簡易檢索 / 詳目顯示

研究生: 黃家瑜
Huang, Chia-Yu
論文名稱: 高動態飛行器地障閃避系統路徑最佳化
Trajectory Optimization of High Dynamic Aircraft Terrain-Clearance System
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 61
中文關鍵詞: 高動態飛行器地障閃避系統最佳化演算法非線性規劃最佳化路徑
外文關鍵詞: High dynamic Aircraft terrain-clearance system (HDATCS), optimization algorithm, nonlinear programming (NLP), optimal trajectory
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT II ACKNOWLEDGEMENTS IV TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES VII CHAPTER 1 INTRODUCTION AND OVERVIEW 1 1.1 Motivation and Objectives 2 1.2 Literature Review 3 1.3 Thesis Outline 5 CHAPTER 2 INTRODUCTION AND PERFORMANCE ANALYSIS OF HIGH DYNAMIC AIRCRAFT TERRAIN-CLEARANCE SYSTEM 6 2.1 Look Ahead Distance (LAD) 7 2.2 Search Volume 9 2.2.1 Horizontal Scan Area 9 2.2.2 Vertical Scan Area 10 2.3 Performance Analysis of the HDATCS on the Basis of Taiwan’s Terrain 12 2.3.1 DTM 12 2.3.2 High-Risk Terrains and the Terrain Searching Method 14 2.3.3 HDATCS Performance Verification for High-Risk Terrains 19 2.3.4 Analysis Results 25 2.4 Chapter Summary 27 CHAPTER 3 OPTIMAL CONTROL METHODOLOGY 28 3.1 Overview of the Optimization Algorithm 29 3.2 Formulation of the General Optimal Control Problem 30 3.3 Application of Ground Collision Avoidance in an Optimal Control Problem 32 3.3.1 3D Dynamic Aircraft Model 32 3.3.2 Minimum Control Cost Function 35 3.3.3 Path Constraint: Terrain Buffer 36 3.4 Multiple Shooting Method (Direct Method) 39 3.4.1 RK4 Method 40 3.5 Parameters to Be Specified 42 3.5.1 Time Horizon 42 3.5.2 Input Terrain Range 43 3.6 Chapter Summary 45 CHAPTER 4 SIMULATION RESULTS 46 4.1 Critical Case 1 47 4.2 Critical Case 2 49 4.3 Critical Case 3 52 4.4 Control Plot 54 4.5 Chapter Summary 56 CHAPTER 5 CONCLUSION AND FUTURE WORK 58 5.1 Conclusion 58 5.2 Future Work 59 REFERENCE 60

    [1] Air Force Safety Center. Aviation Statistics. https://www.safety.af.mil/Divisions/Aviation-Safety-Division/Aviation-Statistics/
    [2] Federal Aviation Administration (FAA). (2018). Controlled Flight Into Terrain. U.S. Department of Transportation. https://www.faa.gov/news/safety_briefing/2018/media/SE_Topic_18-11.pdf
    [3] Lin, C.-C. (2021). A Terrain-Clearance System for High Dynamic Flight Vehicle. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan.
    [4] Stephan, J. (2012). Development of the Forward Looking Terrain Avoidance in a Terrain Awareness and Warning System (TAWS). Technische Universität Graz, Österreich.
    [5] Bollino, K., & Lewis, L. R. (2008). Collision-Free Multi-UAV Optimal Path Planning and Cooperative Control for Tactical Applications. AIAA Guidance, Navigation and Control Conference and Exhibit (p. 7134).
    [6] Ross, I. M. (2020). Enhancements to the DIDO Optimal Control Toolbox. arXiv preprint arXiv:2004.13112.
    [7] Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM review, 47(1), 99-131.
    [8] Patel, R. B., & Goulart, P. J. (2011). Trajectory Generation for Aircraft Avoidance Maneuvers Using Online Optimization. Journal of Guidance, Control, and Dynamics, 34(1), 218-230.
    [9] Wächter, A., & Biegler, L. T. (2006). On The Implementation of An Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Mathematical programming, 106(1), 25-57.
    [10] Suplisson, A. W. (2015). Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS). Air Force Institute of Technology.
    [11] Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi: A Software Framework for Nonlinear Optimization and Optimal Control. Mathematical Programming Computation, 11(1), 1-36.
    [12] Darland, S. E. , Liu, P. T., Engels, J. F., & McSpadden, C. M. (1998). F-16 A/B Mid-Life Update Production Tape M1 The Pilot's Guide to new capabilities & cockpit enhancements. Lockheed Martin. p. 177.
    [13] Federal Aviation Administration. (2012). Technical Standard Order. TSO-C151c. U.S. Department of Transportation. https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/d6ad0eee7a2261cf86257a300053602c/$FILE/TSO-C151c.pdf
    [14] Department of Land Administration. (2020). 20-Meter Grid Numerical Terrain Model Data of the Ministry of the Intrior. The Ministry of the Interior, Executive Yuan.
    [15] Smith, N. E. (2014). Optimal Collision Avoidance Trajectories for Unmanned/ Remotely Piloted Aircraft. Air Force Institute of Technology.
    [16] Trombetta, J. V. (2016). Multi-Trajectory Automatic Ground Collision Avoidance System with Flight Tests (Project Have ESCAPE). Air Force Institute of Technology.
    [17] Sorokowski, P., Skoog, M., Burrows, S. D., & Thomas, S. (2015). Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results. National Aeronautics and Space Administration, Armstrong Flight Research Center.
    [18] Humphreys, C. J. (2016). Optimal Control of An Uninhabited Loyal Wingman. Air Force Institute of Technology.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE