簡易檢索 / 詳目顯示

研究生: 陳沭勝
Chen, Shu-Sheng
論文名稱: 臺灣侵襲性綠膿桿菌對碳氫黴烯類抗藥性之特性分析
Characteristics of carbapenem-resistance among invasive Pseudomonas aeruginosa in Taiwan
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 綠膿桿菌碳氫黴烯抗生素OprDAmpC碳氫黴烯酶
外文關鍵詞: Pseudomonas aeruginosa, carbapenem, OprD, AmpC, carbapenemase
相關次數: 點閱:57下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綠膿桿菌(Pseudomonas aeruginosa)不只造成嚴重的公共衛生問題,其對於革蘭氏陰性菌感染最後一線抗生素的碳氫黴烯抗生素(carbapenems)感受性亦在減少。我們先前的研究發現VIM-2 變異型的VIM-3 是臺灣最常見的carbapenemase。本研究中,我們收集2000 年元月至2011 年2 月間,臺灣兩間醫學中心全數82 株自血流感染所分離出抗carbapenem 綠膿桿菌,以調查臺灣carbapenem 抗藥性綠膿桿菌的盛行率與特徵。以瓊脂稀釋法得知菌株對不同抗生素之感受性,帶有carbapenemase 的菌株以表現型檢驗與PCR基因篩選測定,CCCP 用於輸出幫浦抑制試驗,AmpC 大量表現與廣效性AmpC 活性的菌株以cloxacillin 抑制試驗調查,及imipenem 通道蛋白oprD 基因的定序與重組分析。Aztreonam、cefepime、ceftazidime、ciprofloxacin、gentamicin 及levofloxacin 抗藥性比率,各為53.7、61.0、57.3、47.6、42.7 及50.0%。共有3 株VIM-2、3 株VIM-3、2 株OXA-10 及2 株OXA-17 菌株;AmpC 大量表現與ESAC(extended-spectrum AmpC)菌株各有31.7%及11.0%;僅1 株為CCCP 輸出幫浦抑制試驗陽性;OprD 胺基酸多樣性、蛋白質截斷、蛋白質序列延長及插入序列,各為34.1%、32.9%、12.2%及6.1%。後天獲得的碳氫黴烯水解酶(11.0%),並非本研究主要抗藥機轉,OprD 功能性缺失可能為主要的抗藥機轉(81.7%),但ESAC 活性、AmpC 大量表現及CCCP 敏感的輸出幫浦亦參與臺灣綠膿桿菌對carbapenem 抗藥機轉。

    Pseudomonas aeruginosa not only causes serious public health problems but also becomes less susceptibility to carbapenems, the last line of antimicrobial agents against multi-drug resistant Gram-negative bacterial infection. Our previous study has found that the acquired VIM-3 carbapenemase, a variant of VIM-2, was the most prevalent carbapenemase in P. aeruginosa in Taiwan. In this study, we investigated the prevalence and characteristics of carbapenem-resistant P. aeruginosa isolates in Taiwan. A total of 82 carbapenem-resistant P. aeruginosa isolates obtained from bloodstream infection were collected from two medical centers in Taiwan between 2000 January and 2011 February. The susceptibility of various antimicrobial agents was determined by agar dilution method. The phenotypic tests and genotypic PCR screening detected carbapenemase producers. Carbonyl cyanide m-chlorophenylhydrazone was used for the efflux pump inhibition test. AmpC overproducer and extended-spectrum AmpC activity were investigated by the cloxacillin inhibition assay. Gene sequencing and open reading frame alignment of imipenem channel porin gene, oprD, was analyzed. The resistance rate to aztreonam, cefepime, ceftazidime, ciprofloxacin, gentamicin, and levofloxacin were 53.7, 61.0, 57.3, 47.6, 42.7, and 50.0%, respectively. Overall, 2 VIM-2, 3 VIM-3, 2 OXA-10, and 2 OXA-17 isolates were determined, respectively. AmpC overproducer and ESAC (extended-spectrum AmpC) strain were 31.7% and 11.0%, respectively. Only one efflux pump inhibition assay positive strain was identified. Amino acid polymorphisms, truncation, elongation and insertion sequences in OprD were 34.1%, 32.9%, 12.2%, and 6.1%, respectively. Acquired carbapenem hydrolyzing enzymes (11.0%) are not the dominant carbapenem resistant mechanism in our strains. The functional loss of OprD is possible the major resistant mechanism (81.7%), but ESAC activity, AmpC overproduction and CCCP-sensitive efflux pumps also contribute to carbapenem resistance in P. aeruginosa in Taiwan.

    中文摘要 ..................... i 英文摘要 .................... ii 誌謝 .................. iii 目錄 ................... iv 表目錄 ............ viii 圖目錄 ............... ix 符號與縮寫 .............. x 第一章 緒論 ............. 1 1-1 綠膿桿菌 ..................................... 1 1-2 抗生素 ............................................ 2 1-2-1 乙內醯胺類(β-lactams) ................ 2 1-2-2 氟喹諾酮類(Fluoroquinolones) ...................... 5 1-2-3 胺基醣苷類(Aminoglycosides) ............... 5 1-2-4 四環黴素類(Tetracyclines) ................ 6 1-2-5 福利黴素類(Rifamycins) .................. 6 1-2-6 巨內酯環類(Macrolides) ................... 6 1-2-7 脂肽類(Lipopeptides) .................... 7 1-3 抗藥基因 ............................................. 7 1-3-1 Class A β-lactamases ........................... 8 1-3-2 Class B β-lactamases ........................ 11 1-3-3 Class D β-lactamases .......................... 14 1-4 綠膿桿菌對carbapenem 的內生性抗藥機轉 ................ 17 1-4-1 Efflux pumps ...................................... 17 1-4-2 AmpC overproduction ........................ 19 1-4-3 Porin loss ............................ 19 1-4-4 Penicillin binding proteins(PBPs) .............. 20 1-5 研究目的 ............................... 21 第二章 材料與方法 .................................... 22 2-1 菌株來源、培養與保存 ....................... 22 2-2 抗生素感受性測試 ................................. 22 2-2-1 最小抑制濃度(minimum inhibitory concentration, MIC)測定 ................ 22 2-2-2 Modified Hodge test (MHT) ............... 23 2-2-3 2-MPA 雙紙錠協同試驗(2-mercaptopropionic acid double-disk synergy test) ....... 24 2-2-4 DPA 結合紙錠試驗(dipicolinic acid combined disk test, DPA-CDT) ..... 24 2-2-5 Efflux pump inhibition (EPI)assay ................. 25 2-2-6 Cloxacillin inhibitory assay ................. 25 2-3 DNA 實驗操作 ................................. 25 2-3-1 DNA 粗萃取 .......................... 25 2-3-2 聚合酶連鎖反應(Polymerase chain reaction, PCR)......25 2-3-3 DNA 定序(DNA sequencing) .............. 26 2-3-4 序列重組與分析(Sequence alignment and analysis) ............ 26 2-4 蛋白質實驗操作 .................................. 27 2-4-1 綠膿桿菌外膜蛋白質萃取(Extraction of P. aeruginosa outer membrane proteins) ................ 27 2-4-2 蛋白質濃度測定 .............................. 28 2-4-3 SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) .... 28 第三章 結果 .................... 29 3-1 綠膿桿菌之抗生素感受性測試 .................. 29 3-1-1 Antimicrobial agent susceptibilities ............. 29 3-1-2 Prevalence of carbapenem non-susceptible P. aeruginosa in NCKUH .......... 29 3-2 綠膿桿菌抗藥基因 ..................................... 30 3-2-1 Class A β-lactamases .................... 30 3-2-2 Class B β-lactamases ..................... 30 3-2-3 Class D β-lactamases ..................... 31 3-3 Efflux pump inhibition assay .................... 32 3-4 AmpC 大量表現與ESAC .................... 32 3-4-1 AmpC overproduction ....................... 32 3-4-2 ESAC characteristics ........................ 33 3-5 Porin profile 與OprD 蛋白質序列分析 .................. 33 3-5-1 oprD 基因的PCR 增幅 ...................... 33 3-5-2 OprD 蛋白的序列分析 ..................... 34 3-5-3 綠膿桿菌的outer membrane profile .......... 35 第四章 討論 ....................................... 36 4-1 臺灣與全球carbapenem 抗藥性綠膿桿菌之比較與感染控制 .......... 36 4-2 侵襲性carbapenem 抗藥性綠膿桿菌在臨床的威脅 ............................................. 37 4-3 帶有carbapenemase 的綠膿桿菌表現型檢定 ................................... 38 4-4 Efflux pump inhibition assay 藥物選擇與其他可能的臨床用途 ..... 40 4-5 AmpC 與carbapenem 抗藥性綠膿桿菌 .......... 41 4-6 OprD 與carbapenem 抗藥性綠膿桿菌 ...................... 42 4-7 回顧與展望 ........................................ 44 4-7-1 綠膿桿菌已知的carbapenem 抗藥機轉 ............... 44 4-7-2 綠膿桿菌其他可能的carbapenem 抗藥機轉 ................ 45 4-7-3 Insertion sequences 所造成的抗藥性問題 ............. 46 第五章 總結 ............................................. 48 參考文獻 .......... 49 表 ............. 83 圖 .................. 93 Appendix ........... 100 自述 ................................................ 116 表目錄 Table 1 . The primers used in this study ................ 83 Table 2 . Antimicrobial agent susceptibilities of 82 carbapenem non-susceptible P . aeruginosa strains from NCKUH and NTUH ...................................... 86 Table 3 . Carbapenem-resistant mechanisms and MICs of 82 carbapenem-non-susceptible P . aeruginosa clinical isolates in Taiwan .......................................... 87 Table 4 . Phenotypic screening of class A and B carbapenemases of carbapenem-nonsusceptible P . aeruginosa clinical isolates ................................ 89 Table 5 . Cloxacillin inhibition assay for AmpC overproduction and extended-spectrum AmpC β - lactamase activity .................... 90 Table 6. oprD inactive mutation in P. aeruginosa in Taiwan ............................................ 91 Table 7. Correlation of MIC and carbapenem-resistant mechanisms in P. aeruginosa ..... 92 圖目錄 Figure 1 . Prevalence of carbapenem non-susceptible Pseudomonas aeruginosa in National Cheng Kung University Hospital from 2000 to February , 2011 ...................... 93 Figure 2 . The size of β - lactamase PCR products .......... 94 Figure 3. Modified Hodge test for class A carbapenemase detection .............................. 95 Figure 4 . Detection of metallo - β - lactamase-producer by 2-MPA synergy disk test and DPA-combined disk test ...... 96 Figure 5 . Genetic characterization of acquired β - lactamases in carbapenem non-susceptible P. aeruginosa clinical isolates in Taiwan ............... 97 Figure 6 . Outer membrane protein profile of 82 carbapenem-non-susceptible P . aeruginosa clinical isolates ..... 98 Figure 7 . Summary of carbapenem-resistant mechanisms in P. aeruginosa in this study 99

    1. Abdel-Mawgoud, A. M., M. M. Aboulwafa, and N. A.-H. Hassouna. 2009. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl. Biochem. Biotechnol. 157:329–345.
    2. Adamo, R., S. Sokol, G. Soong, M. I. Gomez, and A. Prince. 2004. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am. J. Respir. Cell Mol. Biol. 30:627-634.
    3. Adewoye, L., A. Sutherland, R. Srikumar, and K. Poole. 2002. The MexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: Characterization of mutations compromising activity. J. Bacteriol. 184:4308-4312.
    4. Afzal-Shah, M., N. Woodford, and D. M. Livermore. 2001. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-Lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 45:583-588.
    5. Aires, J. R., T. Kohler, H. Nikaido, and P. Plesiat. 1999. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 43:2624-2628.
    6. Aktaş, Z., L. Poirel, M. Şalcıoğlu, P. E. Özcan, K. Midilli, Ç. Bal, Ö. Anğ, et al. 2005. PER-1- and OXA-10-like β-lactamases in ceftazidime-resistant Pseudomonas aeruginosa isolates from intensive care unit patients in Istanbul, Turkey. Clin. Microbiol. Infect. 11:193-198.
    7. Al Naiemi, N., B. Duim, and A. Bart. 2006. A CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Med. Microbiol. 55:1607-1608.
    8. Ambler, R. P. 1980. The structure of β-lactamases. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 289:321-331.
    9. Arakawa, Y., N. Shibata, K. Shibayama, H. Kurokawa, T. Yagi, H. Fujiwara, and M. Goto. 2000. Convenient test for screening metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. J. Clin. Microbiol. 38:40-43.
    10. Araki, N., K. Yanagihara, Y. Morinaga, K. Yamada, Y. Yamada, S. Kohno, and S. Kamihira. 2011. In vivo efficacy of doripenem (DRPM) against Pseudomonas aeruginosa in murine chronic respiratory tract infection model. J. Infect. Chemother. 17:318-21.
    11. Aubert, D., L. Poirel, J. Chevalier, S. Leotard, J.-M. Pages, and P. Nordmann. 2001. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45:1615-1620.
    12. Bagge, N., O. Ciofu, M. Hentzer, J. I. A. Campbell, M. Givskov, and N. Hoiby. 2002. Constitutive high expression of chromosomal β-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob. Agents Chemother. 46:3406-3411.
    13. Bagge, N., M. Schuster, M. Hentzer, O. Ciofu, M. Givskov, E. P. Greenberg, and N. Hoiby. 2004. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob. Agents Chemother. 48:1175-1187.
    14. Barriere, S. L., and J. F. Flaherty. 1984. Third-generation cephalosporins: a critical evaluation. Clin. Pharm. 3:351-373.
    15. Benz, R., and R. E. W. Hancock. 1987. Mechanism of ion transport through the anion-selective channel of the Pseudomonas aeruginosa outer membrane. J. Gen. Physiol. 89:275-295.
    16. Bert, F., C. Branger, and N. Lambert-Zechovsky. 2002. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J. Antimicrob. Chemother. 50:11-18.
    17. Bjarnsholt, T., P. Ø. Jensen, T. B. Rasmussen, L. C. M. Christophersen, H. Calum, M. Hentzer, H.-P. Hougen, et al. 2005. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873-3880.
    18. Bogaerts, P., C. Bauraing, A. Deplano, and Y. Glupczynski. 2007. Emergence and dissemination of BEL-1-producing Pseudomonas aeruginosa isolates in Belgium. Antimicrob. Agents Chemother. 51:1584-1585.
    19. Bonfiglio, G., G. Russo, and G. Nicoletti. 2002. Recent developments in carbapenems. Expert Opin Investig Drugs 11:529-44.
    20. Bonnin, R. A., A. Potron, L. Poirel, H. Lecuyer, R. Neri, and P. Nordmann. 2011. PER-7, an extended-spectrum β-Lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55:2424-2427.
    21. Bou, G., G. Cerveró, M. A. Domínguez, C. Quereda, and J. Martínez-Beltrán. 2000a. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of β-lactamases. J. Clin. Microbiol. 38:3299–3305.
    22. Bou, G., A. Oliver, and J. Martínez-Beltrán. 2000b. OXA-24, a novel class D β-Lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob. Agents Chemother. 44:1556–1561.
    23. Boutoille, D., S. Corvec, N. Caroff, C. Giraudeau, E. Espaze, J. Caillon, P. Plesiat, et al. 2004. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. FEMS Microbiol. Lett. 230:143-146.
    24. Breidenstein, E. B. M., C. d. l. Fuente-Nunez, and R. E. W. Hancock. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19:419-426.
    25. Buijs, J., A. S. Dofferhoff, J. W. Mouton, and J. W. van der Meer. 2007. Continuous administration of PBP-2- and PBP-3-specific beta-lactams causes higher cytokine responses in murine Pseudomonas aeruginosa and Escherichia coli sepsis. J. Antimicrob. Chemother. 59:926-933.
    26. Bush, K., and G. A. Jacoby. 2010. Updated functional classification of β-Lactamases. Antimicrob. Agents Chemother. 54:969-976.
    27. Cabot, G., A. A. Ocampo-Sosa, F. Tubau, M. D. Macia, C. Rodriguez, B. Moya, L. Zamorano, et al. 2011. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob. Agents Chemother. 55:1906-1911.
    28. Caille, O., C. Rossier, and K. Perron. 2007. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J. Bacteriol. 189:4561-4568.
    29. Cao, L., R. Srikumar, and K. Poole. 2004. MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol. Microbiol. 53:1423-1436.
    30. Castanheira, M., M. A. Toleman, R. N. Jones, F. J. Schmidt, and T. R. Walsh. 2004. Molecular characterization of a β-Lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob. Agents Chemother. 48:4654-4661.
    31. Chanawong, A., F. H. M'Zali, J. Heritage, A. Lulitanond, and P. M. Hawkey. 2001. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J. Antimicrob. Chemother. 48:839-852.
    32. Chang, C.-J., J. Ye, Jr., C.-C. Yang, P.-Y. Huang, P.-C. Chiang, and M.-H. Lee. 2010. Influence of third-generation cephalosporin resistance on adult in-hospital mortality from post-neurosurgical bacterial meningitis. Journal of Microbiology, Immunology and Infection 43:301-309.
    33. Chang, F.-Y., L. K. Siu, C.-P. Fung, M.-H. Huang, and M. Ho. 2001. Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrob. Agents Chemother. 45:2407-2413.
    34. Chen, M., Y. Yan, W. Zhang, W. Lu, J. Wang, S. Ping, and M. Lin. 2011a. Complete genome sequence of the type strain Pseudomonas stutzeri CGMCC 1.1803. J. Bacteriol. 193:6095.
    35. Chen, W.-Y., T.-N. Jang, C.-H. Huang, and P.-R. Hsueh. 2009. In vitro susceptibilities of aerobic and facultative anaerobic Gram-negative bacilli isolated from patients with intra-abdominal infections at a medical center in Taiwan: results of the Study for Monitoring Antimicrobial Resistance Trends (SMART) 2002-2006. Journal of Microbiology, Immunology and Infection 42:317-323.
    36. Chen, Y.-H., P.-R. Hsueh, Robert E. Badal, S. P. Hawser, D. J. Hoban, S. K. Bouchillon, Y. Ni, et al. 2011b. Antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region according to currently established susceptibility interpretive criteria. J. Infect. 62:280-291.
    37. Chopra, I., and M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232-260.
    38. Chung, K.-P., S.-P. Tseng, Y.-T. Huang, T.-H. Tsai, L.-J. Teng, and P.-R. Hsueh. 2011. Arrival of Klebsiella pneumoniae carbapenemase (KPC)-2 in Taiwan. J. Antimicrob. Chemother. 66:1182-1184.
    39. CLSI. 2011. Performance standards for antimicrobial susceptibility sesting: twenty-first informational supplement, CLSI document M100-S21 ed, vol. 31. Clinical and Laboratory Standards Institute, Wayne, PA.
    40. Colom, K., A. FdzAranguiz, E. Suinaga, and R. Cisterna. 1995. Emergence of resistance to beta-lactam agents in Pseudomonas aeruginosa with group I beta-lactamases in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 14:964-971.
    41. Coque, T. M., A. n. Novais, A. Carattoli, L. Poirel, J. Pitout, L. s. Peixe, F. Baquero, et al. 2008. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-Lactamase CTX-M-15. Emerg. Infect. Dis. 14:195-200.
    42. Cornaglia, G., H. Giamarellou, and G. M. Rossolini. 2011. Metallo-β-lactamases: a last frontier for β-lacatmas? Lancet. Infect. Dis. 11:381-393.
    43. Costaa, D., P. Poeta, Y. Sáenz, A. C. Coelho, M. Matos, L. Vinué, J. Rodrigues, et al. 2008. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet. Microbiol. 127:97-105.
    44. Daigle, D. M., L. Cao, S. Fraud, M. S. Wilke, A. Pacey, R. Klinoski, N. C. Strynadka, et al. 2007. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J. Bacteriol. 189:5441-5451.
    45. Danel, F., I. M. C. Hall, D. Gur, H. E. Akalin, and D. M. Livermore. 1995. Transferable production of PER-1 β-lactamase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 35:281-294.
    46. David, M., J. F. Lemeland, and S. Boyer. 2008. Emergence of extended-spectrum beta-lactamases in Pseudomonas aeruginosa: about 24 cases at rouen university hospital. Pathol. Biol. (Paris). 56:429-434.
    47. Davies, T. A., A. M. Queenan, B. J. Morrow, W. Shang, K. Amsler, W. He, A. S. Lynch, et al. 2011. Longitudinal survey of carbapenem resistance and resistance mechanisms in Enterobacteriaceae and non-fermenters from the USA in 2007–09. J. Antimicrob. Chemother. 66:2298-2307.
    48. De Luca, F., M. Benvenuti, F. Carboni, C. Pozzi, G. M. Rossolini, S. Mangani, and J. D. Docquier. 2011. Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D β-lactamase OXA-10 by rational protein design. Proc. Natl. Acad. Sci. U. S. A. 108:18424-9.
    49. Dean, C. R., M. A. Visalli, S. J. Projan, P. E. Sum, and P. A. Bradford. 2003. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 47:972-978.
    50. Dietz, H., D. Pfeifle, and B. Wiedemann. 1996. Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for β-lactamase induction, in the bacterial cell. Antimicrob. Agents Chemother. 40:2173-2177.
    51. Dietz, H., D. Pfeifle, and B. Wiedemann. 1997. The signal molecule for β-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob. Agents Chemother. 41:2113-2120.
    52. Donald, H. M., W. Scaife, S. G. B. Amyes, and H. K. Young. 2000. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 44:196-199.
    53. Dubois, V., C. Arpin, P. Noury, and C. Quentin. 2002. Clinical strain of Pseudomonas aeruginosa carrying a blaTEM-21 gene located on a chromosomal interrupted TnA type transposon. Antimicrob. Agents Chemother. 46:3624-3626.
    54. El Amin, N., C. G. Giske, S. Jalal, B. Keijser, G. Kronvall, and B. Wretlind. 2005. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 113:187–196.
    55. El Garch, F., P. Bogaerts, C. Bebrone, M. Galleni, and Y. Glupczynski. 2011. OXA-198, an acquired carbapenem-hydrolyzing class D β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55:4828-33.
    56. Empel, J., K. Filczak, A. Mrówka, W. Hryniewicz, D. M. Livermore, and M. Gniadkowski. 2007. Outbreak of Pseudomonas aeruginosa Infections with PER-1 extended-epectrum β-Lactamase in Warsaw, Poland: further evidence for an international clonal complex. J. Clin. Microbiol. 45:2829-2834.
    57. Epp, S. F., T. Kohler, P. Plesiat, M. Michea-Hamzehpour, J. Frey, and J. C. Pechere. 2001. C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem. Antimicrob. Agents Chemother. 45:1780-1787.
    58. Evans, J. C., and H. Segal. 2007. A novel insertion sequence, ISPa26, in oprD of Pseudomonas aeruginosa is associated with carbapenem resistance. Antimicrob. Agents Chemother. 51:3776-3777.
    59. Evans, K., L. Adewoye, and K. Poole. 2001. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: Identification of MexR binding sites in the mexA-mexR intergenic region. J. Bacteriol. 183:807-812.
    60. Farra, A., S. Islam, A. Stralfors, M. Sorberg, and B. Wretlind. 2008. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int. J. Antimicrob. Agents 31:427-433.
    61. Figueiredo, S., L. Poirel, J. Croize, C. Recule, and P. Nordmann. 2009a. In vivo selection of reduced susceptibility to carbapenems in Acinetobacter baumannii related to ISAba1-mediated overexpression of the natural blaOXA-66 oxacillinase gene. Antimicrob. Agents Chemother. 53:2657-2659.
    62. Figueiredo, S., L. Poirel, A. Papa, V. Koulourida, and P. Nordmann. 2009b. Overexpression of the naturally occurring blaOXA-51 gene in Acinetobacter baumannii mediated by novel insertion sequence ISAba9. Antimicrob. Agents Chemother. 53:4045-4047.
    63. Figueiredo, S., L. Poirel, H. Seifert, P. Mugnier, D. Benhamou, and P. Nordmann. 2010. OXA-134, a naturally occurring carbapenem-hydrolyzing class D β-lactamase from Acinetobacter lwoffii. Antimicrob. Agents Chemother. 54:5372-5375.
    64. Fung-Tomc, J. C., E. Gradelski, B. Kolek, B. Minassian, M. Pucci, R. E. Kessler, and D. P. Bonner. 1995. Activity of carbapenem BMS-181139 against Pseudomonas aeruginosa is not dependent on porin protein D2. Antimicrob. Agents Chemother. 39:386-393.
    65. Gales, A. C., L. C. Menezes, S. Silbert, and H. S. Sader. 2003. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-actamase. J. Antimicrob. Chemother. 52:699-702.
    66. Gales, A. C., H. S. Sader, and R. N. Jones. 2002. Urinary tract infection trends in Latin American hospitals: report from the SENTRY antimicrobial surveillance program (1997-2000). Diagn. Microbiol. Infect. Dis. 44:289-299.
    67. Garcia-Quintana, H. G., M. Polette, and J. Rios. 1989. Bactericidal spectrum of pyocins on strains collected at region IX and X hospitals in Chile. Rev. Med. Chil. 116:543-8.
    68. Girlich, D., T. Naas, A. Leelaporn, L. Poirel, M. Fennewald, and P. Nordmann. 2002. Nosocomial spread of the integron-located VEB-1-like cassette encoding an extended-spectrum β-lactamase in Pseudomonas aeruginosa in Thailand. Clin. Infect. Dis. 34:603-611.
    69. Girlich, D., T. Naas, and P. Nordmann. 2004a. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 48:2043-8.
    70. Girlich, D., T. Naas, and P. Nordmann. 2004b. OXA-60, a chromosomal, inducible, and imipenem-hydrolyzing class D β-Lactamase from Ralstonia pickettii. Antimicrob. Agents Chemother. 48:4217-4225.
    71. Girlich, D., L. Poirel, and P. Nordmann. 2010. PER-6, an extended-spectrum β-lactamase from Aeromonas allosaccharophila. Antimicrob. Agents Chemother. 54:1619-1622.
    72. Giske, C. G., L. Buaro, A. Sundsfjord, and B. Wretlind. 2008. Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. Microb. Drug Resist. 14:23-30.
    73. Gulmez, D., N. Woodford, M. F. I. Palepou, S. Mushtaq, G. Metan, Y. Yakupogullari, S. Kocagoz, et al. 2008. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int. J. Antimicrob. Agents 31:523-526.
    74. Gutierrez, O., C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, J. L. Perez, et al. 2007. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob. Agents Chemother. 51:4329-4335.
    75. Hajjar, A. M., R. K. Ernst, J. H. Tsai, C. B. Wilson, and S. I. Miller. 2002. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3:354-359.
    76. Hancock, R. E. W., and F. S. L. Brinkman. 2002. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 56:17-38.
    77. Hanson, N. D., and C. C. Sanders. 1999. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des. 5:881-894.
    78. Hawser, S. P., D. Hoban, S. Bouchillon, R. Badal, Y. Carmeli, and P. Hawkey. 2011. Antimicrobial susceptibility of intra-abdominal Gram-negative bacilli from Europe: SMART Europe 2008. Eur. J. Clin. Microbiol. Infect. Dis. 30:173-179.
    79. Hellinger, W. C., and N. S. Brewer. 1999. Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clin. Proc. 74:420-434.
    80. Higgins, P. G., L. Poirel, M. Lehmann, P. Nordmann, and H. Seifert. 2009. OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother. 53:5035-5038.
    81. Hirakata, Y., A. Kondo, K. Hoshino, H. Yano, K. Arai, A. Hirotani, H. Kunishima, et al. 2009. Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 34:343-346.
    82. Hoban, D. J., S. K. Bouchillon, S. P. Hawser, Robert E. Badal, V. J. LaBombardi, and J. DiPersio. 2010. Susceptibility of Gram-negative pathogens isolated from patients with complicated intra-abdominal infections in the United States, 2007-2008: results of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob. Agents Chemother. 54:3031–3034.
    83. Hocquet, D., P. Nordmann, F. El Garch, L. Cabanne, and P. Plesiat. 2006. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 50:1347-1351.
    84. Hollox, E. J., J. A. L. Armour, and J. C. K. Barber. 2003. Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am. J. Hum. Genet. 73:591-600.
    85. Holtje, J. V., U. Kopp, A. Ursinus, and B. Wiedemann. 1994. The negative regulator of β-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol. Lett. 122:159-164.
    86. Hornsey, M., L. Phee, and D. W. Wareham. 2011. A novel variant (NDM-5) of the New Delhi metallo-β-lactamase (NDM) in a multidrug resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother. 55:5952-5954.
    87. HPA. 2008. Antimicrobial resistance and prescribing in England, Wales and Northern Ireland, 2008. The Health Protection Agency.
    88. HPA. 2010. Pseudomonas spp. and Stenotrophomonas maltophilia bacteraemia in England, Wales, and Northern Ireland, 2005 to 2009. The Health Protection Agency.
    89. HPA. 2011. Pseudomonas spp. and Stenotrophomonas maltophilia bacteraemia in England, Wales, and Northern Ireland, 2006 to 2010. The Health Protection Agency.
    90. Hsueh, P.-R., S.-P. Tseng, L.-J. Teng, and S.-W. Ho. 2005. Pan-drug-resistant Pseudomonas aeruginosa causing nosocomial infection at a university hospital in Taiwan. Clin. Microbiol. Infect. 11:670-673.
    91. Huang, H., D. Jeanteur, F. Pattus, and R. E. Hancock. 1995. Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol. Microbiol. 16:931-941.
    92. Huang, H. J., and R. E. W. Hancock. 1996. The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa. J. Bacteriol. 178:3085-3090.
    93. Huang, Y.-T., C.-R. Jeng, C.-H. Cheng, L.-L. Chueh, J. J. Liu, and V. F. Pang. 2003. Morphological and immunological evidence of a unique selective production and endoplasmic reticular accumulation of interleukin-1 α in rat peritoneal macrophages induced by Pseudomonas aeruginosa exotoxin A. Cell. Immunol. 221:143-156.
    94. Huo, T.-I. 2010. The first case of multidrug-resistant NDM-1-harboring Enterobacteriaceae in Taiwan: here comes the superbacteria! J. Chin. Med. Assoc. 73:557-558.
    95. Iglewski, B. H., P. V. Liu, and D. Kabat. 1977. Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect. Immun. 15:138-144.
    96. Islam, S., S. Jalal, and B. Wretlind. 2004. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 10:877-883.
    97. Jacobs, C., L. J. Huang, E. Bartowsky, S. Normark, and J. T. Park. 1994. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J. 13:4684-4694.
    98. Jacoby, G. 2011. β-Lactamase Classification and Amino Acid Sequences for TEM, SHV and OXA Extended-Spectrum and Inhibitor Resistant Enzymes. Septmeber 9, 2011 ed.
    99. Jacoby, G. A. 2009. AmpC β-Lactamases. Clin. Microbiol. Rev. 22:161-182.
    100. Jacoby, G. A., and L. S. Munoz-Price. 2005. Mechanisms of disease: The new beta-lactamases. N. Engl. J. Med. 352:380-391.
    101. Jalal, S., O. Ciofu, N. Hoiby, N. Gotoh, and B. Wretlind. 2000. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob. Agents Chemother. 44:710-712.
    102. Jayawardena, S. B., J. Cambell-Tofte, D. Guardia, N. Bagge, O. Ciofu, N. Hoiby, and K. Mathee. 2001. Analysis of Pseudomonas aeruginosa ampR gene. Abstracts of the General Meeting of the American Society for Microbiology 101:277.
    103. Jean, S.-S., P.-R. Hsueh, W.-S. Lee, H.-T. Chang, M.-Y. Chou, I.-S. Chen, J.-H. Wang, et al. 2009. Nationwide surveillance of antimicrobial resistance among non-fermentative Gram-negative bacteria in Intensive Care Units in Taiwan: SMART programme data 2005. Int. J. Antimicrob. Agents 33:266-271.
    104. Jean, S.-S., P.-R. Hsueh, W.-S. Lee, H.-T. Chang, M.-Y. Chou, I.-S. Chen, J.-H. Wang, et al. 2010. In vitro activities of doripenem and other carbapenems against clinically important bacteria isolated in intensive care units: nationwide data from the SMART Programme. Eur. J. Clin. Microbiol. Infect. Dis. 29:471-475.
    105. Jean, S. S., and P. R. Hsueh. 2010. Antimicrobial drug resistance in Taiwan. J. Formos. Med. Assoc. 100:4-13.
    106. Jones, R. N., J. T. Kirby, M. L. Beach, D. J. Biedenbach, and M. A. Pfaller. 2002. Geographic variations in activity of broad-spectrum beta-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn. Microbiol. Infect. Dis. 43:239-243.
    107. Juan, C., M. D. Macia, O. Gutierrez, C. Vidal, J. L. Perez, and A. Oliver. 2005. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob. Agents Chemother. 49:4733-4738.
    108. Juan, C., L. Zamorano, A. Mena, S. Alberti, J. L. Perez, and A. Oliver. 2010. Metallo-β-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. J. Antimicrob. Chemother. 65:474-478.
    109. Kaase, M., P. Nordmann, T. A. Wichelhaus, S. r. G. Gatermann, R. m. A. Bonnin, and L. Poirel. 2011. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J. Antimicrob. Chemother. 66:1260-1262.
    110. Kaczmarek, F. M., F. Dib-Hajj, W. C. Shang, and T. D. Gootz. 2006. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of blaACT-1 β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50:3396-3406.
    111. Kahan, J. S., F. M. Kahan, R. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, T. W. Miller, et al. 1979. Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiot. (Tokyo). 32:1-12.
    112. Kattan, J. N., M. V. Villegas, and J. P. Quinn. 2008. New developments in carbapenems. Clin. Microbiol. Infect. 14:1102-1111.
    113. Kharazmi, A. 1991. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol. Lett. 30:201-206.
    114. Ko, W.-C., and P.-R. Hsueh. 2009. Increasing extended-spectrum β-lactamase production and quinolone resistance among Gram-negative bacilli causing intra-abdominal infections in the Asia/Pacific region: Data from the Smart Study 2002–2006. J. Infect. 59:95-103.
    115. Koh, T. H., L.-H. Sng, G. C. Y. Wang, L.-Y. Hsu, and Y. Zhao. 2007. IMP-4 and OXA β-lactamases in Acinetobacter baumannii from Singapore. J. Antimicrob. Chemother. 59:627-632.
    116. Kohanski, M. A., D. J. Dwyer, and J. J. Collins. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8:423-435.
    117. Kohler, T., S. F. Epp, L. K. Curty, and J. C. Pechere. 1999a. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 181:6300-6305.
    118. Kohler, T., M. Michea-Hamzehpour, S. F. Epp, and J. C. Pechere. 1999b. Carbapenem activities against Pseudomonas aeruginosa: Respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother. 43:424-427.
    119. Kohler, T., M. MicheaHamzehpour, U. Henze, N. Gotoh, L. K. Curty, and J. C. Pechere. 1997. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 23:345-354.
    120. Kong, K. F., S. R. Jayawardena, A. del Puerto, L. Wiehlmann, U. Laabs, B. Tummler, and K. Mathee. 2005a. Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Gene 358:82-92.
    121. Kong, K. F., S. R. Jayawardena, S. D. Indulkar, A. del Puerto, C. L. Koh, N. Hoiby, and K. Mathee. 2005b. Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob. Agents Chemother. 49:4567-4575.
    122. Kooguchi, K., S. Hashimoto, A. Kobayashi, Y. Kitamura, I. Kudoh, J. Wiener-Kronish, and T. Sawa. 1998. Role of alveolar macrophages in initiation and regulation of inflammation in Pseudomonas aeruginosa pneumonia. Infect. Immun. 66:3164-3169.
    123. Kresken, M., D. Hafner, F.-J. Schmitz, and T. A. Wichelhaus. 2004. PEG-Resistenzstudie 2004. Paul-Ehrlich-Gesellschaft für Chemotherapie e.V.
    124. Kresken, M., D. Hafner, F.-J. Schmitz, and T. A. Wichelhaus. 2007. PEG-Resistenzstudie 2007. Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. .
    125. Kuo, A.-J., L.-H. Su, C.-C. Chen, L.-C. Chia, H.-C. Ning, C.-C. Li, and T.-L. Wu. 2009. Antimicrobial resistance in Pseudomonas aeruginosa at two medical centers in northern and southern Taiwan, 2000-2007. Journal of Biomedical & Laboratory Sciences 21:98-105.
    126. Kuo, H.-Y., C.-M. Yang, M.-F. Lin, W.-L. Cheng, N. Tien, and M.-L. Liou. 2010. Distribution of blaOXA-carrying imipenem-resistant Acinetobacter spp. in 3 hospitals in Taiwan. Diagn. Microbiol. Infect. Dis. 66:195-199.
    127. Kuo, L.-C., C.-J. Yu, M.-L. Kuo, W.-N. Chen, C.-K. Chang, H.-I. Lin, C.-C. Chen, et al. 2008. Antimicrobial resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study. Int. J. Antimicrob. Agents 31:420-426.
    128. Laupland, K. B., M. D. Parkins, D. L. Church, D. B. Gregson, T. J. Louie, J. M. Conly, S. Elsayed, et al. 2005. Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary Health Region: Importance of metallo-β-lactamase (MBL)-producing strains. J. Infect. Dis. 192:1606-1612.
    129. Lauretti, L., M. L. Riccio, A. Mazzariol, G. Cornaglia, G. Amicosante, R. Fontana, and G. M. Rossolini. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43:1584-1590.
    130. Lee, C.-Y., P.-Y. Chen, F.-L. Huang, and C.-F. Lin. 2009a. Microbiologic spectrum and susceptibility pattern of clinical isolates from the pediatric intensive care unit in a single medical center-6 years' experience. Journal of Microbiology, Immunology and Infection 42:160-165.
    131. Lee, K., M. N. Kim, T. Y. Choi, S. E. Cho, S. Lee, D. H. Whang, D. Yong, et al. 2009b. Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int. J. Antimicrob. Agents 33:520-524.
    132. Lee, K., Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41:4623-4629.
    133. Lee, K., J. H. Yum, D. Yong, H. M. Lee, H. D. Kim, J.-D. Docquier, G. M. Rossolini, et al. 2005. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea Antimicrob. Agents Chemother. 49:4485–4491.
    134. Lee, M., C. Peng, H. Hsu, and Y. Chen. 2008. Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int. J. Antimicrob. Agents 32:475-480.
    135. Letendre, E. D., R. Mantha, and P. L. Turgeon. 1988. Selection of resistance by piperacillin during Pseudomonas aeruginosa endocarditis. J. Antimicrob. Chemother. 22:557-562.
    136. Li, X.-Z., H. Nikaido, and K. Poole. 1995. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1948-1953.
    137. Libisch, B., L. Poirel, Z. Lepsanovic, V. Mirovic, B. Balogh, J. Paszti, Z. Hunyadi, et al. 2008. Identification of PER-1 extended-spectrum beta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. FEMS Immunol. Med. Microbiol. 54:330-338.
    138. Lin, M.-F., H.-Y. Kuo, H.-W. Yeh, C.-M. Yang, C.-H. Sung, C.-C. Tu, M.-L. Huang, et al. 2011. Emergence and dissemination of blaOXA-23-carrying imipenem-resistant Acinetobacter sp in a regional hospital in Taiwan. Journal of Microbiology, Immunology and Infection 44:39-44.
    139. Lin, T.-L., S.-I. Tang, C.-T. Fang, P.-R. Hsueh, S.-C. Chang, and J.-T. Wang. 2006. Extended-spectrum β-lactamase genes of Klebsiella pneumoniae strains in Taiwan: recharacterization of SHV-27, SHV-41, and TEM-116. Microb. Drug Resist. 12:12-15.
    140. Lin, Y. C., K. C. Hsia, Y. C. Chen, W. H. Sheng, S. C. Chang, M. H. Liao, and S. Y. Li. 2010. Genetic basis of multidrug resistance in Acinetobacter clinical isolates in Taiwan. Antimicrob. Agents Chemother. 54:2078-2084.
    141. Lipsky, B. A., and C. A. Baker. 1999. Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin. Infect. Dis. 28:352-364.
    142. Lister, P. D., D. J. Wolter, and N. D. Hanson. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22:582-610.
    143. Liu, Y. F., J. J. Yan, W. C. Ko, S. H. Tsai, and J. J. Wu. 2008. Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J. Antimicrob. Chemother. 61:1020-1023.
    144. Livermore, D. M. 1992. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 36:2046-2048.
    145. Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634-640.
    146. Livermore, D. M. 1995. β-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557-584.
    147. Llanes, C., D. Hocquet, C. Vogne, D. Benali-Baitich, C. Neuwirth, and P. Plesiat. 2004. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob. Agents Chemother. 48:1797-1802.
    148. Lu, P.-L., M. Doumith, D. M. Livermore, T.-P. Chen, and N. Woodford. 2009. Diversity of carbapenem resistance mechanisms in Acinetobacter baumannii from a Taiwan hospital: spread of plasmid-borne OXA-72 carbapenemase. J. Antimicrob. Chemother. 63:641-647.
    149. Lynch, M. J., G. L. Drusano, and H. L. T. Mobley. 1987. Emergence of resistance to imipenem in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 31:1892-1896.
    150. Ma, L., F. Y. Chang, C. P. Fung, T. L. Chen, J. C. Lin, P. L. Lu, L. Y. Huang, et al. 2005. Variety of TEM-, SHV-, and CTX-M-type β-lactamases present in recent clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from Taiwan. Microb. Drug Resist. 11:31-39.
    151. Mabilat, C., and S. Goussard. 1993. PCR detection and identification of genes for extended-spectrum beta-lactamases, vol. American Society for Microbiology (ASM) {a}, Books Division, 1325 Massachusetts Ave. NW, Washington, DC 20005-4171, USA.
    152. Macia, M. D., D. Blanquer, B. Togores, J. Sauleda, J. L. Perez, and A. Oliver. 2005. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob. Agents Chemother. 49:3382-3386.
    153. Maeda, K., H. Nojiri, M. Shintani, T. Yoshida, H. Habe, and T. Omori. 2003. Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J. Mol. Biol. 326:21-33.
    154. Marchandin, H., H. Jean-Pierre, C. De Champs, D. Sirot, H. Darbas, P. F. Perigault, and C. Carriere. 2000. Production of a TEM-24 plasmid-mediated extended-spectrum β-lactamase by a clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:213-216.
    155. Margaret, B. S., G. L. Drusano, and H. C. Standiford. 1989. Emergence of resistance to carbapenem antibiotics in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 24:161-167.
    156. Martinez-Martinez, L., A. Pascual, S. Hernandez-Alles, D. Alvarez-Diaz, A. I. Suarez, S. J. Tran, V. J. Benedi, et al. 1999. Roles of β-lactamases and porins is activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 43:1669-1673.
    157. Maseda, H., K. Saito, A. Nakajima, and T. Nakae. 2000. Variation of the mexT gene, a regulator of the MexEF-OprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 192:107-112.
    158. Massova, I., and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42:1-17.
    159. Masterton, R. G., P. J. Garner, N. A. Harrison, and D. J. Rainford. 1987. Timentin resistance. Lancet 2:975-976.
    160. Masuda, N., N. Gotoh, C. Ishii, E. Sakagawa, S. Ohya, and T. Nishino. 1999. Interplay between chromosomal β-lactamase and the MexAB-OprM efflux system in intrinsic resistance to β-lactams in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43:400-402.
    161. Masuda, N., E. Sakagawa, S. Ohya, N. Gotoh, and T. Nishino. 2001. Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to β-lactams due to reduced expression of the AmpC β-lactamase. Antimicrob. Agents Chemother. 45:1284-1286.
    162. Masuda, N., E. Sakagawa, S. Ohya, N. Gotoh, H. Tsujimoto, and T. Nishino. 2000a. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:2242-2246.
    163. Masuda, N., E. Sakagawa, S. Ohya, N. Gotoh, H. Tsujimoto, and T. Nishino. 2000b. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:3322-3327.
    164. Matsuo, Y., S. Eda, N. Gotoh, E. Yoshihara, and T. Nakae. 2004. MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. FEMS Microbiol. Lett. 238:23-28.
    165. Mavroidi, A., E. Tzelepi, A. Tsakris, V. Miriagou, D. Sofianou, and L. S. Tzouvelekis. 2001. An integron-associated β-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1. J. Antimicrob. Chemother. 48:627-630.
    166. Medeiros, A. A. 1997. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis. 24:S19-S45.
    167. Mendelson, M. H., A. Gurtman, S. Szabo, E. Neibart, B. R. Meyers, M. Policar, T. W. Cheung, et al. 1994. Pseudomonas aeruginosa bacteremia in patients with AIDS. Clin. Infect. Dis. 18:886-895.
    168. Migliavacca, R., J. D. Docquier, C. Mugnaioli, G. Amicosante, R. Daturi, K. W. Lee, G. M. Rossolini, et al. 2002. Simple microdilution test for detection of metallo-β-lactamase production in Pseudomonas aeruginosa. J. Clin. Microbiol. 40:4388-4390.
    169. Mingeot-Leclercq, M. P., Y. Glupczynski, and P. M. Tulkens. 1999. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 43:727-737.
    170. Mirsalehian, A., M. Feizabadi, F. A. Nakhjavani, F. Jabalameli, H. Goli, and N. Kalantari. 2010. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns 36:70-74.
    171. Mizuno, T., and M. Kageyama. 1978. Separation and characterization of the outer membrane of Pseudomonas aeruginosa. J. Biochem. (Tokyo). 84:179-191.
    172. Moland, E. S., N. D. Hanson, V. L. Herrera, J. A. Black, T. J. Lockhart, A. Hossain, J. A. Johnson, et al. 2003. Plasmid-mediated, carbapenem-hydrolysing β-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J. Antimicrob. Chemother. 51:711-714.
    173. Morita, Y., L. Cao, V. C. Gould, M. B. Avison, and K. Poole. 2006a. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J. Bacteriol. 188:8649-8654.
    174. Morita, Y., N. Kimura, T. Mima, T. Mizushima, and T. Tsuchiya. 2001. Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J. Gen. Appl. Microbiol. 47:27-32.
    175. Morita, Y., M. L. Sobel, and K. Poole. 2006b. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: Involvement of the antibiotic-inducible PA5471 gene product. J. Bacteriol. 188:1847-1855.
    176. Moya, B., A. Doetsch, C. Juan, J. Blazquez, L. Zamorano, S. Haussler, and A. Oliver. 2009. β-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog. 5:e1000353.
    177. Mugnier, P., P. Dubrous, I. Casin, G. Arlet, and E. Collatz. 1996. A TEM-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 40:2488-2493.
    178. Mugnier, P. D., K. M. Bindayna, L. Poirel, and P. Nordmann. 2009. Diversity of plasmid-mediated carbapenem-hydrolysing oxacillinases among carbapenem-resistant Acinetobacter baumannii isolates from Kingdom of Bahrain. J. of Antimicrob. Chemother. 63:1071-1073.
    179. Murray, T. S., M. Egan, and B. I. Kazmierczak. 2007. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19:83-88.
    180. Mushtaq, S., Y. G. Ge, and D. M. Livermore. 2004. Doripenem versus Pseudomonas aeruginosa in vitro: Activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob. Agents Chemother. 48:3086-3092.
    181. Naas, T., L. Philippon, L. Poirel, E. Ronco, and P. Nordmann. 1999a. An SHV-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43:1281-1284.
    182. Naas, T., L. Poirel, A. Karim, and P. Nordmann. 1999b. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum β-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 176:411-419.
    183. Naas, T., W. Sougakoff, A. Casetta, and P. Nordmann. 1998. Molecular characterization of OXA-20, a novel class D β-lactamase, and its integron from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42:2074–2083.
    184. Nader, M., L. Journet, A. Meksem, L. Guillon, and I. J. Schalk. 2011. Mechanism of ferripyoverdine uptake by Pseudomonas aeruginosa outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake. Biochemistry (Mosc). 50:2530-2540.
    185. Nakajima, A., M. Hoshikawa, and T. Nakae. 1998. Antibiotic stress induces a large amount of outer membrane protein in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 165:261-265.
    186. Navia, M. M., J. Ruiz, and J. Vila. 2002. Characterization of an integron carrying a new class D β-lactamase (OXA-37) in Acinetobacter baumannii. Microb. Drug Resist. 8:261-265.
    187. Nazic, H., L. Poirel, and P. Nordmann. 2005. Further identification of plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Turkey. Antimicrob. Agents Chemother. 49:2146-2147.
    188. Nordmann, P., G. Cuzon, and T. Naas. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet. Infect. Dis. 9:228-236.
    189. Nordmann, P., and T. Naas. 1994. Sequence analysis of PER-1 extended-spectrum β-lactamase from Pseudomonas aeruginosa and comparison with class A β-lactamases. Antimicrob. Agents Chemother. 38:104-114.
    190. Nordmann, P., and L. Poirel. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8:321-331.
    191. Noyal, M. J. C., G. A. Menezes, B. N. Harish, S. Sujatha, and S. C. Parija. 2009. Simple screening tests for detection of carbapenemases in clinical isolates of nonfermentative Gram-negative bacteria. Indian J. Med. Res. 129:707-712.
    192. Nuesch-Inderbinen, M. T., H. Hachler, and F. H. Kayser. 1996. Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the Etest. Eur. J. Clin. Microbiol. Infect. Dis. 15:398-402.
    193. Obritsch, M. D., D. N. Fish, R. MacLaren, and R. Jung. 2005. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: Epidemiology and treatment options. Pharmacotherapy 25:1353-1364.
    194. Ochs, M. M., M. Bains, and R. E. W. Hancock. 2000. Role of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:1983-1985.
    195. Ochs, M. M., C. D. Lu, R. E. W. Hancock, and A. T. Abdelal. 1999a. Amino acid-mediated induction of the basic amino acid-specific outer membrane porin OprD from Pseudomonas aeruginosa. J. Bacteriol. 181:5426-5432.
    196. Ochs, M. M., M. P. McCusker, M. Bains, and R. E. W. Hancock. 1999b. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob. Agents Chemother. 43:1085-1090.
    197. Oh, H., J. Stenhoff, S. Jalal, and B. Wretlind. 2003. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains. Microb. Drug Resist. 9:323-328.
    198. Okamoto, K., N. Gotoh, and T. Nishino. 2002. Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: Substrate specificities of the efflux systems. J. Infect. Chemother. 8:371-373.
    199. Okamoto, K., N. Gotoh, and T. Nishino. 2001. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob. Agents Chemother. 45:1964-1971.
    200. Osano, E., Y. Arakawa, R. Wacharotayankun, M. Ohta, T. Horii, H. Ito, F. Yoshimura, et al. 1994. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob. Agents Chemother. 38:71-78.
    201. Pai, H. J., and G. A. Jacoby. 2001. Sequences of the NPS-1 and TLE-1 β-lactamase genes. Antimicrob. Agents Chemother. 45:2947-2948.
    202. Pasteran, F., O. Veliz, D. Faccone, L. Guerriero, M. Rapoport, T. Mendez, and A. Corso. 2011a. A simple test for the detection of KPC and metallo-beta-lactamase carbapenemase-producing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin. Microbiol. Infect. 17:1438-1441.
    203. Pasteran, F., O. Veliz, M. Rapoport, L. Guerriero, and A. Corso. 2011b. Sensitive and specific modified Hodge test for KPC and metallo-β-lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain: Klebsiella pneumoniae ATCC 700603. J. Clin. Microbiol. doi: 10.1128/JCM.05602-11.
    204. Paterson, D. L., and R. A. Bonomo. 2005. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 18:657-686.
    205. Paul, M., D. Yahav, A. Bivas, A. Fraser, and L. Leibovici. 2010. Anti-pseudomonal beta-lactams for the initial, empirical, treatment of febrile neutropenia: comparison of beta-lactams. Cochrane Database of Systematic Reviews.
    206. Perez, F. J., C. Gimeno, D. Navarro, and J. Garcia-de-Lomas. 1996. Meropenem permeation through the outer membrane of Pseudomonas aeruginosa can involve pathways other than the OprD porin channel. Chemotherapy 42:210-214.
    207. Perron, K. 2004. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279:8761-8768.
    208. Phillips, R. M., D. A. Six, E. A. Dennis, and P. Ghosh. 2003. In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A(2) inhibitors. J. Biol. Chem. 278:41326-41332.
    209. Picao, R. C., L. Poirel, A. C. Gales, and P. Nordmann. 2009. Diversity of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob. Agents Chemother. 53:3908-3913.
    210. Pires dos Santos, R., T. Jacoby, D. P. Machado, T. Lisboa, S. L. Gastal, F. M. Nagel, N. M. Kuplich, et al. 2011. Hand hygiene, and not ertapenem use, contributed to reduction of carbapenem-resistant Pseudomonas aeruginosa rates. Infect. Control Hosp. Epidemiol. 32:584-590.
    211. Pirnay, J. P., D. D. Vos, D. Mossialos, A. Vanderkelen, P. Cornelis, and M. Zizi. 2002. Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environmental Microbiology 4:872-882.
    212. Poirel, L., L. Brinas, N. Fortineau, and P. Nordmann. 2005a. Integron-encoded GES-type extended-spectrum β-lactamase with increased activity toward aztreonam in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:3593-3597.
    213. Poirel, L., L. Brinas, A. Verlinde, L. Ide, and P. Nordmann. 2005b. BEL-1, a novel clavulanic acid-inhibited extended-spectrum β-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:3743-3748.
    214. Poirel, L., M. Castanheira, A. Carrer, C. P. Rodriguez, R. N. Jones, J. Smayevsky, and P. Nordmann. 2011. OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 55:2546-2551.
    215. Poirel, L., C. Heritier,V. Tolün, and P. Nordmann. 2003. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48:15-22.
    216. Poirel, L., I. Le Thomas, T. Naas, A. Karim, and P. Nordmann. 2000a. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 44:622-632.
    217. Poirel, L., E. Lebessi, M. Castro, C. Fevre, M. Foustoukou, and P. Nordmann. 2004. Nosocomial outbreak of extended-spectrum β-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob. Agents Chemother. 48:2277-2279.
    218. Poirel, L., W. Mansour, O. Bouallegue, and P. Nordmann. 2008. Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob. Agents Chemother. 52:1613-1617.
    219. Poirel, L., S. Marque, C. Heritier, C. Segonds, G. Chabanon, and P. Nordmann. 2005c. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 49:202-208.
    220. Poirel, L., T. Naas, M. Guibert, E. B. Chaibi, R. Labia, and P. Nordmann. 1999. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother. 43:573-581.
    221. Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J. D. Cavallo, and P. Nordmann. 2000b. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44:891-897.
    222. Poirel, L., T. Naas, and P. Nordmann. 2010a. Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrob. Agents Chemother. 54:24-38.
    223. Poirel, L., J.-M. Rodríguez-Martínez, N. Al Naiemi, Y. J. Debets-Ossenkopp, and P. Nordmann. 2010b. Characterization of DIM-1, an Integron-Encoded Metallo-β-Lactamase from a Pseudomonas stutzeri Clinical Isolate in the Netherlands. Antimicrob. Agents Chemother. 54:2420-2424.
    224. Poirel, L., G. F. Weldhagen, T. Naas, C. De Champs, M. G. Dove, and P. Nordmann. 2001. GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob. Agents Chemother. 45:2598-2603.
    225. Pollack, M. 1995. Pseudomonas aeruginosa, p. 1820–2003. In G. L. Mandell, R. Dolan, and J. E. Bennett (ed.), Principles and practices of infectious diseases. Churchill Livingstone, New York.
    226. Poole, K. 2000. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother. 44:2233-2241.
    227. Poole, K., N. Gotoh, H. Tsujimoto, Q. X. Zhao, A. Wada, T. Yamasaki, S. Neshat, et al. 1996a. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol. Microbiol. 21:713-724.
    228. Poole, K., K. Tetro, Q. X. Zhao, S. Neshat, D. E. Heinrichs, and N. Bianco. 1996b. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob. Agents Chemother. 40:2021-2028.
    229. Potron, A., L. Poirel, and P. Nordmann. 2011. Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in Shewanella xiamenensis. Antimicrob. Agents Chemother. 55:4405-4407.
    230. Pournaras, S., M. Maniati, N. Spanakis, A. Ikonomidis, P. T. Tassios, A. Tsakris, N. J. Legakis, et al. 2005. Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J. Antimicrob. Chemother. 56:761-764.
    231. Pournaras, S., A. Markogiannakis, A. Ikonomidis, L. Kondyli, K. Bethimouti, A. N. Maniatis, N. J. Legakis, et al. 2006. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother. 57:557-561.
    232. Pumbwe, L., and L. J. V. Piddock. 2000. Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:2861-2864.
    233. Quale, J., S. Bratu, J. Gupta, and D. Landman. 2006. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 50:1633-41.
    234. Quinn, J. P., E. J. Dudek, C. A. Divincenzo, D. A. Lucks, and S. A. Lerner. 1986. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J. Infect. Dis. 154:289-294.
    235. Quinn, J. P., A. E. Studemeister, C. A. Divincenzo, and S. A. Lerner. 1988. Resistance to imipenem in Pseudomonas aeruginosa: clinical experience and biochemical mechanisms. Rev. Infect. Dis. 10:892-898.
    236. Rabin, S. D. P., J. L. Veesenmeyer, K. T. Bieging, and A. R. Hauser. 2006. A C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infect. Immun. 74:2552-2561.
    237. Reading, C., and M. Cole. 1977. Clavulanic Acid: a Beta-Lactamase-Inhibiting Beta-Lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11:852–857.
    238. Rhomberg, P. R., and R. N. Jones. 2003. Antimicrobial spectrum of activity for meropenem and nine broad spectrum antimicrobials: report from the MYSTIC Program (2002) in North America. Diagn. Microbiol. Infect. Dis. 47:365-72.
    239. Robledo, I. E., E. E. Aquino, M. I. Sante, J. L. Santana, D. M. Otero, C. F. Leon, and G. J. Vazquez. 2010. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob. Agents Chemother. 54:1354-1357.
    240. Rodriguez-Martinez, J. M., L. Poirel, and P. Nordmann. 2009a. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53:1766-1771.
    241. Rodriguez-Martinez, J. M., L. Poirel, and P. Nordmann. 2009b. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53:4783-4788.
    242. Ruggiero, M., J. Di Conza, A. Famiglietti, C. V. M. Radice, and G. Gutkind. 2009. Generic Environment Characterization of blaCTX-M-2 in Pseudomonas aeruginosa in Argentina, p. 100. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy, vol. 49.
    243. Sacha, P., P. Wieczorek, T. Hauschild, M. Zorawski, D. Olszanska, and E. Tryniszewska. 2008. Metallo-β-lactamases of Pseudomonas aeruginosa- a novel mechanism resistance to β-lactam antibiotics. Folia Histochem. Cytobiol. 46:137-142.
    244. Saito, K., H. Akama, E. Yoshihara, and T. Nakae. 2003. Mutations affecting DNA-binding activity of the MexR repressor of mexR-mexA-mexB-oprM operon expression. J. Bacteriol. 185:6195-6198.
    245. Saito, K., S. Eda, H. Maseda, and T. Nakae. 2001. Molecular mechanism of MexR-mediated regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 195:23-28.
    246. Sakyo, S., H. Tomita, K. Tanimoto, S. Fujimoto, and Y. Ike. 2006. Potency of carbapenems for the prevention of carbapenem-resistant mutants of Pseudomonas aeruginosa- The high potency of a new carbapenem doripenem. J. Antibiot. (Tokyo). 59:220-228.
    247. Saladin, M., V. T. B. Cao, T. Lambert, J. L. Donay, J. L. Herrmann, Z. Ould-Hocine, C. Verdet, et al. 2002. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 209:161-168.
    248. Samuelsen, O., L. Buaro, M. A. Toleman, C. G. Giske, N. O. Hermansen, T. R. Walsh, and A. Sundsfjord. 2009. The first metallo-β-Lactamase identified in Norway is associated with a TniC-like transposon in a Pseudomonas aeruginosa isolate of sequence type 233 imported from Ghana. Antimicrob. Agents Chemother. 53:331-332.
    249. Sanbongi, Y., A. Shimizu, T. Suzuki, H. Nagaso, T. Ida, K. Maebashi, and N. Gotoh. 2009. Classification of OprD sequence and correlation with antimicrobial activity of carbapenem agents in Pseudomonas aeruginosa clinical isolates collected in Japan. Microbiol. Immunol. 53:361-7.
    250. Sanders, C. C., and W. E. Sanders. 1983. Emergence of resistance during therapy with newer β-lactam antibiotics: role of inducible β-lactamases and implications for the future. Rev. Infect. Dis. 5:639-648.
    251. Sanders, C. C., and W. E. Sanders. 1986. Type I β-lactamases of gram negative bacteria: interactions with β-lactam antibiotics. J. Infect. Dis. 154:792-800.
    252. Sanders, W. E., and C. C. Sanders. 1988. Inducible β-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. Rev. Infect. Dis. 10:830-838.
    253. Savard, P., R. Gopinath, W. Zhu, B. Kitchel, J. K. Rasheed, T. Tekle, A. Roberts, et al. 2011. The first NDM-positive Salmonella spp identified in the United States. Antimicrob. Agents Chemother. 55:5957-5958.
    254. Savli, H., A. Karadenizli, F. Kolayli, S. Gundes, U. Ozbek, and H. Vahaboglu. 2003. Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J. Med. Microbiol. 52:403-408.
    255. Schlesinger, S., M. Lahousse, T. Foster, and S.-K. Kim. 2011. Metallo-β-Lactamases and aptamer-based inhibition. Pharmaceuticals 4:419-428.
    256. Schmidtke, A. J., and N. D. Hanson. 2006. Model system to evaluate the effect of ampD mutations on AmpC-mediated β-lactam resistance. Antimicrob. Agents Chemother. 50:2030-2037.
    257. Scholl, D., M. Cooley, S. R. Williams, D. Gebhart, D. Martin, A. Bates, and R. Mandrell. 2009. An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrob. Agents Chemother. 53:3074-3080.
    258. Scoper, S. V. 2008. Review of third- and fourth-generation fluoroquinolones in ophthalmology: in-vitro and in-vivo efficacy. Adv. Ther. 25:979-994.
    259. Scully, B. E., C. N. Ores, A. S. Prince, and H. C. Neu. 1985. Treatment of lower respiratory tract infections due to Pseudomonas aeruginosa in patients with cystic fibrosis. Rev. Infect. Dis. 7:S669-S674.
    260. Sekiguchi, J.-i., K. Morita, T. Kitao, N. Watanabe, M. Okazaki, T. Miyoshi-Akiyama, M. Kanamori, et al. 2008. KHM-1, a novel plasmid-mediated metallo-β-lactamase from a Citrobacter freundii Clinical isolate. Antimicrob. Agents Chemother. 52:4194–4197.
    261. Senda, K., Y. Arakawa, K. Nakashima, H. Ito, S. Ichiyama, K. Shimokata, N. Kato, et al. 1996. Multifocal outbreaks of metallo-β-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum β-lactams, including carbapenems. Antimicrob. Agents Chemother. 40:349-353.
    262. Sensi, P., P. Margalith, and M. T. Timbal. 1959. Rifomycin, a new antibiotic: preliminary report. Farmaco; edizione scientifica 14:146-147.
    263. Sevillano, E., L. Gallego, and J. M. Garcia-Lobo. 2009. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathologie-biologie 57:493-5.
    264. Shiba, T., K. Ishiguro, N. Takemoto, H. Koibuchi, and K. Sugimoto. 1995. Purification and characterization of the Pseudomonas aeruginosa NfxB protein, the negative regulator of the nfxB gene. J. Bacteriol. 177:5872-5877.
    265. Simpson, I. N., P. B. Harper, and C. H. Ocallaghan. 1980. Principal β-lactamases responsible for resistance to β-lactam antibiotics in urinary tract infections. Antimicrob. Agents Chemother. 17:929-936.
    266. Sobel, M. L., D. Hocquet, L. Cao, P. Plesiat, and K. Poole. 2005a. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:1782-1786.
    267. Sobel, M. L., G. A. McKay, and K. Poole. 2003. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 47:3202-3207.
    268. Sobel, M. L., S. Neshat, and K. Poole. 2005b. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J. Bacteriol. 187:1246-1253.
    269. Srikumar, R., C. J. Paul, and K. Poole. 2000. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 182:1410-1414.
    270. Strateva, T., and D. Yordanov. 2009. Pseudomonas aeruginosa- a phenomenon of bacterial resistance. J. Med. Microbiol. 58:1133-1148.
    271. Su, L.-H., T.-L. Wu, J.-H. Chia, C. Chu, A.-J. Kuo, and C.-H. Chiu. 2005. Increasing ceftriaxone resistance in Salmonella isolates from a university hospital in Taiwan. J. Antimicrob. Chemother. 55:846-852.
    272. Sumita, Y., and M. Fukasawa. 1993. Transient carbapenem resistance induced by salicylate in Pseudomonas aeruginosa associated with suppression of outer membrane protein D2 synthesis. Antimicrob. Agents Chemother. 37:2743-2746.
    273. Sun, X., and J. J. Dennis. 2009. A novel insertion sequence derepresses efflux pump expression and preadapts Pseudomonas putida S12 for extreme solvent stress. J. Bacteriol. 191:6773-6777.
    274. Sutterwala, F. S., L. A. Mijares, L. Li, Y. Ogura, B. I. Kazmierczak, and R. A. Flavell. 2007. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204:3235-3245.
    275. Sykes, R. B., C. M. Cimarusti, D. P. Bonner, K. Bush, D. M. Floyd, N. H. Georgopapadakou, W. H. Koster, et al. 1981. Monocyclic β-lactam antibiotics produced by bacteria. Nature 291:489-491.
    276. Tam, V. H., K.-T. Chang, A. N. Schilling, M. T. LaRocco, L. O. Genty, and K. W. Garey. 2009. Impact of AmpC overexpression on outcomes of patients with Pseudomonas aeruginosa bacteremia. Diagn. Microbiol. Infect. Dis. 63:279-285.
    277. Tam, V. H., A. N. Schilling, M. T. LaRocco, L. O. Gentry, K. Lolans, J. P. Quinn, and K. W. Garey. 2007. Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 13:413-418.
    278. Tian, G. B., J. M. Adams-Haduch, T. Bogdanovich, A. W. Pasculle, J. P. Quinn, H. N. Wang, and Y. Doi. 2011a. Identification of diverse OXA-40 group carbapenemases, including a novel variant, OXA-160, from Acinetobacter baumannii in Pennsylvania. Antimicrob. Agents Chemother. 55:429-432.
    279. Tian, G. B., J. M. Adams-Haduch, T. Bogdanovich, H. N. Wang, and Y. Doi. 2011b. PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55:2710-2713.
    280. Toleman, M. A., J. Bell, and T. Walsh. 2010. Persistance and Movement of the Metallo-β-Lactamase (MBL) AIM-1 in Pseudomonas from Australia, p. 50. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy.
    281. Toleman, M. A., K. Rolston, R. N. Jones, and T. R. Walsh. 2003. Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d β-Lactamase in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47:2859-2863.
    282. Toleman, M. A., A. M. Simm, T. A. Murphy, A. C. Gales, D. J. Biedenbach, R. N. Jones, and T. R. Walsh. 2002. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 50:673–679.
    283. Trias, J., and H. Nikaido. 1990. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34:52-57.
    284. Tseng, S.-P., P.-R. Hsueh, J.-C. Tsai, and L.-J. Teng. 2007. Tn6001, a transposon-like element containing the blaVIM-3-harboring integron In450. Antimicrob. Agents Chemother. 51:4187-4190.
    285. Tseng, S.-P., J.-C. Tsai, L.-J. Teng, and P.-R. Hsueh. 2009. Dissemination of transposon Tn6001 in carbapenem-non-susceptible and extensively drug-resistant Pseudomonas aeruginosa in Taiwan. J. Antimicrob. Chemother. 64:1170-1174.
    286. Turner, P. J. 2005. Trends in antimicrobial susceptibilities among bacterial pathogens isolated from patients hospitalized in European medical centers: 6-year report of the MYSTIC Surveillance Study (1997-2002). Diagn. Microbiol. Infect. Dis. 51:281-9.
    287. Turton, J. F., M. E. Ward, N. Woodford, M. E. Kaufmann, R. Pike, D. M. Livermore, and T. L. Pitt. 2006. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 258:72-7.
    288. Tzouvelekis, L. S., E. Tzelepi, P. T. Tassios, and N. J. Legakis. 2000. CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes. Int. J. Antimicrob. Agents 14:137-142.
    289. Unal, S., and J. A. Garcia-Rodriguez. 2005. Activity of meropenem and comparators against Pseudomonas aeruginosa and Acinetobacter spp. isolated in the MYSTIC Program, 2002-2004. Diagn. Microbiol. Infect. Dis. 53:265-71.
    290. Urata, M., M. Miyakoshi, S. Kai, K. Maeda, H. Habe, T. Omori, H. Yamane, et al. 2004. Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J. Bacteriol. 186:6815-6823.
    291. Vidaillac, C., S. N. Leonard, H. S. Sader, R. N. Jones, and M. J. Rybak. 2009. In vitro activity of ceftaroline alone and in combination against clinical isolates of resistant Gram-negative pathogens, including β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53:2360-2366.
    292. Villegas, M. V., M. G. Blanco, J. Sifuentes-Osornio, and F. Rossi. 2011. Increasing prevalence of extended-spectrum-beta-lactamase among Gram-negative bacilli in Latin America: 2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART). 15:34-39.
    293. Villegas, M. V., K. Lolans, A. Correa, J. N. Kattan, J. A. Lopez, J. P. Quinn, and C. N. R. S. Grp. 2007. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother. 51:1553-1555.
    294. Vogne, C., J. R. Aires, C. Bailly, D. Hocquet, and P. Plesiat. 2004. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 48:1676-1680.
    295. Waksman, S. A. 1947. What Is an Antibiotic or an Antibiotic Substance? Mycologia 39:565-569.
    296. Walsh, T. R., A. Bolmstrom, A. Qwarnstrom, and A. Gales. 2002. Evaluation of a new Etest for detecting metallo-β-lactamases in routine clinical testing. J. Clin. Microbiol. 40:2755-2759.
    297. Walsh, T. R., J. Weeks, D. M. Livermore, and M. A. Toleman. 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet. Infect. Dis. 11:355-362.
    298. Wang, C., P. Cai, D. Chang, and Z. Mi. 2006. A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum β-lactamase. J. Antimicrob. Chemother. 57:1261-1262.
    299. Wang, H., P. Guo, H. Sun, Q. Yang, M. Chen, Y. Xu, and Y. Zhu. 2007. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob. Agents Chemother. 51:4022-4028.
    300. Weldhagen, G. F., L. Poirel, and P. Nordmann. 2003. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: Novel developments and clinical impact. Antimicrob. Agents Chemother. 47:2385-2392.
    301. Weldhagen, G. F., and A. Prinsloo. 2004. Molecular detection of GES-2 extended spectrum β-lactamase producing Pseudomonas aeruginosa in Pretoria, South Africa. Int. J. Antimicrob. Agents 24:35-38.
    302. Westfall, L. W., N. L. Carty, N. Layland, P. Kuan, J. A. Colmer-Hamood, and A. N. Hamood. 2006. mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. FEMS Microbiol. Lett. 255:247-254.
    303. Wilke, M. S., M. Heller, A. L. Creagh, C. A. Haynes, L. P. McIntosh, K. Poole, and N. C. J. Strynadka. 2008. The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc. Natl. Acad. Sci. U. S. A. 105:14832-14837.
    304. Wolter, D. J., D. Acquazzino, R. V. Goering, P. Sammut, N. Khalaf, and N. D. Hanson. 2008a. Emergence of carbapenem resistance in Pseudomonas aeruginosa isolates from a patient with cystic fibrosis in the absence of carbapenem therapy. Clin. Infect. Dis. 46:E137-E141.
    305. Wolter, D. J., N. D. Hanson, and P. D. Lister. 2005. AmpC and OprD are not involved in the mechanism of imipenem hypersusceptibility among Pseudomonas aeruginosa isolates overexpressing the mexCD-oprJ efflux pump. Antimicrob. Agents Chemother. 49:4763-4766.
    306. Wolter, D. J., N. D. Hanson, and P. D. Lister. 2004a. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol. Lett. 236:137-143.
    307. Wolter, D. J., N. D. Hanson, and P. D. Lister. 2008b. MexT-associated downregulation of oprD in Pseudomonas aeruginosa (PA) involves inhibition of transcription initiation. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy 48:119.
    308. Wolter, D. J., N. Khalaf, I. E. Robledo, G. J. Vazquez, M. I. Sante, E. E. Aquino, R. V. Goering, et al. 2009. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican medical center hospitals: dissemination of KPC and IMP-18 β-lactamases. Antimicrob. Agents Chemother. 53:1660-1664.
    309. Wolter, D. J., A. J. Schmidtke, N. D. Hanson, and P. D. Lister. 2007. Increased expression of ampC in Pseudomonas aeruginosa mutants selected with ciprofloxacin. Antimicrob. Agents Chemother. 51:2997-3000.
    310. Wolter, D. J., E. Smith-Moland, R. V. Goering, N. D. Hanson, and P. D. Lister. 2004b. Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn. Microbiol. Infect. Dis. 50:43-50.
    311. Woodford, N., M. J. Ellington, J. M. Coelho, J. F. Turton, M. E. Ward, S. Brown, S. G. Amyes, et al. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 27:351-353.
    312. Wu, C.-J., H.-C. Lee, N.-Y. Lee, H.-I. Shih, N.-Y. Ko, L.-R. Wang, and W.-C. Ko. 2006. Predominance of Gram-negative bacilli and increasing antimicrobial resistance in nosocomial bloodstream infections at a university hospital in southern Taiwan, 1996-2003. Journal of Microbiology, Immunology and Infection 39:135-143.
    313. Wu, H.-S., T.-L. Chen, I. C.-J. Chen, M.-S. Huang, F.-D. Wang, C.-P. Fung, and S.-D. Lee. 2010. First identification of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan. J. Chin. Med. Assoc. 73:596-598.
    314. Wu, J.-J., H.-M. Chen, W.-C. Ko, H.-M. Wu, S.-H. Tsai, and J.-J. Yan. 2008. Prevalence of extended-spectrum β-lactamases in Proteus mirabilis in a Taiwanese university hospital, 1999 to 2005: identification of a novel CTX-M enzyme (CTX-M-66). Diagn. Microbiol. Infect. Dis. 60:169-175.
    315. Yan, J.-J., P.-R. Hsueh, W.-C. Ko, K.-T. Luh, S.-H. Tsai, H. M. Wu, and J.-J. Wu. 2001a. Metallo-β-Lactamases in Clinical Pseudomonas Isolates in Taiwan and Identification of VIM-3, a Novel Variant of the VIM-2 Enzyme. Antimicrob. Agents Chemother. 45:2224-2228.
    316. Yan, J.-J., P.-R. Hsueh, J.-J. Lu, F.-Y. Chang, W.-C. Ko, and J.-J. Wu. 2006a. Characterization of acquired β-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons. J. Antimicrob. Chemother. 58:530-536.
    317. Yan, J.-J., W.-C. Ko, S.-H. Tsai, H.-M. Wu, Y.-T. Jin, and J.-J. Wu. 2000. Dissemination of CTX-M-3 and CMY-2 β-lactamases among clinical isolates of Escherichia coli in southern Taiwan. J. Clin. Microbiol. 38:4320-4325.
    318. Yan, J.-J., W.-C. Ko, S.-H. Tsai, H.-M. Wu, and J.-J. Wu. 2001b. Outbreak of Infection with Multidrug-Resistant Klebsiella pneumoniae Carrying blaIMP-8 in a University Medical Center in Taiwan. J. Clin. Microbiol. 39:4433–4439.
    319. Yan, J.-J., S.-H. Tsai, C.-L. Chuang, and J.-J. Wu. 2006b. OXA-type beta-lactamases among extended-spectrum cephalosporin-resistant Pseudomonas aeruginosa isolates in a university hospital in southern Taiwan. Journal of Microbiology, Immunology and Infection 39:130-134.
    320. Yan, J.-J., J.-J. Wu, S.-H. Tsai, and C.-L. Chuang. 2004. Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-β-lactamases in gram-negative bacilli. Diagn. Microbiol. Infect. Dis. 49:5-11.
    321. Yang, F.-C. 2010. Characterization of ertapenem-non-susceptible E. cloacae isolates from a university in southern Taiwan. MS thesis. National Cheng Kung University, Tainan, Taiwan.
    322. Yigit, H., A. M. Queenan, G. J. Anderson, A. Domenech-Sanchez, J. W. Biddle, C. D. Steward, S. Alberti, et al. 2001. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45:1151-1161.
    323. Yoneyama, H., and T. Nakae. 1993a. Analysis of two gene regions involved in the expression of the imipenem-specific, outer membrane porin protein OprD of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:2385-2390.
    324. Yoneyama, H., and T. Nakae. 1993b. Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:2385-2390.
    325. Yong, D., J. M. Bell, B. Ritchie, R. Pratt, M. A. Toleman, and T. R. Walsh. 2007. Novel sub-group metallo-β-lactamase (MBL), AIM-1 emerges in Pseudomonas aeruginosa (PSA) from Australia. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy 47:75.
    326. Yong, D., M. A. Toleman, J. Bell, B. Ritchie, R. Pratt, and T. R. Walsh. 2008a. Steady-state kinetics of the B3 subgroup metallo-beta-lactamase (MBL), AIM-1. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy 48:113.
    327. Yong, D., T. R. Walsh, J. Bell, B. Ritchie, R. Pratt, and M. A. Toleman. 2008b. Novel ISCR element ISCR15 is responsible for the movement of the B3 subgroup mobile metallo-β-lactamase (MBL) gene blaAIM-1. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy 48:88-89.
    328. Yu, W.-L., K.-C. Cheng, L.-T. Wu, M. A. Pfaller, P. L. Winokur, and R. N. Jones. 2004. Emergence of two Klebsiella pneumoniae isolates harboring plasmid-mediated CTX-M-15 β-lactamase in Taiwan. Antimicrob. Agents Chemother. 48:362-363.
    329. Yu, W.-L., P. L. Winokur, D. L. Von Stein, M. A. Pfaller, J.-H. Wang, and R. N. Jones. 2002. First description of Klebsiella pneumoniae harboring CTX-M β-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. Antimicrob. Agents Chemother. 46:1098-1100.
    330. Zamorano, L., T. M. Reeve, C. Juan, B. Moya, G. Cabot, D. J. Vocadlo, B. L. Mark, et al. 2011. AmpG Inactivation Restores Susceptibility of Pan-β-Lactam-Resistant Pseudomonas aeruginosa Clinical Strains. Antimicrob. Agents Chemother. 55:1990-1996.
    331. Zavascki, A. P., C. G. Carvalhaes, R. C. Picao, and A. C. Gales. 2010. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Review of Anti-Infective Therapy 8:71-93.
    332. Zhanel, G. G., M. DeCorby, H. Adam, M. R. Mulvey, M. McCracken, P. Lagace-Wiens, K. A. Nichol, et al. 2010. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian ward surveillance study (CANWARD 2008). Antimicrob. Agents Chemother. 54:4684-4693.
    333. Zhanel, G. G., M. Dueck, D. J. Hoban, L. M. Vercaigne, J. M. Embil, A. S. Gin, and J. A. Karlowsky. 2001. Review of macrolides and ketolides - Focus on respiratory tract infections. Drugs 61:443-498.
    334. Zhanel, G. G., R. Wiebe, L. Dilay, K. Thomson, E. Rubinstein, D. J. Hoban, A. M. Noreddin, et al. 2007. Comparative review of the carbapenems. Drugs 67:1027-1052.
    335. Zhang, Y., Q. Y. Bao, L. A. Gagnon, A. Huletsky, A. Oliver, S. G. Jin, and T. Langaee. 2010. ampG Gene of Pseudomonas aeruginosa and Its Role in β-Lactamase Expression. Antimicrob. Agents Chemother. 54:4772-4779.
    336. Zuckerman, J. M., F. Qamar, and B. R. Bono. 2011. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med. Clin. North Am. 95:761-791.

    下載圖示 校內:2014-09-19公開
    校外:2014-09-19公開
    QR CODE