| 研究生: |
黃家瑜 Huang, Chia-Yu |
|---|---|
| 論文名稱: |
高動態飛行器地障閃避系統路徑最佳化 Trajectory Optimization of High Dynamic Aircraft Terrain-Clearance System |
| 指導教授: |
詹劭勳
Jan, Shau-Shiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 民航研究所 Institute of Civil Aviation |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 高動態飛行器地障閃避系統 、最佳化演算法 、非線性規劃 、最佳化路徑 |
| 外文關鍵詞: | High dynamic Aircraft terrain-clearance system (HDATCS), optimization algorithm, nonlinear programming (NLP), optimal trajectory |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Air Force Safety Center. Aviation Statistics. https://www.safety.af.mil/Divisions/Aviation-Safety-Division/Aviation-Statistics/
[2] Federal Aviation Administration (FAA). (2018). Controlled Flight Into Terrain. U.S. Department of Transportation. https://www.faa.gov/news/safety_briefing/2018/media/SE_Topic_18-11.pdf
[3] Lin, C.-C. (2021). A Terrain-Clearance System for High Dynamic Flight Vehicle. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan.
[4] Stephan, J. (2012). Development of the Forward Looking Terrain Avoidance in a Terrain Awareness and Warning System (TAWS). Technische Universität Graz, Österreich.
[5] Bollino, K., & Lewis, L. R. (2008). Collision-Free Multi-UAV Optimal Path Planning and Cooperative Control for Tactical Applications. AIAA Guidance, Navigation and Control Conference and Exhibit (p. 7134).
[6] Ross, I. M. (2020). Enhancements to the DIDO Optimal Control Toolbox. arXiv preprint arXiv:2004.13112.
[7] Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM review, 47(1), 99-131.
[8] Patel, R. B., & Goulart, P. J. (2011). Trajectory Generation for Aircraft Avoidance Maneuvers Using Online Optimization. Journal of Guidance, Control, and Dynamics, 34(1), 218-230.
[9] Wächter, A., & Biegler, L. T. (2006). On The Implementation of An Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Mathematical programming, 106(1), 25-57.
[10] Suplisson, A. W. (2015). Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS). Air Force Institute of Technology.
[11] Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi: A Software Framework for Nonlinear Optimization and Optimal Control. Mathematical Programming Computation, 11(1), 1-36.
[12] Darland, S. E. , Liu, P. T., Engels, J. F., & McSpadden, C. M. (1998). F-16 A/B Mid-Life Update Production Tape M1 The Pilot's Guide to new capabilities & cockpit enhancements. Lockheed Martin. p. 177.
[13] Federal Aviation Administration. (2012). Technical Standard Order. TSO-C151c. U.S. Department of Transportation. https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/d6ad0eee7a2261cf86257a300053602c/$FILE/TSO-C151c.pdf
[14] Department of Land Administration. (2020). 20-Meter Grid Numerical Terrain Model Data of the Ministry of the Intrior. The Ministry of the Interior, Executive Yuan.
[15] Smith, N. E. (2014). Optimal Collision Avoidance Trajectories for Unmanned/ Remotely Piloted Aircraft. Air Force Institute of Technology.
[16] Trombetta, J. V. (2016). Multi-Trajectory Automatic Ground Collision Avoidance System with Flight Tests (Project Have ESCAPE). Air Force Institute of Technology.
[17] Sorokowski, P., Skoog, M., Burrows, S. D., & Thomas, S. (2015). Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results. National Aeronautics and Space Administration, Armstrong Flight Research Center.
[18] Humphreys, C. J. (2016). Optimal Control of An Uninhabited Loyal Wingman. Air Force Institute of Technology.
校內:不公開