| 研究生: |
陳品慈 Chen, Pin-Tzu |
|---|---|
| 論文名稱: |
血液透析患者使用萬古黴素治療oxacillin抗藥性金黃色葡萄球菌血流感染的藥效動力學指標與臨床療效之相關性 Pharmacodynamic Target and Treatment Outcome of Vancomycin in Hemodialysis Patients with Oxacillin-resistant Staphylococcus aureus Bloodstream Infection |
| 指導教授: |
林文亮
Lin, Wen-Liang 鄭靜蘭 Cheng, Ching-Lan 李南瑤 Lee, Nan-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 萬古黴素 、血液透析 、藥物血中濃度監測 、族群藥物動力學 、臨床療效 |
| 外文關鍵詞: | vancomycin, hemodialysis, therapeutic drug monitoring, population pharmacokinetics, clinical outcome |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景
血液透析的患者需要長時間使用血液透析導管,再加上本身免疫功能較差的因素,使他們感染的風險較非透析患者高上許多,過去許多研究都發現最常導致透析患者血流感染的菌種為金黃色葡萄球菌(Staphylococcus aureus),其中又以抗藥性金黃色葡萄球菌(oxacillin-resistant Staphylococcus aureus, ORSA)佔多數,因此臨床上常以萬古黴素為此類患者感染時的首選抗生素。近年來,研究發現在腎功能正常的患者若以給藥前波谷濃度作為藥效動力學監測指標,發生急性腎損傷的風險較高,故2020年美國感染症醫學會指引不再建議腎功能正常的患者以給藥前波谷濃度作為替代24小時區間血中濃度曲線下面積與最低抑菌濃度比值(AUC24/MIC)的監測指標,應該直接監測AUC24/MIC。而對於透析患者的監測指標因研究相對缺乏,故仍以給藥前波谷濃度在15~20 mg/L作為監測目標,不過透析患者的給藥前波谷濃度是否能與臨床療效有較好相關性,或是否有其他藥效動力學指標與療效的相關性更佳而可作為監測的目標,目前仍值得研究與探討。
目的
本研究將以真實透析患者的抽血濃度數據建立族群藥物動力學模型,進而以模型模擬出個別患者的藥效動力學參數,並以所得之藥效動力學數值連結患者的臨床療效,找出與療效相關性較佳的藥效動力學指標作為治療監測目標。
方法
本研究為單中心回溯性世代研究,以病歷回顧方式納入2014年7月1日至2021年6月30日於成大醫院感染抗藥性金黃色葡萄球菌血流感染之年齡20歲以上的住院透析患者,且在研究期間若同一患者有兩次以上的ORSA血流感染則僅納入第一次感染事件。患者基本特徵及濃度數據等資料以成大醫院院內電子病歷收集,族群藥物動力學模型以Monolix®軟體建置,個別患者的藥效動力學參數值以Simulx®模擬而得,各藥效動力學參數的最適切點採用ROC曲線及決策樹分析,最後以羅吉斯回歸模型分析與臨床療效相關之危險因子。
結果
本研究共納入94位透析患者的平均年齡為67歲,其中男性比例為59%。242筆vancomycin濃度資料建立族群藥物動力學模型,以二室模式作為架構模型,並額外加入透析時vancomycin清除率之參數,當真實體重作為中央室分布體積及非透析時之vancomycin清除率的影響共變項時,中央室分布體積的個體間變異可從60%下降至26%,非透析時之vancomycin清除率則可從17%下降至15%,且以第二型混合誤差模式作為誤差模型可得表現較佳之族群藥動學模型,最終模型所估計之群體周邊室分布體積約為31.55 ± 3.38(L),透析時vancomycin的移除率約為1.91 ± 0.34(L/hr),模型計算之藥效動力學參數Ctr為16.4 ± 3.1(L/hr)、AUC0-24為472 ± 199、AUC24-48為304 ± 100、AUC0-48為707 ± 183、AUCpre-tr24為400 ± 88、AUCmean為618 ± 310(mg*L/hr)。
在治療效果的部分,則納入90位符合收案條件的患者進入分析,其中30天全因死亡人數共9人(10%),治療失敗共27人(30%),30天全因死亡及治療失敗的最佳監測指標皆為AUC0-24/MIC,而最適切點則分別為403及398。在風險因子分析方面,PBS為影響30天全因死亡的重要危險因子,而治療失敗的危險因子則為AUC0-24/MIC小於398。
結論
對ORSA血流感染的血液透析患者,30天死亡與治療失敗的指標及最適切點為起始劑量給藥後24小時內的AUC0-24/MIC,且目標分別應高於403及398。此外,依據羅吉斯回歸的分析結果,AUC0-24/MIC ≥398為影響治療成功的重要因子,因此建議AUC0-24/MIC ≥398可以做為ORSA血流感染的透析患者使用vancomycin時之監測指標。
Vancomycin, a glycopeptide antibiotic, is the first-line therapy for hemodialysis (HD) patients due to high prevalence of oxacillin-resistant Staphylococcus aureus (ORSA) infections. However, the outcome studies investigating the pharmacodynamic targets of vancomycin in HD patients with ORSA bloodstream infection are scarce. This study was designed to establish a population pharmacokinetic model and to explore the pharmacodynamic targets of vancomycin in these population. A retrospective observational study was conducted in a medical center. Inpatients from July 1, 2014 to June 30, 2021 were included and relevant data retrieved from electronic medical record. Vancomycin population pharmacokinetic (PPK) model was constructed using Monolix® software and the appropriate structural model and initial estimated value was selected from PPK literatures. The cut-off points of Ctr and different AUC/MIC ratio associated with 30-day all-cause mortality and treatment failure were identified by receiver operating characteristic curve (ROCc) and classification and regression tree (CART). A total of 94 patients and 242 vancomycin concentration data were included for PK model construction. The mean body weight was 58.7 kilogram. The PPK of vancomycin was best described by two-compartment model with covariate model included the effects of normalized body weight on clearance of residual renal function and central volume distribution. The final model showed the population clearance of hemodialysis and peripheral volume distribution were 1.9 L/h and 31.6 L, respectively. Overall, 90 patients were included for therapeutic outcome analysis. The mortality rate was 10% and the treatment failure rate was 30%. ROC curve found cut-off points of AUC0-24/MIC <403 for 30-day mortality, and AUC0-24/MIC <398 was identified by CART and ROC curve. In logistic regression, PBS was associated with 30-day mortality, and AUC0-24/MIC <398 was significant risk factor for treatment failure.
1. 許志成, 財團法人國家衛生研究院, 台灣腎臟醫學會. 2020台灣腎病年報. https://lib.nhri.edu.tw/NewWeb/nhri/ebook/39000000465141/#p=137. Accessed May 2, 2022.
2. Worth LJ, Spelman T, Holt SG, Brett JA, Bull AL, Richards MJ. Epidemiology of infections and antimicrobial use in Australian haemodialysis outpatients: findings from a Victorian surveillance network, 2008-2015. J Hosp Infect. 2017;97(1):93-98.
3. Invasive methicillin-resistant Staphylococcus aureus infections among dialysis patients--United States, 2005. MMWR Morb Mortal Wkly Rep. 2007;56(9):197-199.
4. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925-942.
5. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82-98.
6. Fu CF, Huang JD, Wang JT, Lin SW, Wu CC. The ratio of pre-dialysis vancomycin trough serum concentration to minimum inhibitory concentration is associated with treatment outcomes in methicillin-resistant Staphylococcus aureus bacteremia. Plos One. 2018;13(3):10.
7. Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835-864.
8. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734-744.
9. Neely MN, Kato L, Youn G, et al. Prospective Trial on the Use of Trough Concentration versus Area under the Curve To Determine Therapeutic Vancomycin Dosing. Antimicrob Agents Chemother. 2018;62(2).
10. Lewis SJ, Mueller BA. Evaluation and Development of Vancomycin Dosing Schemes to Meet New AUC/MIC Targets in Intermittent Hemodialysis Using Monte Carlo Simulation Techniques. J Clin Pharmacol. 2021;61(2):211-223.
11. Cheung RP, DiPiro JT. Vancomycin: an update. Pharmacotherapy. 1986;6(4):153-169.
12. Wilhelm MP, Estes L. Symposium on antimicrobial agents--Part XII. Vancomycin. Mayo Clin Proc. 1999;74(9):928-935.
13. Henson KE, Levine MT, Wong EA, Levine DP. Glycopeptide antibiotics: evolving resistance, pharmacology and adverse event profile. Expert Rev Anti Infect Ther. 2015;13(10):1265-1278.
14. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol. 2012;68(9):1243-1255.
15. Gendeh BS, Gibb AG, Aziz NS, Kong N, Zahir ZM. Vancomycin administration in continuous ambulatory peritoneal dialysis: the risk of ototoxicity. Otolaryngol Head Neck Surg. 1998;118(4):551-558.
16. Farber BF, Moellering RC, Jr. Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob Agents Chemother. 1983;23(1):138-141.
17. Humphrey C, Veve MP, Walker B, Shorman MA. Long-term vancomycin use had low risk of ototoxicity. PLoS One. 2019;14(11):e0224561.
18. Elting LS, Rubenstein EB, Kurtin D, et al. Mississippi mud in the 1990s: risks and outcomes of vancomycin-associated toxicity in general oncology practice. Cancer. 1998;83(12):2597-2607.
19. Finch RG, Eliopoulos GM. Safety and efficacy of glycopeptide antibiotics. J Antimicrob Chemother. 2005;55 Suppl 2:ii5-13.
20. Bhatt V, Saleem A. Review: Drug-induced neutropenia--pathophysiology, clinical features, and management. Ann Clin Lab Sci. 2004;34(2):131-137.
21. Black E, Lau TT, Ensom MH. Vancomycin-induced neutropenia: is it dose- or duration-related? Ann Pharmacother. 2011;45(5):629-638.
22. Smith PF, Taylor CT. Vancomycin-induced neutropenia associated with fever: similarities between two immune-mediated drug reactions. Pharmacotherapy. 1999;19(2):240-244.
23. Mandell GD, R.; Bennett, J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 9th ed. Philadelphia: PA : Elsevier; 2020.
24. Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum AM, van den Broek P, Mattie H. Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother. 1990;34(10):1869-1874.
25. Greenberg RN, Benes CA. Time-kill studies with oxacillin, vancomycin, and teicoplanin versus Staphylococcus aureus. J Infect Dis. 1990;161(5):1036-1037.
26. Knudsen JD, Fuursted K, Espersen F, Frimodt-Møller N. Activities of vancomycin and teicoplanin against penicillin-resistant pneumococci in vitro and in vivo and correlation to pharmacokinetic parameters in the mouse peritonitis model. Antimicrob Agents Chemother. 1997;41(9):1910-1915.
27. Flandrois JP, Fardel G, Carret G. Early stages of in vitro killing curve of LY146032 and vancomycin for Staphylococcus aureus. Antimicrob Agents Chemother. 1988;32(4):454-457.
28. Cantoni L, Glauser MP, Bille J. Comparative efficacy of daptomycin, vancomycin, and cloxacillin for the treatment of Staphylococcus aureus endocarditis in rats and role of test conditions in this determination. Antimicrob Agents Chemother. 1990;34(12):2348-2353.
29. Larsson AJ, Walker KJ, Raddatz JK, Rotschafer JC. The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. J Antimicrob Chemother. 1996;38(4):589-597.
30. Löwdin E, Odenholt I, Cars O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1998;42(10):2739-2744.
31. Odenholt-Tornqvist I, Löwdin E, Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin, and amikacin. Antimicrob Agents Chemother. 1992;36(9):1852-1858.
32. Duffull SB, Begg EJ, Chambers ST, Barclay ML. Efficacies of different vancomycin dosing regimens against Staphylococcus aureus determined with a dynamic in vitro model. Antimicrob Agents Chemother. 1994;38(10):2480-2482.
33. Ebert S, Craig W. In vivo cidal activity and pharmacokinetic parameters for vancomycin against methicillin-susceptible and resistant S. aureus [abstract 439]. Paper presented at: Program and abstracts of the 27th Interscience Conference on Antimicrobial Agents and Chemother. New York1987.
34. Dudley M, Griffith D, Corcoran E, et al. Pharmacokinetic pharmacodynamic (PK-PD) indices for vancomycin treatment of susceptible (VSSA) and intermediate (VISA) S. aureus in the neutropenic murine thigh model. Paper presented at: Abstr. 39th Intersci. Conf. Antimicrob. Agents Chemother. American Society for Microbiology, Washington, DC1999.
35. Tsuji BT, Rybak MJ, Lau KL, Sakoulas G. Evaluation of accessory gene regulator (agr) group and function in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(3):1089-1091.
36. Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm. 2000;57 Suppl 2:S4-9.
37. Mulhern JG, Braden GL, O'Shea MH, Madden RL, Lipkowitz GS, Germain MJ. Trough serum vancomycin levels predict the relapse of gram-positive peritonitis in peritoneal dialysis patients. Am J Kidney Dis. 1995;25(4):611-615.
38. Zimmermann AE, Katona BG, Plaisance KI. Association of vancomycin serum concentrations with outcomes in patients with gram-positive bacteremia. Pharmacotherapy. 1995;15(1):85-91.
39. Jeffres MN, Isakow W, Doherty JA, et al. Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest. 2006;130(4):947-955.
40. Holmes NE, Turnidge JD, Munckhof WJ, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57(4):1654-1663.
41. Neely MN, Youn G, Jones B, et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother. 2014;58(1):309-316.
42. Claisse G, Zufferey PJ, Trone JC, et al. Predicting the dose of vancomycin in ICU patients receiving different types of RRT therapy: a model-based meta-analytic approach. Br J Clin Pharmacol. 2019;85(6):1215-1226.
43. Pai AB, Pai MP. Vancomycin dosing in high flux hemodialysis: a limited-sampling algorithm. Am J Health Syst Pharm. 2004;61(17):1812-1816.
44. Keller F, Hörstensmeyer C, Looby M, et al. Vancomycin dosing in haemodialysis patients and Bayesian estimate of individual pharmacokinetic parameters. Int J Artif Organs. 1994;17(1):19-26.
45. Ackerman BH, Vannier AM. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother. 1992;29(4):460-461.
46. Barth RH, DeVincenzo N. Use of vancomycin in high-flux hemodialysis: experience with 130 courses of therapy. Kidney Int. 1996;50(3):929-936.
47. Ariano RE, Fine A, Sitar DS, Rexrode S, Zelenitsky SA. Adequacy of a vancomycin dosing regimen in patients receiving high-flux hemodialysis. Am J Kidney Dis. 2005;46(4):681-687.
48. Crew P, Heintz SJ, Heintz BH. Vancomycin dosing and monitoring for patients with end-stage renal disease receiving intermittent hemodialysis. Am J Health Syst Pharm. 2015;72(21):1856-1864.
49. Zelenitsky SA, Ariano RE, McCrae ML, Vercaigne LM. Initial vancomycin dosing protocol to achieve therapeutic serum concentrations in patients undergoing hemodialysis. Clin Infect Dis. 2012;55(4):527-533.
50. Matzke GR, Halstenson CE, Olson PL, Collins AJ, Abraham PA. Systemic absorption of oral vancomycin in patients with renal insufficiency and antibiotic-associated colitis. Am J Kidney Dis. 1987;9(5):422-425.
51. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42 Suppl 1:S35-39.
52. Ducharme MP, Slaughter RL, Edwards DJ. Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit. 1994;16(5):513-518.
53. Aldaz A, Ortega A, Idoate A, Giráldez J, Brugarolas A. Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit. 2000;22(3):250-257.
54. Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother. 2011;55(6):2704-2709.
55. del Mar Fernández de Gatta Garcia M, Revilla N, Calvo MV, Domínguez-Gil A, Sánchez Navarro A. Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med. 2007;33(2):279-285.
56. Rodvold KA, Blum RA, Fischer JH, et al. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother. 1988;32(6):848-852.
57. Robert C. Moellering, Jr., Krogstad DJ, Greenblatt DJ. Pharmacokinetics of Vancomycin in Normal Subjects and in Patients with Reduced Renal Function. Reviews of Infectious Diseases. 1981;3:S230-S235.
58. Moellering RC, Jr., Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med. 1981;94(3):343-346.
59. Goti V, Chaturvedula A, Fossler MJ, Mok S, Jacob JT. Hospitalized Patients With and Without Hemodialysis Have Markedly Different Vancomycin Pharmacokinetics: A Population Pharmacokinetic Model-Based Analysis. Ther Drug Monit. 2018;40(2):212-221.
60. Ghouti-Terki L, Chasseuil E, Rabot N, et al. Vancomycin during the Last Hour of the Hemodialysis Session: A Pharmacokinetic Analysis. Nephron. 2017;135(4):261-267.
61. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet. 1986;11(4):257-282.
62. Brown N, Ho DH, Fong KL, et al. Effects of hepatic function on vancomycin clinical pharmacology. Antimicrob Agents Chemother. 1983;23(4):603-609.
63. Martí R, Rosell M, Pou L, García L, Pascual C. Influence of biochemical parameters of liver function on vancomycin pharmacokinetics. Pharmacol Toxicol. 1996;79(2):55-59.
64. Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1984;25(4):433-437.
65. Launay-Vacher V. Clinical review: Use of vancomycin in haemodialysis patients. 2002.
66. Westra N, Proost JH, Franssen CFM, Wilms EB, van Buren M, Touw DJ. Vancomycin pharmacokinetic model development in patients on intermittent online hemodiafiltration. PLoS One. 2019;14(5):e0216801.
67. Cunha BA, Quintiliani R, Deglin JM, Izard MW, Nightingale CH. Pharmacokinetics of vancomycin in anuria. Rev Infect Dis. 1981;3 suppl:S269-272.
68. Golper TA, Noonan HM, Elzinga L, et al. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther. 1988;43(5):565-570.
69. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884-930.
70. Tsai SF, Lin MH, Hsu CC, Wu MJ, Wang IK, Chen CH. Trends of kidney transplantation from the 2020 annual report on kidney disease in Taiwan. J Formos Med Assoc. 2022;121 Suppl 1:S20-s29.
71. Lin Y-C, Lin Y-C, Kao C-C, Chen H-H, Hsu C-C, Wu M-S. Health policies on dialysis modality selection: a nationwide population cohort study. BMJ Open. 2017;7(1):e013007.
72. Touchette MA, Patel RV, Anandan JV, Dumler F, Zarowitz BJ. Vancomycin removal by high-flux polysulfone hemodialysis membranes in critically ill patients with end-stage renal disease. Am J Kidney Dis. 1995;26(3):469-474.
73. Pollard TA, Lampasona V, Akkerman S, et al. Vancomycin redistribution: dosing recommendations following high-flux hemodialysis. Kidney Int. 1994;45(1):232-237.
74. El Nekidy WS, El-Masri MM, Umstead GS, Dehoorne-Smith M. Factors influencing vancomycin loading dose for hospitalized hemodialysis patients: prospective observational cohort study. Can J Hosp Pharm. 2012;65(6):436-442.
75. Tolwani A. Continuous renal-replacement therapy for acute kidney injury. N Engl J Med. 2012;367(26):2505-2514.
76. Schmidt RJ, Holley J. Overview of the hemodialysis apparatus. UpToDate Waltham, MA: UpToDate. 2020.
77. Hueso M, Navarro E, Sandoval D, Cruzado JM. Progress in the Development and Challenges for the Use of Artificial Kidneys and Wearable Dialysis Devices. Kidney Dis (Basel). 2019;5(1):3-10.
78. Twardowski ZJ. History of hemodialyzers' designs. Hemodial Int. 2008;12(2):173-210.
79. Abe M, Masakane I, Wada A, et al. High-performance dialyzers and mortality in maintenance hemodialysis patients. Sci Rep. 2021;11(1):12272.
80. Watanabe Y, Kawanishi H, Suzuki K, et al. Japanese society for dialysis therapy clinical guideline for "Maintenance hemodialysis: hemodialysis prescriptions". Ther Apher Dial. 2015;19 Suppl 1:67-92.
81. Oshvandi K, Kavyannejad R, Borzuo SR, Gholyaf M. High-flux and low-flux membranes: efficacy in hemodialysis. Nurs Midwifery Stud. 2014;3(3):e21764.
82. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis. 2006;48 Suppl 1:S2-90.
83. Said N, Lau WJ, Ho YC, Lim SK, Zainol Abidin MN, Ismail AF. A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. Membranes (Basel). 2021;11(10).
84. Grooteman MP, Nubé MJ. Impact of the type of dialyser on the clinical outcome in chronic haemodialysis patients: does it really matter? Nephrol Dial Transplant. 2004;19(12):2965-2970.
85. Tan CC, Lee HS, Ti TY, Lee EJ. Pharmacokinetics of intravenous vancomycin in patients with end-stage renal failure. Ther Drug Monit. 1990;12(1):29-34.
86. Stamatakis MK, Schreiber JM, Slain D, Gunel E. Vancomycin administration during dialysis with low-flux polysulfone membranes: traditional versus a supplemental dosage regimen. Am J Health Syst Pharm. 2003;60(15):1564-1568.
87. Leypoldt JK, Cheung AK, Carroll CE, et al. Effect of dialysis membranes and middle molecule removal on chronic hemodialysis patient survival. Am J Kidney Dis. 1999;33(2):349-355.
88. Petejova N, Martinek A, Zahalkova J, et al. Vancomycin removal during low-flux and high-flux extended daily hemodialysis in critically ill septic patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(4):342-347.
89. Alwakeel J, Najjar TA, al-Yamani MJ, Huraib S, al-Haider A, Abu-aisha H. Comparison of the effects of three haemodialysis membranes on vancomycin disposition. Int Urol Nephrol. 1994;26(2):223-228.
90. Lanese DM, Alfrey PS, Molitoris BA. Markedly increased clearance of vancomycin during hemodialysis using polysulfone dialyzers. Kidney Int. 1989;35(6):1409-1412.
91. Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review. Semin Dial. 2008;21(1):63-70.
92. Quale JM, O'Halloran JJ, DeVincenzo N, Barth RH. Removal of vancomycin by high-flux hemodialysis membranes. Antimicrob Agents Chemother. 1992;36(7):1424-1426.
93. Stryjewski ME, Corey GR. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin Infect Dis. 2014;58 Suppl 1:S10-19.
94. Understanding Methicillin Resistant Staphylococcus aureus Infection: The Cell Walls Perspective.
95. System USRD. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2020.
96. Wang IK, Chang YC, Liang CC, et al. Bacteremia in hemodialysis and peritoneal dialysis patients. Intern Med. 2012;51(9):1015-1021.
97. 莊意芬, 黃婉瑩, 湯培欣, et al. 某醫院血液透析相關感染的十一年變遷. 感染控制雜誌. 2017;27(5):209-221.
98. Lentino JR, Baddour LM, Wray M, Wong ES, Yu VL. Staphylococcus aureus and other bacteremias in hemodialysis patients: antibiotic therapy and surgical removal of access site. Infection. 2000;28(6):355-360.
99. Shmuely H, Pitlik S, Yahav J, Samra Z, Leibovici L. Seven-year study of bacteremia in hospitalized patients on chronic hemodialysis in a single tertiary hospital. Ren Fail. 2003;25(4):579-588.
100. Kessler M, Hoen B, Mayeux D, Hestin D, Fontenaille C. Bacteremia in patients on chronic hemodialysis. A multicenter prospective survey. Nephron. 1993;64(1):95-100.
101. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130-1139.
102. Ruiz-Giardin JM, Jimenez BC, Martin RM, et al. Clinical diagnostic accuracy of suspected sources of bacteremia and its effect on mortality. Eur J Intern Med. 2013;24(6):541-545.
103. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-332.
104. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1-45.
105. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC)Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). European Heart Journal. 2015;36(44):3075-3128.
106. Kruzel MC, Lewis CT, Welsh KJ, et al. Determination of vancomycin and daptomycin MICs by different testing methods for methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2011;49(6):2272-2273.
107. Goto M, Schweizer ML, Vaughan-Sarrazin MS, et al. Association of Evidence-Based Care Processes With Mortality in Staphylococcus aureus Bacteremia at Veterans Health Administration Hospitals, 2003-2014. JAMA Internal Medicine. 2017;177(10):1489-1497.
108. Petersiel N, Sherman A, Paul M. The Impact of Nosocomial Bloodstream Infections on Mortality: A Retrospective Propensity-Matched Cohort Study. Open Forum Infect Dis. 2021;8(12):ofab552.
109. Kaech C, Elzi L, Sendi P, et al. Course and outcome of Staphylococcus aureus bacteraemia: a retrospective analysis of 308 episodes in a Swiss tertiary-care centre. Clin Microbiol Infect. 2006;12(4):345-352.
110. Zasowski EJ, Claeys KC, Lagnf AM, Davis SL, Rybak MJ. Time Is of the Essence: The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections. Clin Infect Dis. 2016;62(10):1242-1250.
111. Korvick JA, Bryan CS, Farber B, et al. Prospective observational study of Klebsiella bacteremia in 230 patients: outcome for antibiotic combinations versus monotherapy. Antimicrob Agents Chemother. 1992;36(12):2639-2644.
112. Paterson DL, Ko WC, Von Gottberg A, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med. 2004;140(1):26-32.
113. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315(8):801-810.
114. Hajian-Tilaki K. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods Med Res. 2018;27(8):2374-2383.
115. Muller R, Möckel M. Logistic regression and CART in the analysis of multimarker studies. Clin Chim Acta. 2008;394(1-2):1-6.
116. Krzywinski M, Altman N. Classification and regression trees. Nature Methods. 2017;14(8):757-758.
117. Daugirdas JT, Greene T, Rocco MV, et al. Effect of frequent hemodialysis on residual kidney function. Kidney Int. 2013;83(5):949-958.
118. Sinclair MR, Souli M, Ruffin F, et al. Staphylococcus aureus Bacteremia Among Patients Receiving Maintenance Hemodialysis: Trends in Clinical Characteristics and Outcomes. American Journal of Kidney Diseases. 2022;79(3):393-403.e391.
119. Chong YP, Park SJ, Kim HS, et al. Persistent Staphylococcus aureus bacteremia: a prospective analysis of risk factors, outcomes, and microbiologic and genotypic characteristics of isolates. Medicine (Baltimore). 2013;92(2):98-108.
120. Kim YS, Kim J, Cheon S, Sohn KM. Higher Risk for All-cause Mortality of Staphylococcus aureus Bacteremia in Patients with Non-Dialysis Dependent Chronic Kidney Disease. Infect Chemother. 2020;52(1):82-92.
121. Wang J-L, Wang J-T, Sheng W-H, Chen Y-C, Chang S-C. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: Mortality analyses and the impact of vancomycin, MIC = 2 mg/L, by the broth microdilution method. BMC Infectious Diseases. 2010;10(1):159.
122. Kan LP, Lin JC, Chiu SK, et al. Methicillin-resistant Staphylococcus aureus bacteremia in hemodialysis and nondialysis patients. J Microbiol Immunol Infect. 2014;47(1):15-22.
123. Cuervo G, Camoez M, Shaw E, et al. Methicillin-resistant Staphylococcus aureus (MRSA) catheter-related bacteraemia in haemodialysis patients. BMC Infect Dis. 2015;15:484.
124. Mokrzycki MH, Zhang M, Cohen H, Golestaneh L, Laut JM, Rosenberg SO. Tunnelled haemodialysis catheter bacteraemia: risk factors for bacteraemia recurrence, infectious complications and mortality. Nephrol Dial Transplant. 2006;21(4):1024-1031.
125. Tanriover B, Carlton D, Saddekni S, et al. Bacteremia associated with tunneled dialysis catheters: comparison of two treatment strategies. Kidney Int. 2000;57(5):2151-2155.
126. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Critical Care Medicine. 2009;37(3):840-851.
127. Monteiro JF, Hahn SR, Gonçalves J, Fresco P. Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations. Pharmacol Res Perspect. 2018;6(4):e00420.
128. Shimamoto Y, Fukuda T, Tominari S, et al. Decreased vancomycin clearance in patients with congestive heart failure. Eur J Clin Pharmacol. 2013;69(3):449-457.
129. Teramachi H, Hatakeyama H, Matsushita R, Imai Y, Miyamoto K, Tsuji A. Evaluation of predictability for vancomycin dosage regimens by the Bayesian method with Japanese population pharmacokinetic parameters. Biol Pharm Bull. 2002;25(10):1333-1338.
130. Torras J, Cao C, Rivas MC, Cano M, Fernandez E, Montoliu J. Pharmacokinetics of vancomycin in patients undergoing hemodialysis with polyacrylonitrile. Clin Nephrol. 1991;36(1):35-41.
131. Hui K, Patel K, Nalder M, et al. Optimizing vancomycin dosage regimens in relation to high-flux haemodialysis. J Antimicrob Chemother. 2019;74(1):130-134.
132. Liu C, Bayer A, Cosgrove SE, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clinical Infectious Diseases. 2011;52(3):e18-e55.
133. Hodiamont CJ, Juffermans NP, Berends SE, et al. Impact of a vancomycin loading dose on the achievement of target vancomycin exposure in the first 24 h and on the accompanying risk of nephrotoxicity in critically ill patients. J Antimicrob Chemother. 2021;76(11):2941-2949.
134. Šíma M, Hartinger J, Cikánková T, Slanař O. Importance of vancomycin loading doses in intermittent infusion regimens. J Infect Chemother. 2018;24(4):247-250.
135. Zasowski EJ, Murray KP, Trinh TD, et al. Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrob Agents Chemother. 2018;62(1).
136. Vandecasteele SJ, De Bacquer D, De Vriese AS. Implementation of a dose calculator for vancomycin to achieve target trough levels of 15-20 microg/mL in persons undergoing hemodialysis. Clin Infect Dis. 2011;53(2):124-129.
137. Maxson R, Pate J, Starr J. Evaluation of weight-based vancomycin dosing for hospitalized hemodialysis patients. Ren Fail. 2016;38(10):1677-1682.
138. Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis. 2012;54(1):51-58.
139. Bel Kamel A, Bourguignon L, Marcos M, Ducher M, Goutelle S. Is Trough Concentration of Vancomycin Predictive of the Area Under the Curve? A Clinical Study in Elderly Patients. Ther Drug Monit. 2017;39(1):83-87.
140. Gawronski KM, Goff DA, Brown J, Khadem TM, Bauer KA. A stewardship program's retrospective evaluation of vancomycin AUC24/MIC and time to microbiological clearance in patients with methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. Clin Ther. 2013;35(6):772-779.
141. Jin SJ, Yoon JH, Ahn BS, Chung JA, Song YG. Underestimation of the calculated area under the concentration-time curve based on serum creatinine for vancomycin dosing. Infect Chemother. 2014;46(1):21-29.
142. Pastan S, Soucie JM, McClellan WM. Vascular access and increased risk of death among hemodialysis patients. Kidney International. 2002;62(2):620-626.
143. Powe NR, Jaar B, Furth SL, Hermann J, Briggs W. Septicemia in dialysis patients: Incidence, risk factors, and prognosis. Kidney International. 1999;55(3):1081-1090.
144. Lodise TP, Drusano GL, Zasowski E, et al. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis. 2014;59(5):666-675.
145. Hall RG, 2nd, Giuliano CA, Haase KK, et al. Empiric guideline-recommended weight-based vancomycin dosing and mortality in methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Infect Dis. 2012;12:104.
146. Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med. 1989;87(5):540-546.
147. Khatib R, Riederer K, Saeed S, et al. Time to positivity in Staphylococcus aureus bacteremia: possible correlation with the source and outcome of infection. Clin Infect Dis. 2005;41(5):594-598.
148. Welage LS, Mason NA, Hoffman EJ, et al. Influence of cellulose triacetate hemodialyzers on vancomycin pharmacokinetics. J Am Soc Nephrol. 1995;6(4):1284-1290.
149. DeSai CA, Sahm DF, Umans JG. Vancomycin Elimination During High-Flux Hemodialysis: Kinetic Model and Comparison of Four Membranes. American Journal of Kidney Diseases. 1992;20(4):354-360.
校內:2027-09-14公開