簡易檢索 / 詳目顯示

研究生: 桂正翰
Kuei, Cheng-Han
論文名稱: 以遞迴估算法評價巨災衍生性商品
A Recursive Evaluation Approach to Price Catastrophe Derivatives
指導教授: 劉裕宏
Liu, Yu-hong
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 43
中文關鍵詞: 巨災衍生性商品遞迴估算法複合波桑隨機過程與機率分配
外文關鍵詞: Recursive Evaluation Approach, Compound Poisson Process and Distribution, Catastrophe Insurance Derivative
相關次數: 點閱:176下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   透過假設總合巨災損失指數隨機過程服從複合波桑隨機過程,並採用遞迴估算法來運算複合波桑機率分配,可以建構出一個更為實用的巨災衍生性商品評價模式。

      以本文中發展出來的評價模式來評價ISO巨災期貨與PCS巨災選擇權,不僅可以大幅簡化計算機率分配的過程,而且能夠搭配保險業界的機率精算技術以找出更為精確的估計價格。

      Assuming the underlying aggregate catastrophe claims process as the compound Poisson process and applying recursive evaluation approach to compute the compound Poisson distribution,we can construct a more practical pricing model of catastrophe insurance derivatives,such as the ISO catastrophe futures and the PCS catastrophe options. The pricing model derived in this thesis simplifies the procedure of probability computation especially in the huge catastrophe claim occurrence, and also helps the hedging insurance companies easily apply their probability assessing techniques to find the prices of these derivatives.

    摘要 i Abstract ii 誌謝 iii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Literature Review 4 2.1 Catastrophe Insurance Derivatives . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 The ISO Index and Derivatives . . . . . . . . . . . . . . . . . . . . 4 2.1.2 The PCS Index and Derivatives . . . . . . . . . . . . . . . . . . . 5 2.2 An Asian Option Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Cummins and Geman (1993) . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Cummins and Geman (1995) . . . . . . . . . . . . . . . . . . . . . 8 2.3 A Randomized Operational Time Approach . . . . . . . . . . . . . . . . . 10 2.4 A Stochastic Time Change Approach . . . . . . . . . . . . . . . . . . . . . 11 2.5 An Actuarial Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 An Inverse Fourier Transform Approach . . . . . . . . . . . . . . . . . . . 14 2.7 Other Relevant Literatures . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Methodology 17 3.1 The Generalized Aggregate Claims Process . . . . . . . . . . . . . . . . . 17 3.1.1 Introducing Compound Poisson Process and Distribution . . . . . . 17 3.1.2 Properties of Compound Poisson Distribution . . . . . . . . . . . . 19 3.2 Recursive Evaluation of Compound Poisson Distribution . . . . . . . . . . 20 3.3 Application of Pricing Catastrophe Derivatives . . . . . . . . . . . . . . . 21 3.3.1 The Adjusted Aggregate Claims Process . . . . . . . . . . . . . . . 22 3.3.2 The ISO Catastrophe Futures . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 The PCS Catastrophe Options . . . . . . . . . . . . . . . . . . . . 26 4 Numerical Results 28 4.1 Base Value and Simplicity Assumption . . . . . . . . . . . . . . . . . . . . 28 4.2 The Result of the PCS Call and Put Prices . . . . . . . . . . . . . . . . . . 29 4.3 The Effect of Different Claim Occurrence Frequencies . . . . . . . . . . . 31 4.4 The Impact of Various Claim Amount Distributions . . . . . . . . . . . . . 33 4.5 Comparing with Monte Carlo Simulation . . . . . . . . . . . . . . . . . . 36 4.6 A Hedging Example of the PCS Options . . . . . . . . . . . . . . . . . . . 37 5 Conclusion 39 Bibliography 41

    [1] Aase, K. K., An Equilibrium Model of Catastrophe Insurance Futures and Spreads,
    Geneva Papers on Risk and Insurance Theory, 24, 69-96, 1994.

    [2] Black, F., The Pricing of Commodity Contracts, Journal of Financial Economics, 3,
    167-179, 1976.

    [3] Beaglehole, D. R., R. H. Litzenberger and C. E. Reynolds, Assessing Catastrophe
    Reinsurance-Linked Securities as a New Asset Class, Journal of Portfolio Management,
    76-85, 1996.

    [4] Bowers Jr., N. L., . . ., et al., Actuarial Mathematics, The Society of Actuaries, United
    States of America, 367-461, 1997.

    [5] Bouzouita, R. and A. J. Young, Catastrophe Insurance Options, Journal of Insurance
    Regulation, 16, 3, 313-325, 1998.

    [6] Cox, D. R. and V. Isham, Point Processes, Chapman & Hall, London, 1980.

    [7] Cummins, J. D. and H. Geman, An Asian Option Approach to the Valuation of Insurance
    Futures Contracts, Wharton School Center for Financial Institutions Working
    Papers, 94-03, 1993.

    [8] Cummins, J. D. and H. Geman, Pricing Catastrophe Insurance Futures and Call
    Spreads: An Arbitrage Approach, Journal of Fixed Income, 4, 4, 46-57, 1995.

    [9] Chang, C. W., J. S. K. Chang and M. T. Yu, Pricing Catastrophe Insurance Futures
    Call Spreads: A Randomized Operational Time Approach, Journal of Risk and Insurance,
    63, 4, 599-616, 1996.

    [10] Christensen, C. V., The PCS Option, An Improvement of the CAT-Future, Manuscript,
    1-11, 1998.

    [11] Christensen, C. V. and H. Schmidli, Pricing Catastrophe Insurance Products Based
    on Actually Reported Claims, Insurance: Mathematics and Economics, 27, 189-200,
    2000.

    [12] Dynkin, E. B., Markov Processes I, II, Springer Verlag, Berlin, 1965.

    [13] Davis, M. H. A., Piecewise Deterministic Markov Processes: A General Class of
    Non-Diffusion Stochastic Models, Journal of Statistics Society, 46, 353-388, 1984.

    [14] Delbaen, F. and J. M. Haezendonck, A Martingale Approach to Premium Calculation
    Principles in an Arbitrage Free Market, Insurance: Mathematics and Economics, 8,
    269-277, 1989.

    [15] Dassios, A. and J. W. Jang, Pricing of Catastrophe Reinsurance and Derivatives
    Using the Cox Process with Shot Noise Intensity, Finance and Stochastic, 7, 73-95,
    2003.

    [16] Geman, H. and M. Yor, Bessel Processes, Asian Options, and Perpetuities, Mathematical
    Finance, 3, 4, 349-375, 1993.

    [17] Geman, H. and M. Yor, Stochastic Time Changes in Catastrophe Option Pricing,
    Insurance: Mathematics and Economics, 21, 3, 185-193, 1997.

    [18] Harrison, J. M. and D. Kreps, Martingale and Arbitrage in Multiperiod Securities
    Markets, Journal of Economic Theory, 20, 381-408, 1979.

    [19] Harrison, J. M. and S. R. Pliska, Martingales and Stochastic Integrals in the Theory
    of Continuous Trading, Stochastic Process Application, 11, 215-260, 1981.

    [20] Jewell, W. S. and B. Sundt, Further Results on Recursive Evaluation of Compound
    Distributions, Astin Bulletin, 12, 27-39, 1981.

    [21] Lee, J. P. and M. T. Yu, Pricing Default-Risky CAT Bonds with Moral Hazard and
    Basis Risk, Journal of Risk and Insurance, 69, 1, 25-42, 2002.

    [22] Maceda, E. C., On the Compound and Generalized Poisson Distributions, The Annals
    of Mathematical Statistics, 19, 3, 414-416, 1948.

    [23] M¨urmann, A., Pricing Catastrophe Insurance Derivatives, Working Paper, 1-31,
    2001.

    [24] Panjer, H. H., Recursive Evaluation of a Family of Compound Distributions, Astin
    Bulletin, 12, 22-26, 1981.

    [25] Tomas III, M. J., A Note on Pricing PCS Single-Event Options, Derivatives Quarterly,
    4, 3, 23-28, 1998.

    [26] Willmot, G. E. and H. H. Panjer, Difference Equation Approaches in Evaluation of
    Compound Distributions, Insurance: Mathematics and Economics, 6, 43-56, 1985.

    下載圖示 校內:2007-06-27公開
    校外:2007-06-27公開
    QR CODE