP-1 mediated transcription角色-----------------------------------67 附8. 大型B型肝炎病毒表現抗原pre-S2突變型和JAB1交互作用後造成之影響-----------------------------------------68 附9. 大型B型肝炎病毒表面抗原和JAB1交互作用情形-----------69 附10. 酵母菌雙雜交法使用載體圖譜-------------------------70 附11. 胺基酸序列PXXP的示意圖-----------------------------71 附12. pre-S1區域上的胺基酸序列70-94為細胞質面嵌入作用的主要決定位置-------------------------------------------72 自述-----------------------------------------------------73

    Beasley RP. (1988) Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942–1956.

    Blumberg BS, Gerstley BSJ, Hungerford DA, London WT and Sutnick AJ, (1967) A serum antigen (Australia antigen) in Down’s syndrome, leukemia and hepatitis. Annals of Internal Medicine 66, 924-931.

    Brechot, C., Hadchouel, M., Scotto, J., Degos, F., Charnay, P., Trepo, C., and Tiollais, P. (1981). Detection of hepatitis B virus DNA in liver and serum: a direct appraisal of the chronic carrier state. Lancet 2, 765-768.

    Bruni R, D’Ugo E, Giuseppetti R, Argentini C, Rapicetta M. (1999). Virology 257, 483–490.

    Bruni R, D’Ugo E, Villano U, Fourel G, Buendia MA, Rapicetta M. (2004). Virology 329, 1–10.

    Buendia MA. (1994) In: Christian B (ed). Primary Liver Cancer: Etiological and Progression Factors. CRC Press: Paris. 211–224.

    Chen DS (1993) From hepatitis to hepatoma: Lessons form type B viral hepatitis. Science 262, 369-370.

    Chisari FV, Ferrari C. (1995) Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13, 29–60.

    Cho DY, Yang GH, Ryu CJ, Hong HJ. (2003) Molecular chaperone GRP78/BiP interacts with the large surface protein of hepatitis B virus in vitro and in vivo. J Virol 77, 2784-2788

    Chu, C.H., Liaw, Y.F., Sheen, I.S., and Chen, T.J. (1985). Correlation of age with the status of hepatitis B virus replication and histological changes in chronic type B hepatitis. Liver 5, 117-122.

    Chu CM and Liaw YF. (1987) Intrahepatic distributin of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Hepatology 8, 749-754.

    Claret, F.X., Hibi, M., Dhut, S., Toda, T., and Karin, M. (1996). A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383, 453-457.

    Cope, G.A., Suh, G.S., Aravind, L., Schwarz, S.E., Zipursky, S.L., Koonin, E.V., and Deshaies, R.J. (2002). Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608-611.

    Deng, X.W. er al. (2000) Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends Genet. 16, 202-203.

    F. Osaka, M. Saeki, S. Katayama, N. Aida, A. Toh-e, K. Kominami, T. Toda, T. Suzuki, T. Chiba, K. Tanaka, S. Kato, (2000) Covalent modifier NEDD8 is essential for SCF ubiquitin–ligase in fission yeast, EMBO J. 19, 3475–3484.

    Fan YF, Lu CC, Chang YC et al. (2000) Identification of a pre-S2 mutant in hepatocytes expressing a novel marginal pattern of surface antigen in advanced diseases of chronic hepatitis B virus infection. J Gastroenterol Hepatol 15, 519–528.

    Fan YF, Lu CC, Chen WC et al. (2001) Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 33, 277–286.

    Ferber MJ, Montoya DP, Yu C, Aderca I, McGee A, Thorland EC et al. (2003). Oncogene 22, 3813–3820.

    Fernholz, D., Galle, P.R., Stemler, M., Brunetto, M., Bonino, F., and Will, H. (1993). Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology 194, 137-148.

    Fourel G. Trepo C. Bougueleret L. Henglein B. Ponzetto A. Tiollais P. Buendia MA. (1990) Frequent activation of N-myc genes by hepadnavirus insertion in wlldchuck liver tumors. Nature 347, 294-298.

    Ganem D. (1991) Assembly of hepadnaviral virions and subviral particles. Curr. Top. Microbiol. Immunol. 168, 61-83.

    Gerber MA and Thung SN. (1985) Molicular and cellular pathology of hepatitis B. Lab. Invest. 52, 572-590.

    Govindarajan, S., Fong, T.L., Valinluck, B., Edwards, V., and Redeker, A.G. (1988). Markers of viral replication in patients with chronic hepatitis B virus infection. American journal of clinical pathology 89, 233-237.

    Gripon P, Cannie I, Urban S. (2005) Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 79, 1613-1622

    Gunther S, Fischer L, Pult I, Sterneck M, Will H. (1999) Naturally occurring variants of hepatitis B virus. Adv Virus Res 52, 125–137.

    Hadziyannis, S.J., Lieberman, H.M., Karvountzis, G.G., and Shafritz, D.A. (1983). Analysis of liver disease, nuclear HBcAg, viral replication, and hepatitis B virus DNA in liver and serum of HBeAg Vs. anti-HBe positive carriers of hepatitis B virus. Hepatology Baltimore 3, 656-662.

    Hadziyannis S, Gerber MA, Vissoulis C, Popper H. (1973) Cytoplasmic hepatitis B antigen in ‘ground-glass’ hepatocytes of carriers. Arch Pathol 96, 327–330.

    Hadziyannis S, Moussouros A, Vissoulis C, Afroudakis A. (1972) Cytoplasmic localisation of Australia antigen in the liver. Lancet 1, 976–979.

    Hallstrom, T.C., and Nevins, J.R. (2006). Jab1 is a specificity factor for E2F1-induced apoptosis. Genes Dev 20, 613-623.

    Hansen LJ. Tennant BC. Seeger C and Ganem D, (1993) Differential activation of myc gene family members in hepatic carcinogenesis by closely related hepatitis B viruses. Mol. Cell. Biol. 12, 659-667.

    Hildt E, Hofschneider PH. (1998) The PreS2 activators of the hepatitis B virus: activators of tumour promoter pathways. Recent Results Cancer Res 154, 315–329.

    Hildt E, Saher G, Bruss V, Hofschneider PH. (1996) The hepatitis B virus large
    surface protein (LHBs) is a transcriptional activator. Virology; 225, 235–239.

    Hsieh, Y.H., Su, I.J., Wang, H.C., Chang, W.W., Lei, H.Y., Lai, M.D., Chang, W.T., and Huang, W. (2004). Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25, 2023-2032.

    Hofmann, K. and Bucher, P. (1998) The PCI domain: A common theme in three multi-protein complexes. Trends Biochem. Sci. 23, 204-205.

    Horikawa I, Barrett JC. (2001). J Natl Cancer Inst 93, 1171–1173.

    Hung JH, Su IJ, Lei HY et al. (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-κB and pp38 mitogen-activated protein kinase. J Biol Chem 279, 46384–46392.

    Huang, S.N., and Chisari, F.V. (1995). Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology (Baltimore, Md 21, 620-626.

    Kleemann, R., Hausser, A., Geiger, G., Mischke, R., Burger-Kentischer, A., Flieger, O., Johannes, F.J., Roger, T., Calandra, T., Kapurniotu, A., et al. (2000). Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408, 211-216.

    Kouvaraki, M.A., Rassidakis, G.Z., Tian, L., Kumar, R., Kittas, C., and Claret, F.X. (2003). Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27(Kip1). Cancer Res 63, 2977-2981.

    Kwok, S.F., Solano, R., Tsuge, T., Chamovitz, D.A., Ecker, J.R., Matsui, M., and Deng, X.W. (1998). Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10, 1779-1790.

    L. Pintard, T. Kurz, S. Glaser, J.H. Willis, M. Peter, B. Bowerman, (2003) Neddylation and deneddylation of CUL-3 is required to target MEI-1/katanin for degradation at the meiosis-to-mitosis transition in C. elegans, Curr. Biol. 13, 911 – 921.

    Lambert C, Prange R. (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation. Proc Natl Acad Sci USA 100, 5199-5204

    Liu H, Bowes RC 3rd, van de Water B, Sillence C, Nagelkerke JF and Stevens JL, (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J. Biol. Chem. 272, 21751-21759.

    Loffler-Mary, H., Werr, M., and Prange, R. (1997). Sequence-specific repression of cotranslational translocation of the hepatitis B virus envelope proteins coincides with binding of heat shock protein Hsc70. Virology 235, 144-152.

    Molnar-Kimber, K.L., Jarocki-Witek, V., Dheer, S.K., Vernon, S.K., Conley, A.J., Davis, A.R., and Hung, P.P. (1988). Distinctive properties of the hepatitis B virus envelope proteins. J Virol 62, 407-416.

    Murakami Y, Saigo K, Takashima H, Minami M, Okanoue T, Brechot C et al. (2005). Gut 54, 1162–1168.

    Nassal, M., and Schaller, H. (1996). Hepatitis B virus replication--an update. Journal of viral hepatitis 3, 217-226.

    Oh, W., Yang, M.R., Lee, E.W., Park, K.M., Pyo, S., Yang, J.S., Lee, H.W., and Song, J. (2006). Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein. J Biol Chem 281, 30166-30174.

    Okochi K and Murakami S, (1968) Observations on Australia antigen in Japanese. Vox Sang. 15, 374-385.

    Paterlini-Brechot P, Saigo K, Murakami Y, Chami M, Gozuacik D, Mugnier C et al. (2003). Oncogene 22, 3911–3916.

    Prange R, Werr M, Loffl er-Mary H. (1999) Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 380, 305-314

    R.J. Deshaies, (1999) SCF and Cullin/RING H2-based ubiquitin ligases, Annu. Rev. Cell Dev. Biol. 15, 435– 467.

    Robinson WS and Greenman RL, (1974) DNA polymerase in the core of te human hepatitis B virus candidate. J. Virol. 13, 1231-1236.

    Seifer, M., Hohne, M., Schaefer, S., and Gerlich, W.H. (1991). In vitro tumorigenicity of hepatitis B virus DNA and HBx protein. J Hepatol 13 Suppl 4, S61-S65.

    Serbinova E, Kadiiska MB, Bakalova RA, Koynova GM, Stoyanovsky DA, Karakashev PC, Stoytchev TS, Wolinsky I and Kagan VE, (1989) Lipid peroxidation activation and cytochrome P-450 decrease in rat liver endoplasmic reticulum under oxidative stress. Toxicol. Lett. 47, 119-123.

    Sherr CJ, Roberts JM. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501-1512

    Soussan P, Garreau F, Zylberberg H, Ferray C, Brechot C, Kremsdorf D. (2000). J Clin Invest 105, 55–60.

    Soussan P, Tuveri R, Nalpas B, Garreau F, Zavala F, Masson A et al. (2003). J Hepatol 38, 343–348.

    Su IJ, Kuo TT, Liaw YF. (1985) Hepatocyte hepatitis B surface antigen. Diagnostic evaluation of patients with clinically acute hepatitis B surface antigen-positive hepatitis. Arch Pathol Laboratory Med 109, 400–402.

    Su IJ, Lai MY, Hsu HC et al. (1986) Diverse virological, histopathological and prognostic implications of seroconversion from hepatitis B e antigen to anti-HBe in chronic hepatitis B virus infection. J Hepatol 3, 182–189.

    T. Hori, F. Osaka, T. Chiba, C. Miyamoto, K. Okabayashi, N. Shimbara, S. Kato, K. Tanaka, (1999) Covalent modification of all members of human cullin family proteins by NEDD8, Oncogene 18, 6829– 6834.

    Tamori A, Yamanishi Y, Kawashima S, Kanehisa M, Enomoto M, Tanaka H et al. (2005). Clin Cancer Res 11, 5821–5826.

    Tomoda, K., Kubota, Y., Arata, Y., Mori, S., Maeda, M., Tanaka, T., Yoshida, M., Yoneda-Kato, N., and Kato, J.Y. (2002). The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 277, 2302-2310.

    Tomoda, K., Kubota, Y., and Kato, J. (1999). Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160-165.

    Urban S, Gripon P. (2002) Inhibition of duck hepatitis B virus infection by a myristoylated pre-S peptide of the large viral surface protein. J Virol 76, 1986-1990

    Wang HC, Wu HC, Chen CF, Fausto N, Lei HY, Su IJ. (2003) Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163, 2441–2449.

    Wang, H.C., Chang, W.T., Chang, W.W., Wu, H.C., Huang, W., Lei, H.Y., Lai, M.D., Fausto, N., and Su, I.J. (2005). Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology (Baltimore, Md 41, 761-770.

    Wang, XZ, Lawson, B, Brewer, JW, Zinszner, H, Sanjay, A, Mi, LJ, Boorstein, R, Kreibich, G, Hendershot, LM and Ron, D, (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16(8), 4273-4280.

    Wittschieben BB, Wood RD. (2003) DDB complex. DNA Repair (Amst) 2, 1065-1069.

    Xu, Z., Jensen, G., and Yen, T.S. (1997). Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. J Virol 71, 7387-7392.

    Xu Z, Yen TS. (1996) Intracellular retention of surface protein by a hepatitis B virus mutant that releases virion particles. J Virol 70, 133–140.

    Yu Z, Luo H, Fu W, Mattson MP, (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and stabilization of calcium homeostasis. Expl Neurol. 155, 302-314.

    下載圖示 校內:2010-08-28公開
    校外:2010-08-28公開
    QR CODE