簡易檢索 / 詳目顯示

研究生: 鄭皓文
Zheng, Haowen
論文名稱: 監控模型竊取者: 基於CPU Usage的物聯網設備旁通道攻擊與防禦實作
Surveillance Model Stealer: Implementation of CPU Usage-Based Side-Channel Attack and Defense on IoT Devices
指導教授: 涂嘉恒
Tu, Chia-Heng
蔡孟勳
Tsai, Meng-Hsun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 63
中文關鍵詞: 旁通道攻擊資訊安全深度學習
外文關鍵詞: Side-Channel Attack, Cybersecurity, Deep Learning
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i Abstract ii Acknowledgements iv Contents vi List of Tables viii List of Figures ix 1 Introduction 1 2 Related Works and Background 4 2.1 Model Stealing 4 2.2 Model Defense 8 2.3 Related Works 10 2.4 Deep Learning Models and Environments 12 3 Proposed Scheme 15 3.1 Scenario 15 3.2 Attack and Defense Flow 16 3.3 Principle of the Attack Method 19 3.3.1 Feature Analysis 19 3.3.2 Feasibility of Attack Method 21 3.4 Training Goal 22 4 Implementation 25 4.1 Experimental Environment 25 4.2 Dataset Production 26 4.3 Implementation of Attack Mode 27 4.4 Implementation of Defense Model 29 4.4.1 Model Structure Design 30 4.4.2 Loss Function Design 32 5 Performance Evaluation 34 5.1 Evaluation of Attack Model 34 5.1.1 Analysis of Attack Results 35 5.1.2 Ablation Experiment 36 5.2 Evaluation of Defense Mode 38 5.2.1 Effect of Parameter 39 5.2.2 Generated Noise Performance Comparison 40 5.2.3 Overall Defense Evaluation 42 6 Conclusions and Future Work 45 6.1 Conclusion 45 6.2 Future Work 46 Reference 48

    [1] Common Vulnerabilities and Exposures, “CVE Database.”https://cve.mitre.org/, Jul 2024.
    [2] CYFIRMA, “Thousands of hikvision cameras are still vulnerable and can be potentially exploited.” https://www.cyfirma.com/research/thousands-of-hikvision-cameras-are-still-vulnerable/, Aug 2022.
    [3] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” in Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17, (New York, NY, USA), p. 1–12, Association for Computing Machinery, 2017.
    [4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788, 2016.
    [5] Raspberry Pi Foundation, “Raspberry Pi Documentation.” https://www.raspberrypi.com/documentation/computers/processors.html, Jul 2024.
    [6] D. Oliynyk, R. Mayer, and A. Rauber, “I know what you trained last summer: A survey on stealing machine learning models and defences,” ACM Comput. Surv., vol. 55, jul 2023.
    [7] J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F. de Souza, and T. Oliveira-Santos, “Copycat cnn: Stealing knowledge by persuading confession with random non-labeled data,” in 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2018.
    [8] F. Tram`er, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine learning models via prediction APIs,” in 25th USENIX Security Symposium (USENIX Security 16), (Austin, TX), pp. 601–618, USENIX Association, Aug. 2016.
    [9] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, (New York, NY, USA), p. 641–647, Association for Computing Machinery, 2005.
    [10] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High accuracy and high fidelity extraction of neural networks,” in 29th USENIX Security Symposium (USENIX Security 20), pp. 1345–1362, USENIX Association, Aug. 2020.
    [11] S. J. Oh, B. Schiele, and M. Fritz, Towards Reverse-Engineering Black-Box Neural Networks, p. 121–144. Berlin, Heidelberg: Springer-Verlag, 2022.
    [12] I. Lederer, R. Mayer, and A. Rauber, “Identifying appropriate intellectual property protection mechanisms for machine learning models: A systematization of watermarking, fingerprinting, model access, and attacks,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–19, 2023.
    [13] T. Kohno, A. Broido, and K. Claffy, “Remote physical device fingerprinting,” IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp. 93–108, 2005.
    [14] H. Yan, X. Li, H. Li, J. Li, W. Sun, and F. Li, “Monitoring-based differential privacy mechanism against query flooding-based model extraction attack,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4, pp. 2680–2694, 2022.
    [15] T. Orekondy, B. Schiele, and M. Fritz, “Prediction poisoning: Towards defenses against dnn model stealing attacks,” 2020.
    [16] H. Chabanne, V. Despiegel, and L. Guiga, “A protection against the extraction of neural network models,” 2020.
    [17] K. Szentannai, J. Al-Afandi, and A. Horv´ath, “Preventing neural network weight stealing via network obfuscation,” in Intelligent Computing (K. Arai, S. Kapoor, and R. Bhatia, eds.), (Cham), pp. 1–11, Springer International Publishing, 2020.
    [18] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural networks via timing side channels,” CoRR, vol. abs/1812.11720, 2018.
    [19] Y. Gao, H. Qiu, Z. Zhang, B. Wang, H. Ma, A. Abuadbba, M. Xue, A. Fu, and S. Nepal, “Deeptheft: Stealing dnn model architectures through power side channel,” in 2024 IEEE Symposium on Security and Privacy (SP), (Los Alamitos, CA, USA), pp. 188–188, IEEE Computer Society, may 2024.
    [20] Y. Xiang, Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu, Z. Wu, Q. Xuan, and X. Yang, “Open dnn box by power side-channel attack,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2717–2721, 2020.
    [21] H. Lee and J. Song, “Introduction to convolutional neural network using keras; an understanding from a statistician,” Communications for Statistical Applications and Methods, 2019.
    [22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, p. 1735–1780, nov 1997.
    [23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.
    [24] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, 05 2012.
    [25] Y. Liu, J. Xue, D. Li, W. Zhang, T. K. Chiew, and Z. Xu, “Image recognition based on lightweight convolutional neural network: Recent advances,” Image Vision Comput., vol. 146, jul 2024.
    [26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 4510–4520, IEEE Computer Society, jun 2018.
    [27] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” 2020.
    [28] Facebook Research, “fvcore.” https://github.com/facebookresearch/fvcore, Apr 2021.
    [29] B. Fu, X. Zhao, C. Song, X. Li, and X. Wang, “A salt and pepper noise image denoising method based on the generative classification,” Multimedia Tools and Applications, vol. 78, pp. 12043–12053, May 2019.

    無法下載圖示 校內:2029-08-19公開
    校外:2029-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE