簡易檢索 / 詳目顯示

研究生: 杜浚瑋
Du, Jun-Wei
論文名稱: 氧化矽鉿/氧化銦鎵鋅薄膜電晶體源/汲極結構於元件特性影響之研究
Infulence of Source/Drain Contact Structure on the Performance of InGaZnO Thin-Film Transistors with Gate Dielectric
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 74
中文關鍵詞: 氧化矽鉿氧化銦鎵鋅薄膜電晶體結構
外文關鍵詞: IGZO, HfSiO, TFTs, structure
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化銦鎵鋅薄膜電晶體,因同時具備優異的薄膜均勻度與高載子移動率使其在未來顯示器主動陣列上的應用極具潛力,而氧化銦鎵鋅的高透明度更使得全透明積體電路與顯示器的開發成為可能。然而以n-type半導體材料而言,一般bottom-gate top-contact的元件因源/汲極電極覆蓋在通道之上,當施加閘極電壓時,電子會由半導體下表面開始累積形成通道 ,當閘極電壓極小時,由於通道極靠近介電層一側,此時電極與電子通道間,會有一層未累積電子較低濃度之n-type半導體層,變成電流路徑上多餘的串聯電阻,使得驅動電流下降。為了克服此問題,本論文將以調變結構,使電極能在通道由空乏進入累積之初,立即接觸此電子累積層,減少電流路徑上的串聯電阻,改善此問題。
    本研究主要以兩個部分做為探討,其中一種為通道條狀式結構,探討電極覆蓋的通道側邊對元件特性的影響,另外一種為bottom-contact結構,探討源/汲極電極接觸到通道下側對元件特性的影響。本實驗選擇氮化鉭當作金屬閘極的材料,再以氧化矽鉿當作閘極介電層的材料,搭配通道材料為氧化銦鎵鋅,最後以鈦當作源/汲極材料定義元件,完成氧化銦鎵鋅薄膜電晶體之製作。物性分析方面以X光繞射分析(XRD)與化學分析電子儀(XPS)分析氧化銦鎵鋅與氧化矽鉿薄膜。於元件特性比較上,通道條狀式四條之開關電流比為4.2×105,由IDS-VGS萃取出關閉電壓約為-0.94 V,次臨界擺幅為99 mV/decade,而通道中的載子遷移率為11.49 cm2V-1s-1。Bottom-contact之開關電流比為8.04×105,由IDS-VGS萃取出關閉電壓約為-0.66 V,次臨界擺幅為107 mV/decade,而通道中的載子遷移率為12.97 cm2V-1s-1。
    由實驗結果顯示,條狀式通道結構與bottom-contact結構,確實可以減少路徑上的串聯電阻使得驅動電流提升,而在元件製程上不會增加成本,對於氧化銦鎵鋅此類累積態通道材料做為高驅動元件應用上極具參考價值。

    Indium gallium zinc oxide (IGZO) thin-film-transistors (TFTs) with excellent film uniformity, high carrier mobility and high transparency have shown high potential for applications of active matrix arrays for future display. However, in the operation of n-type TFTs, electron accumulation starts from the interface between channel and gate dielectric and thickness vertically toward the S/D electrodes as gate bias increased, a weak accumulation layer might locate between the S/D electrodes and strong accumulation layer which results in a considerable series resistance in the current path and decreases the driving current, especially for cases with non-optimized channel thickness.
    In this thesis, to overcome the problem, multiple channels and bottom-contact structures are used to increase the direct contact region of S/D electrodes and the strong accumulation layer at the lower surface of the channel. Tantalum nitride (TaN), hafnium silicon oxide (HfSiO), and Indium gallium zinc oxide (IGZO) are served as gate electrode, gate dielectric, and channel respectively. The S/D electrodes are defined by the evaporated titanium (Ti). The physical properties and compositions of IGZO and HfSiO films were examined by XRD and XPS analysis. The device with multiple channels has show improved electrical characteristics with Ion/Ioff ratio, off voltage, subthreshold swing, and mobility of 4.2×105, -0.94 V, 99 mV/decade, and 11.49 cm2V-1s-1, respectively, The device of bottom-contact structure has shown improved electrical characteristics with Ion/Ioff ratio, off voltage, subthreshold swing, and mobility of 8.04×105, -0.66 V, 107 mV/decade, and 12.97 cm2V-1s-1, respectively.
    In summary, the experimental results revealed that both multiple channels and bottom-contact are able to decrease series resistance and increase driving current. The results can be a valuable reference for structure engineering of TFTs in the future.

    中文摘要 i 英文摘要 iii 誌 謝 v 目 錄 vi 圖目錄 x 表目錄 xiv 第一章 緒論 1 1-1 TFT-LCD顯示器發展過程 1 1-2 非晶型氧化物半導體 2 1-3 高介電係數材料技術與選擇 8 1-4 金屬閘極的發展與材料的選擇 11 1-5 研究動機 15 第二章 理論基礎 16 2-1 MOS電容基礎理論 16 2-2 MOS基本操作特性 19 2-3 臨限電壓(Threshold Voltage, VT) 21 2-4 次臨界擺幅(Subthreshold Swing, SS) 22 2-5 載子移動率(Mobility, μn) 23 2-6 等效氧化層厚度(EOT)及介電常數(k)之計算 24 2-7 平帶電壓(VFB)與金屬功函數(Φms)之計算 26 第三章 實驗儀器設備介紹 29 3-1 製程設備介紹 29 3-1-1 射頻磁控濺鍍機 29 3-1-2 電子束蒸鍍機 32 3-2 材料分析儀器 35 3-2-1 掃描式電子顯微鏡 35 3-2-2 X光繞射儀(X-ray diffractometer, XRD) 37 3-2-3 X光光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 38 3-3 量測使用儀器 40 第四章 材料特性分析 42 4-1 氧化銦鎵鋅薄膜(InGaZnO)材料特性 42 4-1-1 XRD薄膜分析 42 4-1-2 XPS薄膜分析 43 4-2 氧化矽鉿(HfSiO)薄膜材料特性 44 4-2-1 XRD薄膜分析 44 4-2-2 XPS薄膜分析 45 第五章 不同結構氧化銦鎵鋅薄膜電晶體之製作 46 第六章 元件特性結果與討論 60 6-1 不同結構氧化銦鎵鋅薄膜電晶體的電性量測 60 6-1-1 結構A與結構B比較 61 6-1-1-1 結構A之IDS-VDS曲線特性 61 6-1-1-2 結構B之IDS-VDS曲線特性 62 6-1-1-3 結構A與結構B調變通道寬度之IDS-VGS曲線特性比較 63 6-1-2 結構C、結構D與結構E之比較 65 6-1-2-1 結構C、結構D與結構E之IDS-VDS曲線特性 65 6-1-2-2 結構C、結構D與結構E之IDS-VGS曲線特性 66 第七章 結論與未來研究 69 7-1 結論 69 7-2 未來研究之建議 70 參考文獻 71

    [1] G. H. Heilmeier, L. A. Zanoni, L. A. Barton, “Dynamic scattering-A new electrooptic effect in nematic liquid crystals,” Proceedings of the IEEE, Vol. 56, pp. 1162-1171, 1968.
    [2] T. P. Brody, J. A. Asars, G. D. Dixon,“A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. on Electron Devices, Vol. 20, pp. 995-1001, 1973.
    [3] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, pp. 268-270, 2001.
    [4] S. B. Ogale, Thin films and heterostructures for oxide for oxide electronics, New York, NY: Springer, 2005.
    [5] C. Jagadish and S. Pearton, Zinc oxide bulk, thin films and nanostructure, Oxford, UK: Elsevier, 2006.
    [6] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke,M. A. Reshchikov, S. Dogan,V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., Vol. 98, pp. 041301-1–041301-103, Aug. 2005.
    [7] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., Vol. 72, pp.126501-1–126501-29, Oct. 2009.
    [8] Peardon’s Handbook of Crystallograpphic Data, pp. 2795-2796.
    [9] D. J. Leary, J. O. Barnes, and A. G. Jordan,“Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors,"J. Electrochem. Soc, Vol. 129, pp. 1382-1387, 1982.
    [10] G. Neumann,“On the Defect Structure of Zinc-Doped Zinc Oxide,"Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [11] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids, Vol. 352, pp. 851–858, Jun. 2006.
    [12] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., Vol. 5, no. 7, pp. 273–288, Jul. 2009.
    [13] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Jpn. J. Appl. Phys., Vol. 45, no. 5B, pp. 4303–4308, May 2006.
    [14] Tze-Ching, Chiao-Shun Chuang, Kenji Nomura, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors,” Journal of Information Display, Vol. 9, no. 4, December 2008.
    [15] Minkyu Kim, Jong Han Jeong, Hun Jung Lee, Tae Kyung Ahn, Hyun Soo Shin, Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, and Hye Dong Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” App. Phy. Lett. Vol. 90, p. 212114, 2007.
    [16] Chiao-Shun Chuang, Tze-Ching Fung, Barry G. Mullins, Kenji Nomura, Toshio Kamiya, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays,” SID 08 DIGEST, 1215.
    [17] N. C. Su, S. J. Wang, and Albert Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric” IEEE Electron Device Letters, Vol. 30, No.12, pp. 1317-1319, Dec. 2009.
    [18] Keun Woo Lee, Kon Yi Heo, Sang Hoon Oh, Abderrafia Moujoud, Gun Hee Kim, Hyun Jae Kim, “Thin film transistors by solution-based indium gallium zinc oxide/carbon nanotubes blend,” Thin Solid Films, Vol. 517, pp. 4011-4014, 2009.
    [19] G. Neumann,“On the Defect Structure of Zinc-Doped Zinc Oxide,"Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [20] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544, 1999.
    [21] V. Mikhelashvili, and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Appl. Phys. Lett., Vol. 89, pp. 3256-3269, 2001.
    [22] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., Vol. 81, pp. 472-474, 2002.
    [23] S. M. Hu, “Stress-related problems in silicon technology,” Appl. Phys. Lett., Vol. 706, pp. 53-80, 1991.
    [24] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100),” Appl. Phys. Lett., Vol. 75, pp. 4001- 4003, 1999.
    [25] H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, “Effect of Interface Oxide Layer on HfO2 Gate Dielectrics,” IEDM Tech. Dig., Vol. 34, pp. 141-142, 1999.
    [26] K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., Vol. 11, pp. 2757-2776, 1996.
    [27] Li-ping Feng, Zheng-tang Liu, Ya-Ming Shen, “Compostiional, structural and electronic characteristics of HfO2 and HfSiO dielectrics prepared by radio frequency magnetron sputtering,” Vaccum, Vol. 83, pp. 902-905, 2009.
    [28] 王志誠,“碳化鉿金屬閘極搭配高介電係數二氧化鉿電容與場效應電晶體之研製”,國立成功大學微電子工程研究所碩士論文,2008。
    [29] Y. C. Yeo, “Metal gate technology for nanoscaletransistors-materials election and process integration issues,” Thin Solid Films, Vol. 34, pp. 462-463, 2004.
    [30] F. Boeuf, H. S. P. Wong, J. A. Hutchby, T. Skotnicki, and T. J. King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, Vol. 5, pp. 16-26, 2005.
    [31] K. A. Ellis, and R. A. Buhrman, “Boron diffusion in silicon oxides and oxynitrides,” J. Electrochem. Soc. Vol. 145, pp. 2068-2069, 1998. [28] F. Boeuf, H. S. P. Wong, J. A. Hutchby, T. Skotnicki, and T. J. King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, Vol. 5, pp. 16-26, 2005.
    [32] Gregory Mone, “The future is flexible displays,” Communications of the ACM, Vol. 56, pp. 16-17, 2013.
    [33] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Devices, pp. 27-28, 1980.
    [34] D. K. Schroder, “Semiconductor material and device characterization,” 2nd edition, Wiley, New York, pp. 367-369, 1998.
    [35] M. Zambuto, “Semiconductor Devices,” McGraw-Hill Book Company, Ch. 9, pp. 284-332.
    [36] A. Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface,” CRC Crict. Rev. Solid State Sci., 6, pp. 41-43, 1976.
    [37] M. Koyama, Y. Kamimuta, T. Ino, A. Nishiyama, A. Kaneko, S. Inumiya, K. Eguchi, and M. Takayanagi, “Careful examination on the asymmetric VFB shift problem for poly-Si/HfSiON gate stack and its solution by the Hf concentration control in the dielectric near the poly-Si interface with small EOT expense,” IEDM Tech. Dig., pp. 499-502, 2004.
    [38] H. Yamada, T. Shimizu, A. Kurokawa, and K. Ishii, “MOCVD of High-Dielectric-Constant Lanthanum Oxide Thin Films,” J. Electrochem. Soc., Vol. 150, pp. 429-435, 2003.
    [39] N. Zhan, M. C. Poon, C. W. Kok, K. L. Ng, and H. Wong, “XPS study of the thermal instability of HfO2 prepared by RF sputtering in oxygen with RTA,” J. Electrochem. Soc., Vol. 150, pp. F200-F202, 2003.
    [40] Donald A. Neamen, “Semiconductor Physics & Devices,” 3rd edition, McGraw-Hill Book Company, Ch. 11, pp. 548-550.
    [41] Gun Hee Kim, Hyun Soo Shin, Byung Du Ahn, Kyung Ho Kim, Won Jun Park, and Hyun Jae Kim, “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor,” Jour. Elec. Soc., Vol. 156, no. 1, pp. H7-H9, 2009.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE