簡易檢索 / 詳目顯示

研究生: 楊宸權
Yang, Chen-Chuan
論文名稱: 研究以磁控濺鍍沉積之氧化鋅錫薄膜及其光電元件之應用
Investigation of Zinc Tin Oxide Thin Films and Their Optoelectrical Applications Fabricated by RF Sputtering System
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 111
中文關鍵詞: 氧化鋅錫光檢測器薄膜電晶體光電晶體透明薄膜電晶體
外文關鍵詞: Zinc tin oxide, Photodetector, Thin-film transistor, Phototransistor, Transparent thin-film transistor
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用射頻磁控濺鍍法沉積氧化鋅錫薄膜,並討論在不同製程條件下的薄膜特性,接著將氧化鋅錫薄膜應用在光電元件上,包括紫外光感測器及薄膜電晶體。
    第一部分,我們以磁控濺鍍的方式沉積氧化鋅錫薄膜,並藉由調變錫摻雜濃度、氧流量比例及退火來得到不同特性薄膜,而以結構分析、光學特性及材料分析這三個面性來進行探討。在結構分析中,ZTO70與ZTO80的薄膜都呈現非晶的型態,但ZTO90有晶向產生。而所有的氧化鋅錫薄膜都有均勻的表面,他們的粗糙度方均根值大約只有1奈米。在光學特性上,氧化鋅錫薄膜都是十分的透明,他們在可見光區平均的穿透率達到了85%,而錫摻雜濃度則影響了光能隙的大小。在材料分析中,從X射線光電子能譜結果可以得知,當氧流量比例增加時,薄膜中的氧空缺會因此而減少。
    第二部分,我們以磁控濺鍍的方式形成氧化鋅錫的光檢測器,並且以不同的氧通量比例、錫摻雜濃度及退火來作為調變的製程參數。在不同的氧通量比例下,0%光檢測器呈現歐姆型態的特性,而5%、10%及20%光檢測器則呈現蕭基型態的特性,且暗電流會隨著通氧量提升而減少。此外,較高的錫摻雜濃度有助於增加暗電流及光電流。而在空氣中進行退火1小時能夠提升暗電流及光電流,並因此增強了光響應。我們發現氧通量比例對於響應時間有顯著的影響,當氧通量比例增加時,響應時間會因此而減少。最後,我們可以得到在氧通量比例為5%並於空氣中進行退火1小時處理的ZTO70光檢測器有著最好的表現,光暗電流比為6.41×102,響應值為3.17×10-5 A/W,響應拒斥比為3.50×103,而開關時間則分別大約為1秒及6秒。
    第三部分,以磁控濺鍍的方式形成氧化鋅錫薄膜電晶體。藉由控制氧通量比例,自由載子及缺陷的數量因此達到變化,藉此改變薄膜電晶體的電特性。而錫摻雜濃度對於汲極漏電流有明顯的影響。在空氣中退火1小時後,我們改善了薄膜電晶體的特性,並得到ZTO70氧通量10%為最佳參數,臨界電壓為0.48 V,場效電子遷移率為1.47 cm2/Vs,開關電流比為2×106,次臨界擺幅為0.45 V/decade。此外,我們同樣成功製作出ZTO70光電晶體,並得到響應拒斥比為2.84×104。
    最後,我們使用氧化銦錫作為透明電極,成功製作出ZTO70透明薄膜電晶體,可以得到臨界電壓為1.82 V,場效電子遷移率為2.93×10-3 cm2/Vs,開關電流比為3.2×104,次臨界擺幅為0.38 V/decade。此外,我們同樣成功製作出ZTO70透明光電晶體,並得到響應拒斥比為5.39×102。

    In this thesis, zinc tin oxide (ZTO) is deposited by RF magnetron sputtering system and the film properties are discussed in under different processing ambiences. Next, the ZTO thin films will be applied on the optoelectronic devices fabrication, including visible-blind photodetectors (PDs) and thin-film transistors (TFTs).
    First, ZTO thin films are deposited by RF sputtering system. Three aspects are discussed, including structural analysis, optical characteristics and elemental analyses when we manipulate the tin doping concentration, oxygen flow ratio and annealing to obtain the features of the films under different fabrication conditions. The ZTO70 and ZTO80 films are amorphous, but the ZTO90 films presents crystalline. And all ZTO films have homogeneous and uniform surfaces with RMS values around 1 nm. Besides, all ZTO thin films are highly transparent with the average value of 85% in the visible light range. The major factor affecting optical band gap is Sn doping concentration. The XPS results suggest that as the oxygen flow ratio increases, oxygen defects will decrease.
    Second, ZTO MSM photodetectors are fabricated by RF-sputtering with different processing ambiences, including oxygen flow ratio, Sn doping concentrations and annealing process. With different oxygen flow ratios, 0% PD acts the Ohmic-type characteristics, but 5%, 10% and 20% PDs are the Schottky-type characteristics. And the dark current decreases with higher oxygen flow ratio. In addition, higher Sn doping concentration have higher dark currents and photocurrent. After annealing at 300°C for 1h in air ambient, the dark currents and photocurrents are increased, which enhancing the photoresponsivity. Moreover, we find the oxygen flow ratios influence the response time significantly and the raising of oxygen flow ratio can efficiently decrease the response time. Last, we can find the ZTO70 PD with oxygen flow ratio of 5% after annealing at 300°C for 1h in air ambient has the best performance compared to the others. The device has a photo/dark current ratio of 6.41×102, responsivity of 3.17×10-5 A/W, rejection ratio of 3.50×103, rising time of ~1 second and falling time of ~6 seconds.
    Third, ZTO TFTs are fabricated by RF-sputtering with different process conditions. By controlling oxygen flow ratios, the amount of free carriers and defects is changed, which influence the electrical properties of TFTs. The Sn doping concentrations impact on the drain leakage current obviously because of vary carrier concentrations. After annealing at 300°C for 1h in air ambient, we improved the TFTs performance and the optimized characteristics are achieved by the parameter of ZTO70 with oxygen flow ratio of 10%. The device has a threshold voltage of 0.48 V, field effect mobility of 1.47 cm2/Vs in the saturation region, on/off drain current ratio of 2×106, and subthreshold swing of 0.45 V/decade. Furthermore, ZTO70 thin-film phototransistor is realized and the RR is 2.84×104.
    Last, indium tin oxide (ITO) is used as transparent electrodes and we successfully fabricate ZTO70 thin-film transistor. The device has a threshold voltage of 1.82 V, field effect mobility of 2.93×10-3 cm2/Vs in the saturation region, on/off drain current ratio of 3.2×104, and subthreshold swing of 0.38 V/decade. Moreover, ZTO70 transparent thin-film phototransistor is realized and the RR is 5.39×102.

    摘要 I Abstract IV Contents VIII Table Captions XI Figure Captions XII Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Overview of ZTO Material 2 1.3 Organization of This Thesis 3 Reference 6 Chapter 2. Relevant Theory and Experimental Equipment 11 2.1 Theory of Photodetector 11 2.2.1 Responsivity (R) 12 2.2 Theory of Thin-Film Transistor 12 2.2.1 Field-Effect Mobility (μeff) 14 2.2.2 Threshold Voltage (Vth) 15 2.2.3 On/off Current Ratio (Ion/Ioff) 15 2.2.4 Subthreshold Swing (SS) 15 2.2.5 Interface Trap Density (Nit) 16 2.3 Experimental Equipment 16 2.3.1 RF Sputtering System 16 2.3.2 Plasma-enhanced Chemical Vapor Deposition (PECVD) 18 2.3.3 X-ray Diffraction Analysis (XRD) 19 2.3.4 Atomic Force Microscopes 20 2.3.5 X-ray Photoelectron Spectroscopy (XPS) 21 2.3.6 Energy-Dispersive X-ray Spectroscopy (EDS) 22 2.3.7 Measurement Systems 22 Reference 29 Chapter 3. Characteristics of ZTO Thin Film 30 3.1 Growth of ZTO Thin Film 30 3.2 Structural Characteristics 31 3.2.1 X-ray Diffraction (XRD) Analysis 31 3.2.2 Atomic Force Microscopes (AFM) Analysis 31 3.3 Optical Characteristics 32 3.4 Elemental Analysis 33 3.4.1 X-ray photoelectron spectroscopic (XPS) analysis 33 Reference 42 Chapter 4. The Fabrication and Characteristics of ZTO MSM UV Photodetectors 44 4.1 Introduction 44 4.2 Fabrication of ZTO MSM Photodetectors 45 4.3 Characteristics of ZTO MSM Photodetectors 45 4.3.1 Characteristics of Different Oxygen Flow Ratios in ZTO MSM Photodetectors 46 4.3.2 Characteristics of Different Sn Doping Concentrations in ZTO MSM Photodetectors 48 4.3.3 Characteristics of Annealed ZTO MSM Photodetectors 49 4.3.4 Time-Resolved Response of ZTO MSM Photodetectors 51 4.4 Summary 52 Reference 65 Chapter 5. The Fabrication and Characteristics of ZTO Thin-Film Transistors 70 5.1 Introduction 70 5.2 Fabrication of ZTO Thin-Film Transistors 71 5.3 Structural Characteristics and Elemental Analysis of ZTO Thin-Film Transistors 72 5.4 Characteristics of ZTO Thin-Film Transistors 73 5.4.1 Characteristics of Different Oxygen Flow Ratios in ZTO Thin-Film Transistors 73 5.4.2 Characteristics of Different Sn doping Concentrations in ZTO Thin-Film Transistors 74 5.4.3 Characteristics of Annealed ZTO Thin-Film Transistors 75 5.4.4 Characteristics of ZTO Thin-Film Phototransistors 76 5.5 Fabrication and Characteristics of ZTO Transparent Thin-Film Transistors 78 5.5.1 Characteristics of ZTO Transparent Thin-Film Phototransistors 79 5.6 Summary 80 Reference 102 Chapter 6. Conclusion and Future Work 107 6.1 Conclusion 107 6.2 Future Work 109 Reference 111

    Chapter1.
    [1] Li-Chih Liu, Jen-Sue Chen, and Jiann-Shing Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23509, Jul.2014.
    [2] Seok-Jun Seo, Chaun Gi Choi, Young Hwan Hwang, and Byeong-Soo Bae, “High performance solution-processed amorphous zinc tin oxide thin film transistor,” J. Phys. D. Appl. Phys., vol. 42, no. 3, p. 35106, 2009.
    [3] Tamita Rakshit, Indrall Manna, and Samit K. Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015.
    [4] Kyu‐Il Lee, Eung Kwon Kim, Hyun‐Duk Kim, Hyun‐Il Kim, and Joon‐Tae Song, “Low temperature Al doped ZnO films on a flexible substrate by DC sputtering,” Phys. status solidi c, vol. 5, no. 10, pp. 3344–3347, Aug.2008.
    [5] P.Nunes, E.Fortunato, P.Tonello, F.Braz Fernandes, P.Vilarinho, and R.Martins, “Effect of different dopant elements on the properties of ZnO thin films,” Vacuum, vol. 64, no. 3, pp. 281–285, 2002.
    [6] Zeng Jun, Wang Sen, Tao Peng, and Xu Jincheng, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloys Compd., vol. 476, no. 1, pp. 60–63, 2009.

    [7] Krisana Chongsri, Chatpong Bangbai, Wicharn Techitdheera, and Wisanu Pecharapa, “Characterization and Photoresponse Propreties of Sn-doped ZnO Thin Films,” Energy Procedia, vol. 34, no. Supplement C, pp. 721–727, 2013.
    [8] Nark-Eon Sung, Han-Koo Lee, Keun Hwa Chae, Jitendra Pal Singh, and Ik-Jae Lee, “Correlation of oxygen vacancies to various properties of amorphous zinc tin oxide films,” J. Appl. Phys., vol. 122, no. 8, p. 85304, Aug.2017.
    [9] Yoon-YoungChoi, Seong Jun Kang, and Han-Ki Kim, “Rapid thermal annealing effect on the characteristics of ZnSnO3 films prepared by RF magnetron sputtering,” Curr. Appl. Phys., vol. 12, no. Supplement 4, pp. S104–S107, 2012.
    [10] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Appl. Phys. Lett., vol. 86, no. 1, p. 13503, Dec.2004.
    [11] Myeong Gu Yun, So Hee Kim, Cheol Hyoun Ahn, Sung Woon Cho, and Hyung Koun Cho, “Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors,” J. Phys. D. Appl. Phys., vol. 46, no. 47, p. 475106, 2013.
    [12] Ki-Yong Kim, Taek Gon Kim, Yoon Hyung Kim, and Jinsub Park, “Improved device performance of solution-processed zinc–tin–oxide thin film transistor effects using graphene/Al electrode,” J. Phys. D. Appl. Phys., vol. 48, no. 3, p. 35101, 2015.

    [13] Jyh-Ming Wu, and Cheng-Hsiang Kuo, “Ultraviolet photodetectors made from SnO2 nanowires,” Thin Solid Films, vol. 517, no. 14, pp. 3870–3873, 2009.
    [14] Jaeyeong Heo1, Sang Bok Kim, and Roy G. Gordon, “Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors,” Appl. Phys. Lett., vol. 101, no. 11, p. 113507, Sep.2012.
    [15] Christophe Avis and Jin Jang, “A High Performance Inkjet Printed Zinc Tin Oxide Transparent Thin-Film Transistor Manufactured at the Maximum Process Temperature of 300 ° C and Its Stability Test,” Electrochem. Solid-State Lett. , vol. 14, no. 2, pp. J9–J11, Feb.2011.
    [16] Qingjun Jiang, ChuanjiaWu, Lisha Fenga,Li Gong, Zhizhen Ye, and Jianguo Lu, “High-response of amorphous ZnSnO sensors for ultraviolet and ethanol detections,” Appl. Surf. Sci., vol. 357, no. Part B, pp. 1536–1540, 2015.
    [17] Madambi K. Jayaraj, Kachirayil J. Saji, Kenji Nomura, Toshio Kamiya, and Hideo Hosono, “Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 26, no. 2, pp. 495–501, Mar.2008.
    [18] Kazuo Satoh, Yoshiharu Kakehi, Akio Okamoto, Shuichi Murakami, Fumihiro Uratani, and Tsutom Yotsuya, “Influence of Oxygen Flow Ratio on Properties of Zn2SnO4 Thin Films Deposited by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., vol. 44, no. 1L, p. L34, 2005.

    [19] Hossein Mahmoudi Chenari, Reza Zamiri, David Maria Tobaldi, Mehdi Shabani, Avito Rebelo, J. Suresh Kumar, S. A. Salehizadeh, M. P. F. Graça, M. J. Soares, João António Labrincha, and José M. F. Ferreira, “Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity,” J. Sol-Gel Sci. Technol., vol. 84, no. 2, pp. 274–282, 2017.
    [20] Tanujjal Bora, Muna H Al-Hinai, Ashraf T. Al-Hinai, and Joydeep Dutta, “Phase Transformation of Metastable ZnSnO3 Upon Thermal Decomposition by In‐Situ Temperature‐Dependent Raman Spectroscopy,” J. Am. Ceram. Soc., vol. 98, no. 12, pp. 4044–4049, Aug.2015.
    [21] Sunandan Baruah and Joydeep Dutta, “Zinc stannate nanostructures: hydrothermal synthesis,” Sci. Technol. Adv. Mater., vol. 12, no. 1, p. 13004, 2011.
    [22] Lukas Schmidt-Mende and Judith L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, 2007.
    [23] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, p. 41301, Aug.2005.
    [24] Fatma Kayaci, Sesha Vempati, Inci Donmez, Necmi Biyikli, and Tamer Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density,” Nanoscale, vol. 6, no. 17, pp. 10224–10234, 2014.
    [25] Sesha Vempati, Joy Mitra, Paul Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett., vol. 7, no. 1, p. 470, 2012.

    Chapter2.
    [1] Hanlin Wang, Cheng Cheng, Lei Zhang, Hongtao Liu, Yan Zhao, Yunlong Guo, Wenping Hu, Gui Yu, and Yunqi Liu, “Inkjet Printing Short‐Channel Polymer Transistors with High‐Performance and Ultrahigh Photoresponsivity,” Adv. Mater., vol. 26, no. 27, pp. 4683–4689, Apr.2014.
    [2] Donald A. Neamen, “Semiconductor Physics and Devices:Basic Principles (3e),” McGraw-Hill, New York, 2003.
    [3] M. C. J. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B, vol. 57, no. 20, pp. 12964–12967, May1998.
    [4] Qin Zhang, Wei Zhao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297–300, 2006.
    [5] J. L. VOSSEN and W. Kern, “Thin Film Process,” Academic Press, New York, p. 131, 1978.
    [6] C. Y. Chang and S. M. Sze, “ULSI Technology,” McGraw-Hill, New York, p.380, 1996.

    Chapter3.
    [1] F. K. Shan, B. C. Shin, S. W. Jang, and Y. S. Yu, “Substrate effects of ZnO thin films prepared by PLD technique,” J. Eur. Ceram. Soc., vol. 24, no. 6, pp. 1015–1018, 2004.
    [2] Myeong Gu Yun, So Hee Kim, Cheol Hyoun Ahn, Sung Woon Cho, and Hyung Koun Cho, “Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors,” J. Phys. D. Appl. Phys., vol. 46, no. 47, p. 475106, 2013.
    [3] Shun Han, Zhenzhong Zhang, Jiying Zhang, Likun Wang, Jian Zheng, Haifeng Zhao, Yechi Zhang, Mingming Jiang, Shuangpeng Wang, Dongxu Zhao, ChongXin Shan, Binghui Li, and Dezhen Shen, “Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film,” Appl. Phys. Lett., vol. 99, no. 24, p. 242105, Dec.2011.
    [4] Manjeet Kumar, Vishwa Bhatt, A. C. Abhyankar, Joondong Kim, Akshay Kumar, and Ju-Hyung Yun, “Modulation of structural properties of Sn doped ZnO for UV photoconductors,” Sensors Actuators A Phys., vol. 270, pp. 118–126, 2018.
    [5] Krisana Chongsri, Chatpong Bangbai, Wicharn Techitdheera, and Wisanu Pecharapa, “Characterization and Photoresponse Propreties of Sn-doped ZnO Thin Films,” Energy Procedia, vol. 34, no. Supplement C, pp. 721–727, 2013.
    [6] Tamita Rakshit, Indrall Manna, and Samit K. Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015.
    [7] Hossein Mahmoudi Chenari, Reza Zamiri, David Maria Tobaldi, Mehdi Shabani, Avito Rebelo, J. Suresh Kumar, S. A. Salehizadeh, M. P. F. Graça, M. J. Soares, João António Labrincha, and José M. F. Ferreira, “Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity,” J. Sol-Gel Sci. Technol., vol. 84, no. 2, pp. 274–282, 2017.
    [8] Nark-Eon Sung, Han-Koo Lee, Keun Hwa Chae, Jitendra Pal Singh, and Ik-Jae Lee, “Correlation of oxygen vacancies to various properties of amorphous zinc tin oxide films,” J. Appl. Phys., vol. 122, no. 8, p. 85304, Aug.2017.
    [9] Li-Chih Liu, Jen-Sue Chen, and Jiann-Shing Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23509, Jul.2014.
    [10] Vipin Kumar Jain, Praveen Kumar, Mahesh Kumar, Praveen Jain, Deepika Bhandari, and Y. K.Vijay, “Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films,” J. Alloys Compd., vol. 509, no. 8, pp. 3541–3546, 2011.

    Chapter4.
    [1] Harish Kumar Yadav, K. Sreenivas, and Vinay Gupta, “Enhanced response from metal/ZnO bilayer ultraviolet photodetector,” Appl. Phys. Lett., vol. 90, no. 17, p. 172113, Apr.2007.
    [2] Weihao Wang, Xinhua Pan, Wen Dai, Yiyu Zeng, and Zhizhen Ye “Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector,” RSC Adv., vol. 6, no. 39, pp. 32715–32720, 2016.
    [3] Takayoshi Oshima, Takeya Okuno, and Shizuo Fujita, “UV-B Sensor Based on a SnO2 Thin Film,” Jpn. J. Appl. Phys., vol. 48, no. 12R, p. 120207, 2009.
    [4] Kazuo Satoh, Yoshiharu Kakehi, Akio Okamoto, Shuichi Murakami, Fumihiro Uratani, and Tsutom Yotsuya, “Influence of Oxygen Flow Ratio on Properties of Zn2SnO4 Thin Films Deposited by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., vol. 44, no. 1L, p. L34, 2005.
    [5] Hossein Mahmoudi Chenari, Reza Zamiri, David Maria Tobaldi, Mehdi Shabani, Avito Rebelo, J. Suresh Kumar, S. A. Salehizadeh, M. P. F. Graça, M. J. Soares, João António Labrincha, and José M. F. Ferreira, “Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity,” J. Sol-Gel Sci. Technol., vol. 84, no. 2, pp. 274–282, 2017.
    [6] Tamita Rakshit, Indrall Manna, and Samit K. Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015.
    [7] J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, B. Cheong, and W. M. Kim, “Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach,” Appl. Surf. Sci., vol. 253, no. 18, pp. 7398–7403, 2007.
    [8] Nark-Eon Sung, Han-Koo Lee, Keun Hwa Chae, Jitendra Pal Singh, and Ik-Jae Lee, “Correlation of oxygen vacancies to various properties of amorphous zinc tin oxide films,” J. Appl. Phys., vol. 122, no. 8, p. 85304, Aug.2017.
    [9] Yoon-YoungChoi, Seong Jun Kang, and Han-Ki Kim, “Rapid thermal annealing effect on the characteristics of ZnSnO3 films prepared by RF magnetron sputtering,” Curr. Appl. Phys., vol. 12, no. Supplement 4, pp. S104–S107, 2012.
    [10] Krisana Chongsri, Chatpong Bangbai, Wicharn Techitdheera, and Wisanu Pecharapa, “Characterization and Photoresponse Propreties of Sn-doped ZnO Thin Films,” Energy Procedia, vol. 34, no. Supplement C, pp. 721–727, 2013.
    [11] C. X. Shan, J. Y. Zhang, B. Yao, D. Z. Shen, X. W. Fan, and K. L. Choy, “Ultraviolet photodetector fabricated from atomic-layer-deposited ZnO films,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 27, no. 3, pp. 1765–1768, May2009.
    [12] Qingjun Jiang, ChuanjiaWu, Lisha Fenga,Li Gong, Zhizhen Ye, and Jianguo Lu, “High-response of amorphous ZnSnO sensors for ultraviolet and ethanol detections,” Appl. Surf. Sci., vol. 357, no. Part B, pp. 1536–1540, 2015.

    [13] Yanjun Zhang, Jianjun Wang, Hongfei Zhu, Hui Li, Li Jiang, Chunying Shu, Wenping Hu, and Chunru Wang, “High performance ultraviolet photodetectors based on an individual Zn2SnO4 single crystalline nanowire,” J. Mater. Chem., vol. 20, no. 44, pp. 9858–9860, 2010.
    [14] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, no. 4, pp. 1003–1009, Apr.2007.
    [15] Wei Tian, Tianyou Zhai, Chao Zhang, Song‐Lin Li, Xi Wang, Fei Liu, Dequan Liu, Xingke Cai, Kazuhito Tsukagoshi, Dmitri Golberg, and Yoshio Bando, “Low-Cost Fully Transparent Ultraviolet Photodetectors Based on Electrospun ZnO-SnO2 Heterojunction Nanofibers,” Adv. Mater., vol. 25, no. 33, pp. 4625–4630, 2013.
    [16] Jun Dai, Chunxiang Xu, Xiaoyong Xu, Jiyuan Guo, Jitao Li, Gangyi Zhu, and Yi Lin, “Single ZnO Microrod Ultraviolet Photodetector with High Photocurrent Gain,” ACS Appl. Mater. Interfaces, vol. 5, no. 19, pp. 9344–9348, Oct.2013.
    [17] Fatma Kayaci, Sesha Vempati, Inci Donmez, Necmi Biyikli, and Tamer Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density,” Nanoscale, vol. 6, no. 17, pp. 10224–10234, 2014.
    [18] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., vol. 68, no. 3, pp. 403–405, Jan.1996.
    [19] Baochang Cheng, Jian Xu, Zhiyong Ouyang, Xiaohui Su, Yanhe Xiao and Shuijin Lei, “Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states,” J. Mater. Chem. C, vol. 2, no. 10, pp. 1808–1814, 2014.
    [20] Shun Han, Zhenzhong Zhang, Jiying Zhang, Likun Wang, Jian Zheng, Haifeng Zhao, Yechi Zhang, Mingming Jiang, Shuangpeng Wang, Dongxu Zhao, ChongXin Shan, Binghui Li, and Dezhen Shen, “Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film,” Appl. Phys. Lett., vol. 99, no. 24, p. 242105, Dec.2011.
    [21] Linfeng Hu, Jian Yan, Meiyong Liao, Limin Wu, and Xiaosheng Fang “Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors,” Small, vol. 7, no. 8, pp. 1012–1017, Mar.2011.
    [22] Manjeet Kumar, Vishwa Bhatt, A. C. Abhyankar, Joondong Kim, Akshay Kumar, and Ju-Hyung Yun, “Modulation of structural properties of Sn doped ZnO for UV photoconductors,” Sensors Actuators A Phys., vol. 270, pp. 118–126, 2018.
    [23] V. Postica, M. Hoppe, J. Gröttrup, P. Hayes, V. Röbisch, D. Smazna, R. Adelung, B. Viana, P. Aschehoug, T. Pauportéc, and O. Lupan, “Morphology dependent UV photoresponse of Sn-doped ZnO microstructures,” Solid State Sci., vol. 71, pp. 75–86, 2017.
    [24] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23507, Jul.2014.

    Chapter5.
    [1] Li-Chih Liu, Jen-Sue Chen, and Jiann-Shing Jeng, “Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 2, p. 23509, Jul.2014.
    [2] Yong-Hoon Kim, Jeong-In Han, and Sung Kyu Park, “Effect of Zinc/Tin Composition Ratio on the Operational Stability of Solution-Processed Zinc-Tin-Oxide Thin-Film Transistors,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 50–52, 2012.
    [3] Soyeon Cho, Jong-Heon Yang, Jong Gyu Oh, Sung-Haeng Cho, Chi-Sun Hwang, Jaeyoung Jang, and Sooji Nam, “The role of oxygen in dramatically enhancing the electrical properties of solution-processed Zn-Sn-O thin-film transistors,” J. Mater. Chem. C, vol. 5, no. 26, pp. 6521–6526, 2017.
    [4] Seok-Jun Seo, Chaun Gi Choi, Young Hwan Hwang, and Byeong-Soo Bae, “High performance solution-processed amorphous zinc tin oxide thin film transistor,” J. Phys. D. Appl. Phys., vol. 42, no. 3, p. 35106, 2009.
    [5] Krisana Chongsri, Chatpong Bangbai, Wicharn Techitdheera, and Wisanu Pecharapa, “Characterization and Photoresponse Propreties of Sn-doped ZnO Thin Films,” Energy Procedia, vol. 34, no. Supplement C, pp. 721–727, 2013.

    [6] Nark-Eon Sung, Han-Koo Lee, Keun Hwa Chae, Jitendra Pal Singh, and Ik-Jae Lee, “Correlation of oxygen vacancies to various properties of amorphous zinc tin oxide films,” J. Appl. Phys., vol. 122, no. 8, p. 85304, Aug.2017.
    [7] Tamita Rakshit, Indrall Manna, and Samit K. Ray, “Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films,” J. Appl. Phys., vol. 117, no. 2, p. 25704, Jan.2015.
    [8] Kazuo Satoh, Yoshiharu Kakehi, Akio Okamoto, Shuichi Murakami, Fumihiro Uratani, and Tsutom Yotsuya, “Influence of Oxygen Flow Ratio on Properties of Zn2SnO4 Thin Films Deposited by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., vol. 44, no. 1L, p. L34, 2005.
    [9] Hossein Mahmoudi Chenari, Reza Zamiri, David Maria Tobaldi, Mehdi Shabani, Avito Rebelo, J. Suresh Kumar, S. A. Salehizadeh, M. P. F. Graça, M. J. Soares, João António Labrincha, and José M. F. Ferreira, “Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity,” J. Sol-Gel Sci. Technol., vol. 84, no. 2, pp. 274–282, 2017.
    [10] Yoon-YoungChoi, Seong Jun Kang, and Han-Ki Kim, “Rapid thermal annealing effect on the characteristics of ZnSnO3 films prepared by RF magnetron sputtering,” Curr. Appl. Phys., vol. 12, no. Supplement 4, pp. S104–S107, 2012.

    [11] K. M. Niang, J. Cho, S. Heffernan, W. I. Milne, and A. J. Flewitt, “Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering,” J. Appl. Phys., vol. 120, no. 8, p. 85312, Aug.2016.
    [12] Kham M. Niang, Junhee Cho, Aditya Sadhanala, William I. Milne, Richard H. Friend, and Andrew J. Flewitt, “Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: Effect of tin composition and annealing temperatures,” Phys. status solidi, vol. 214, no. 2, p. 1600470–n/a, 2017.
    [13] R. L. Hoffman, “Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors,” Solid. State. Electron., vol. 50, no. 5, pp. 784–787, 2006.
    [14] CheolGyu Kim, Nam-Hyun Lee, Young-Kyu Kwon, Bongkoo Kang, “Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors,” Thin Solid Films, vol. 544, no. Supplement C, pp. 129–133, 2013.
    [15] Ki-Yong Kim, Taek Gon Kim, Yoon Hyung Kim, and Jinsub Park, “Improved device performance of solution-processed zinc–tin–oxide thin film transistor effects using graphene/Al electrode,” J. Phys. D. Appl. Phys., vol. 48, no. 3, p. 35101, 2015.
    [16] Christophe Avis and Jin Jang, “High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method,” J. Mater. Chem., vol. 21, no. 29, pp. 10649–10652, 2011.

    [17] Jaeyeong Heo1, Sang Bok Kim, and Roy G. Gordon, “Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors,” Appl. Phys. Lett., vol. 101, no. 11, p. 113507, Sep.2012.
    [18] Christophe Avis and Jin Jang, “A High Performance Inkjet Printed Zinc Tin Oxide Transparent Thin-Film Transistor Manufactured at the Maximum Process Temperature of 300 ° C and Its Stability Test,” Electrochem. Solid-State Lett. , vol. 14, no. 2, pp. J9–J11, Feb.2011.
    [19] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Appl. Phys. Lett., vol. 86, no. 1, p. 13503, Dec.2004.
    [20] Myeong Gu Yun, So Hee Kim, Cheol Hyoun Ahn, Sung Woon Cho, and Hyung Koun Cho, “Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors,” J. Phys. D. Appl. Phys., vol. 46, no. 47, p. 475106, 2013.
    [21] Shawn Sanctis, Nico Koslowski, Rudolf Hoffmann, Conrad Guhl, Emre Erdem, Stefan Weber, and Jörg J. Schneider, “Toward an Understanding of Thin-Film Transistor Performance in Solution-Processed Amorphous Zinc Tin Oxide (ZTO) Thin Films,” ACS Appl. Mater. Interfaces, vol. 9, no. 25, pp. 21328–21337, Jun.2017.
    [22] Fatma Kayaci, Sesha Vempati, Inci Donmez, Necmi Biyikli, and Tamer Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density,” Nanoscale, vol. 6, no. 17, pp. 10224–10234, 2014.

    [23] Manjeet Kumar, Vishwa Bhatt, A. C. Abhyankar, Joondong Kim, Akshay Kumar, and Ju-Hyung Yun, “Modulation of structural properties of Sn doped ZnO for UV photoconductors,” Sensors Actuators A Phys., vol. 270, pp. 118–126, 2018.
    [24] A. Bougrine, M. Addou, A. Kachouane, J. C. Bérnède, M. Morsli, “Effect of tin incorporation on physicochemical properties of ZnO films prepared by spray pyrolysis,” Mater. Chem. Phys., vol. 91, no. 2, pp. 247–252, 2005.
    [25] Po Tsun Liu, Dun Bao Ruan, Xiu Yun Yeh, Yu Chuan Chiu, Guang Ting Zheng, and Simon M. Sze, “Highly Responsive Blue Light Sensor with Amorphous Indium-Zinc-Oxide Thin-Film Transistor based Architecture,” Sci. Rep., vol. 8, no. 1, p. 8153, 2018.

    Chapter6.
    [1] Ruo Zheng Wang, Sheng Li Wu, Xin Yu Li, Jin Tao Zhang, “The electrical performance and gate bias stability of an amorphous InGaZnO thin-film transistor with HfO2 high-k dielectrics,” Solid. State. Electron., vol. 133, pp. 6–9, 2017.
    [2] Kenichiro Kanao, Takayuki Arie, Seiji Akita, and Kuniharu Takei, “An all-solution-processed tactile memory flexible device integrated with a NiO ReRAM,” J. Mater. Chem. C, vol. 4, no. 39, pp. 9261–9265, 2016.
    [3] Zhuo-Rui Wang, Yu-Ting Su, Yi Li, Ya-Xiong Zhou, Tian-Jian Chu, Kuan-Chang Chang, Ting-Chang Chang, Tsung-Ming Tsai, Simon M. Sze, and Xiang-Shui Miao, “Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory,” IEEE Electron Device Lett., vol. 38, no. 2, pp. 179–182, 2017.
    [4] Peng Zheng, Daniel Connelly, Fei Ding, Tsu-Jae King Liu, “Simulation-Based Study of the Inserted-Oxide FinFET for Future Low-Power System-on-Chip Applications,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 742–744, 2015.

    無法下載圖示 校內:2023-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE