簡易檢索 / 詳目顯示

研究生: 賴民峰
Lai, Min-Feng
論文名稱: 電阻抗分析於自組性單層薄膜之特性評估與其在生物檢測上之應用
Characteristic Evaluation and Biodetecting Application of Self-Assembled Monolayer by Electrochemical Impedance Spectroscopy
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 96
中文關鍵詞: 電阻抗分析白蛋白生物素電路模型自組性單層薄膜
外文關鍵詞: Biotin, Electrical impedance analysis, Circuit model, Avidin, Self assembled monolayer
相關次數: 點閱:129下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   自組性單層薄膜(self assembled monolayer, SAM)因可使基材表面達到功能化之目的,已成為生物感測等領域相繼使用的表面改質技術。由於SAM的修飾會改變電極表面的阻抗,故研究中擬以電阻抗分析評估SAM的特性,且以SAM固定白蛋白(avidin)作為生物素(biotin)之感測探針,由量測avidin-biotin鍵結產生的阻抗,達到檢測biotin之目的。
      
      實驗中,分別將三種硫醇分子(DTBA、MUA與MHA),修飾在金電極表面,且另一端之官能基分子均為COOH。接著將SAM之COOH官能基以EDC/NHS活化,使avidin固定在金電極表面,作為檢測biotin之探針。電路模型的建立為比較DTBA、MUA及MHA於電極表面所得之阻抗響應,進而確立電路模型中各元件所代表之物理意義。由結果可知,電路模型中的Ret元件與Cdl元件分別代表SAM修飾層的緻密性與碳鏈數,Rs元件代表溶液電阻。將此電路模型評估SAM的特性可知:(1)SAM於金電極修飾時間約60分鐘即可達到飽和穩定的狀態。(2)SAM的碳鏈數越長,其電阻越大,而電容越小。(3)MUA溶液的飽和濃度為10 mM。(4)以dropping method進行SAM的修飾時,SAM的結構較使用immerse method所得到的更緻密,且修飾時間可由60分鐘縮短為20分鐘。(5)疏水性的SAM分子之緻密性較親水性的高。生物檢測應用上,△Ret與△Cdl對biotin的檢測線性範圍在2-10 μg/ml,但△Ret對biotin濃度的相關係數為0.9943,較△Cdl的0.9624為佳;Ret與Cdl的sensitivity分別為30.27 kΩ/μg/ml、3.49×10-5 nF-1/μg/ml,因此在biotin的檢測應用上,選擇相關性較佳的Ret作為biotin檢測的量化指標。
      
      探討實驗結果可知,電阻抗分析除了能夠評估SAM修飾層的特性外,對於avidin-biotin的檢測,已得到不錯的檢測範圍與再現性。故以研究中所建立之模擬電路與阻抗量測技術,可應用於biotin衍生物(如將biotin標定抗體、DNA等)或是其它親和性物質的檢測,進而發展一套生物感測技術。

      By using self assembled monolayer (SAM) with different functional groups to modify a substrate, the surface of the substrate was suitable for specific bio-detection. The aim of this study were two, one was to characterize the physical properties of substrate with SAM modification, the other was that applied a layer of SAM coated with avidin protein on sensing electrode as a bio-probe to quantify the formation of avidin-biotin complex by impedance response in electrical impedance analysis.
      
      There were three types of SAM with carboxyl group to be coated on sensing electrodes by organic solvent which were DTBA, MUA and MHA. For making biotin probe, we use EDC/NHS reagent to activate the SAMs’ COOH to bind the avidins’ NH2 group. Circuit model is established by comparing with impedace response of DTBA, MUA and MHA after modification on the electrodes. In the circuit model, Ret and Cdl element represent density and chain length of SAM respectively. Rs element represents the resistance of supporting solution. Using circuit model to characterize SAM, we have several conclusions. (1) When modified time of SAM is about 60 minutes, SAM arives to saturate. (2) The longest SAM is increase in resistance and decrease in capacitance. (3) The saturated concentration of MUA solution is 10 mM. (4) Using dropping method, SAM becomes denser and modified time for SAM is reduced to 20 minutes as compared to immersion method. (5) Hydrophobic SAM is denser than hydrophilic SAM. For bio-detection, the linear range of biotin is 2-10 μg/ml bu means of △Ret and △Cdl. Correlation factor of Ret element (0.9943) is higher than that of Cdl (0.9624). Sensitivity of Ret and Cdl are 30.27 kΩ/μg/ml and 3.49×10-5 nF-1/μg/ml, respectively. Base on the findings above, we choose Ret element to the quantify concentration of biotin.
      
      In summary, EIS not only is used to characterize SAM modified electrode, but also provids good linear range and reproducibility to detection of avidin-biotin complex. To develop biosensing technique, simulation circuit and impedance analysis could be applied to detection of biotin derivative(such as biotin labled antibody or DNA)and affinity biosample.

    目錄 中文摘要…………………………………………………………... Ⅰ 英文摘要………………………………………………………..…. Ⅱ 誌謝………………………………………………………………... Ⅲ 目錄……………………………………………………..…………. Ⅳ 圖目錄……………………………………………………………... Ⅶ 表目錄……………………………………………………………... Ⅸ 第一章 緒論……………………………………………………..... 1 1-1 前言…………………………………………………………………..… 1 1-1-1 自組性單層薄膜之定義與特性……………………………..……. 4 1-1-2 自組性單層薄膜之種類…………………………………………... 6 1-1-3 製備自組性單層薄膜……………………………………………... 7 1-1-4 自組性單層薄膜之應用…………………………………………... 8 1-2 評估自組性單層薄膜的方法………………………………………….. 12 1-2-1 表面分析技術檢測自組性單層薄膜特性………………………... 12 1-2-2 電阻抗分析檢測自組性單層薄膜特性…………………………... 15 1-3 電阻抗分析法………………………………………………………….. 17 1-3-1 電阻抗量測技術之演進………………………………………….. 18 1-3-2 電極的量測方式………………………………………………….. 22 1-3-3 電路參數的測量………………………………………………….. 24 1-4 阻抗頻譜圖在檢測上之意義………………………………………….. 27 1-4-1 阻抗頻譜圖與電路模型之關聯性……………………………….. 27 1-4-2 電路模型之應用………………………………………………….. 29 1-4-3 電阻抗分析之文獻回顧………………………………………...… 30 1-5 研究動機與目的……………………………………………………….. 32 1-6 研究架構……………………………………………………………..… 32 第二章 實驗原理與方法………………………………………..... 33 2-1 阻抗檢測原理………………………………………………………….. 33 2-1-1 電化學阻抗分析………………………………………………….. 34 2-1-2 循環伏安法……………………………………………………..… 41 2-2 實驗設備與試劑……………………………………………………….. 45 2-2-1 實驗設備………………………………………………………….. 45 2-2-2 實驗試劑………………………………………………………….. 46 2-3 實驗方法……………………………………………………………….. 48 2-3-1 電極表面修飾…………………………………………………..… 48 2-3-2 分析檢測流程…………………………………………………...… 50 第三章 結果與討論……………………………………………..... 51 3-1 模擬電路之建立……………………………………………………..… 52 3-1-1 由阻抗曲線建立等效電路模型………………………………..… 52 3-1-2 等效電路模型在電極界面之物理意義………………………..… 57 3-2 SAM不同修飾時間的緻密度變化…………………………………..... 61 3-2-1 CV探討SAM不同修飾時間的緻密度變化…………………..… 61 3-2-2 阻抗分析探討SAM不同修飾時間的緻密度變化…………….... 64 3-3 比較SAM的阻抗響應以證明等效電路模型………………………..... 70 3-3-1 DTBA、MUA、MHA對Ret與Cdl之響應……………………..…... 70 3-3-2 MES與PBS對Rs之響應………………………………………..... 72 3-4 濃度與修飾法對SAM影響………………………………………….... 74 3-4-1 濃度對SAM影響……………………………………………….... 74 3-4-2 修飾法對SAM影響…………………………………………….... 75 3-4-3 不同官能基對SAM緻密度之比較…………………………….... 79 3-5 電阻抗分析對biotin之檢測…………………………………………... 80 3-5-1 藉EDC/NHS活化MUA以固定avidin………………………..….. 81 3-5-2 Avidin探針對biotin之電阻抗檢測……………………………..... 84 第四章 結論與展望………………………………………..……... 88 4-1 電阻抗分析於SAM評估與生物感測之探討……………………...…. 88 4-2 阻抗量測技術之發展與應用………………………………………..… 89 參考文獻…………..…………………………………..………..…. 90 自述………………………………………………………………... 96

    【1】 G. S. Nunes, I. A. Toscano, D. Barcelo, “Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays”, Trends in Analytical Chemistry, 17(2), 79-87, 1998.
    【2】 M. N. Velasco, T. Mottram, “Biosensor technology addressing agricultural problems”, Biosystems Engineering, 84(1), 1-12, 2003.
    【3】 P. D. Orazio, “Biosensors in clinical chemistry”, Clinica Chimica Acta, 334, 41-69, 2003.
    【4】 A. J. Cunningham, “Introduction to bioanalytical sensors”, John Wiley & Sons, 1998.
    【5】 C. R. Lowe, “Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures”, Current Opinion in Structural Biology, 10, 428-434, 2000.
    【6】 J. J. Gooding, D. B. Hibbert, “The application of alkanethiol self-assembled monolayers to enzyme electrodes”, Trends in Analytical Chemistry, 18(8), 525-533, 1999.
    【7】 H. O. Finklea, S. Avery, M. Lynch, “Blocking oriented monolayers of alkyl mercaptans on gold electrodes”, Langmuir, 3, 409-413, 1987.
    【8】 R. G. Nuzzo, F. A. Fusco, D. L. Allara, “Spontaneously organized molecular assemblies. 3. preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces”, Journal of the American Chemical Society, 109, 2358-2368, 1987.
    【9】 P. Diao, M. Guo, R. Tong, “Characterization of defects in the formation process of self-assembled thiol monolayers by electrochemical impedance spectroscopy”, Journal of Electroanalytical Chemistry, 495, 98-105, 2001.
    【10】 L. H. Dubois, B. R. Zegarski, R. G. Nuzzo, “Fundamental studies of microscopic wetting on organic surface. 1. formation and structural characterization of a self-consistent series of polyfunctional organic monolayers”, Journal of the American Chemical Society, 112, 558-569, 1990.
    【11】 L. H. Dubois, B. R. Zegarski, R. G. Nuzzo, “Fundamental studies of microscopic wetting on organic surface. 2. interaction of secondary adsorbates with chemically textured organic monolayers”, Journal of the American Chemical Society, 112, 570-579, 1990.
    【12】 Y. Kim, K. S. Kim, M. Park, J. Jeong, “Lateral force microscopy study of functionalized self-assembled monolayer surfaces”, Thim Solid Films, 341, 91-93, 1999.
    【13】 C. Ruan, L. Yang, Y. Li, “Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy”, Analytical Chemistry, 74, 4814-4820, 2002.
    【14】 H. Sellers, A. Ulman, Y. Shnidman, J. E. Eilers, “Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers”, Journal of the American Chemical Society, 115, 9389-9401, 1993.
    【15】 化工技術,奈米材料與運用專輯,第三卷,第120期,2003。
    【16】 P. E. Laibinis, G. M. Whitesides, “ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities”, Journal of the American Chemical Society, 114, 1990-1995, 1992.
    【17】 P. E. Laibinis, G. M. Whitesides, D. L. Allara et al., “Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au”, Journal of the American Chemical Society, 113, 7152-7163, 1991.
    【18】 C. E. D. Chidsey, D. N. Loiacono, “Chemical functionality in self-assembled monolayers: structural and electrochemical properties”, Langmuir, 6, 682-691, 1990.
    【19】 G. E. Poirier, E. D. Pylant, “The self-assembly mechanism of alkanethiols on Au(111)”, Science, 272, 1145-1148, 1996.
    【20】 M. M. Walczak, D. D. Popenoe, R. S. Deinhammer, “Reductive desorption of alkanethiolate monolayers atgold: a measure of surface coverage”, Langmuir, 7, 2687-2693, 1991.
    【21】 W. R. Everett, T. L. Welch, L. Reed, I. F. Faules, “Potential-dependent stability of self-assembled organothiols on gold electrodes in methylene chloride”, Analytical Chemistry, 67, 292-298, 1995.
    【22】 S. Imabayashi, D. Hobara, T. Kakiuchi, “Selective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption”, Langmuir, 13, 4502-4504, 1997.
    【23】 F. Frederix, K. Bonroy, W. Laureyn, “Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold”, Langmuir, 19, 4351-4357, 2003.
    【24】 Z. Yang, A. G. Cortes, G. Jourquin, J. C. Vire, “Analytical application of self assembled monolayers on gold electrodes: critical importance of surface pretreatment”, Biosensors & Bioelectronics, 10, 789-795, 1995.
    【25】 P. Thiebaud, L. Lauer, W. Knoll, A. Offenhausser, “PDMS device for patterned application of microfluids to neuronal cells arranged by microcontact printing”, Biosensors & Bioelectronics, 17, 87-93, 2002.
    【26】 J. S. Hovis, S. G. Boxer, “Pattering and composition arrays of supported lipid bilayers by microcontact printing”, Langmuir, 17, 3400-3405, 2001.
    【27】 K. E. Schmalenberg, H. M. Buettner, K. E. Uhrich, “Microcontact printing of proteins on oxygen plasma-activated poly(methyl methacrylate)”, Biomaterials, 25, 1851-1857, 2004.
    【28】 S. Ye, G. Li, H. Noda, K, Uosaki, M. Osawa, “Characterization of alkanethiol on GaAs surface by contact angle and angle-resolved XPS measurements”, Surface Science, 529, 163-170, 2003.
    【29】 J. D. Liao, M. C. Wang, C. C. Weng, “Modification of alkanethiolate self-assembled monolayers by free radical-dominant plasma”, Journal of Physical Chemistry B, 106, 77-84, 2002.
    【30】 S. Fujii, U. Akiba, M. Fujihira, “A self-assembled monolayer of a disulfide with a pair of bicycle[2.2.2]octane moieties on Au(111) investigated by non-contact atomic force microscopy”, Applied Surface Science, 210, 79-83, 2003.
    【31】 K. Kim, J. Kwak, “Faradaic impedance titration of pure 3-mercaptopropionic acid and ethanethiol mixed monolayers on gold”, Journal of Electroanalytical Chemistry, 512, 83-91, 2001.
    【32】 X. Cui, D. Jiang, D. Jiang, P. Diao, J. Li, “Electrochemical studies for the formation of sodium lauryl sulfate monolayer on an octadecanethiol-coated gold electrode”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 175, 141-145, 2000.
    【33】 E. Boubour, R. B. Lennox, “Insulating properties of self-assembled monolayers monitored by impedance spectroscopy”, Langmuir, 16, 4222-4228, 2000.
    【34】 P. Diao, D. Jiang, X. Cui, D. Gu, “Studies of structural disorder of self-assembled thiol monolayers on gold by cyclic voltammetry and ac impedance”, Journal of Electroanalytical Chemistry, 464, 61- 67, 1999.
    【35】 Y. F. Xing, S. J. O’Shea, S. F. Y. Li, “Electron transfer kinetics across a dodecanethiol monolayer self assembled on gold”, Journal of Electroanalytical Chemistry, 7-11, 542, 2003.
    【36】 X. Cui, D. Jiang, P. Diao, J. Li, “Assessing the apparent effective thickness of alkanethiol self-assembled monolayers in different concentrations of Fe(CN)63-/ Fe(CN)64- by ac impedance spectroscopy”, Journal of Electroanalytical Chemistry, 470, 9-13, 1999.
    【37】 M. Lu, X. H. Li, B. Z. Yu,H. L. Li, “Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly”, Journal of Colloid and Interface Science, 248, 376-382, 2002.
    【38】 T. Felgenhauer, H. T. Rong, M. Buck, “Electrochemical and exchange studies of self-assembled monolayers of biphenyl based thiols on gold”, Journal of Electroanalytical Chemistry, 550, 309-319, 2003.
    【39】 Y. Liu, Z. Zhang, L. Nie, S. Yao, “Study on the influence of anionic and cationic surfactant on Au-colloid modified electrode function by cyclic voltammetry and electrochemical impedance techniques”, Electrochimica Acta, 48, 2823-2830, 2003.
    【40】 D. Savitri, C M. Akram, M. C. Stuart, D. K. Y. Wong, “Direct application strategy to immobilise a thioctic acid self-assembled monolayer on a gold electrode”, Analytica Chimica Acta, 504, 243-251, 2004.
    【41】 D. Savitri, C. K. Mitra, “Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance”, Bioelectrochemistry and Bioenergetics, 48, 163-169, 1999.
    【42】 A. B. kharitonov, L. Alfonta, E. Katz, I. Willner, “Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry”, Journal of Electroanalytical Chemistry, 487, 133-141, 2000.
    【43】 A. Abdelghani, C. A. Jacquin, H. Hillebrandt, E. Sackmann, “Cell-based biosensors for inf lammatory agents detection”, Materials Science and Engineering, C 22, 67-72, 2002.
    【44】 G. Lang, M. Ujvari, G. Inzelt, “Possible origin of the deviation from the expectedimpedance response of polymer film electrodes”, Electrochimica Acta, 46, 4159–4175, 2001.
    【45】 A. Amirudin, D. Thierry, “Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals”, Progress in Organic Coatings, 26, 1-28, 1995.
    【46】 W. Jing, E. Wang, “Paint-freeze method to from self-assembled alkanethiol/phospholipid bilayers on gold”, Analytical Sciences, 14, 117-120, 1998.
    【47】 C. Tlili, K. Reybier, L. Ponsonnet, C. Martelet, H. B. Ouada, M. Lagarde, and N. J. Renault, “Fibroblast cells:a sensing bioelement for glucose detection by impedance spectroscopy”, Analytical Chemistry, 75, 3340-3344, 2003.
    【48】 A. Aoki, T. Miyashita, “Impedance analysis of the electron transfer process in redox polymer Langmuir-Blodgett films”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198, 671-676, 2002.
    【49】 R. Pei, Z. Cheng, E. Wang, X. Yang, “Amplification of antigen-antibody interactions based on biotin labeled protein-strepavidin network complex using impedance spectroscopy”, Biosensors & Bioelectronics, 16, 355-361, 2001.
    【50】 F. Patolsky, B. Filanovsky, E. Katz, I. Willner, “Photoswitchable antigen-antibody interactions studied by impedance spectroscopy”, Journal of Physical Chemistry B, 102, 10359-10367, 1998.
    【51】 F. B. Diniz, R. R. Ueta, M. C. Pedrosa, “Impedimetric evaluation for diagnosis of Chagas’ disease:antigen-antibody interactions on metallic electrodes”, Biosensors & Bioelectronics, 19, 79-84, 2003.
    【52】 F. Patolsky, M. Zayats, E. Katz, I. Willner, “Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications:characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analysis”, Analytical Chemistry, 71, 3171-3180, 1999.
    【53】 T. J. Cheng, T. M. Lin, H. C. Chang, “Physical adsorption of protamin for heparin assay using a quartz crystal microbalance and electrochemical impedance spectroscopy”, Analytica Chimica Acta, 462, 261-273, 2002.
    【54】 O. Ouerghi, A. Touhami, N. J. Renault, C. Martelet, “Impedimetric immunosensor using avidin-biotin for antibody immobilization”, Bioelectrochemistry, 56, 131-133, 2002.
    【55】 Y. Long, L. Nie, J. Chn, S. Yao, “Piezoelectric quartz crystal impedance and electrochemical impedance study of HSA-diazepam interaction by nanogold-structured sensor”, Journal of Colloid and Interface Science, 263, 106-112, 2003.
    【56】 C. Christine, G. Johansson, “Capacitance measurements of antibody-antigen interactions in a flow system”, Analytical Chemistry, 69, 3651-3657, 1997.
    【57】 N. F. Sheppard, D. J. Mears, “Model of an immobilized enzyme conductimetric urea biosensor”, Biosensors & Bioelectronics, 11(10), 967-979, 1996.
    【58】 L. Yang, Y. Li, C. L. Griffis, M. G. Johnson, “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium”, Biosensors and Bioelectronics, 19, 1139-1147, 2004.
    【59】 D. Sehgal, I. K. Vijay, “A method for the high efficiency for water-soluble carbodiimide-mediated amidation”, Analytical Biochemistry, 218, 87-91, 1994.
    【60】 G. Friesen, M. E. Ozsar, E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour”, Thin Solid Films, 361-362, 303-308, 2000.
    【61】 F. Bordi, C. Cametti, A. Gliozzi, “Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode”, Bioelectrochemistry, 57, 39-46, 2002.
    【62】 E. Katz, L. Alfonta, I. Willner, “Chronopotentiometry and faradaic impedance spectroscopy as methods for signal transduction in immunosensors”, Sensors and Actuators B, 76, 134-141, 2001.
    【63】 L. Yang, Y. Li, G. F. Erf, “Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7”, Analytical Chemistry, 76, 1107-1113, 2004.
    【64】 J K. Doblhofer, J. Figure, J. H. Fuhrhop, “Stability and electrochemical behavior of self-assembled adsorbates with terminal ionic groups”, Langmuir, 8, 1811-1816, 1992.
    【65】 M. M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, “Spontaneously organized molecular assemblies. 4. structural characterization of n-alkyl thiol monolayers on golds by optical ellipsometry, infrared spectroscopy, and electrochemistry”, Journal of the American Chemical Society, 109, 3559-3568, 1987.
    【66】 G歐 G. K. Jennings, J. C. Munro, T. H. Yong, P. E. Laibinis, “Effect of chain length on the protection of copper by n-alkanethiols”, Langmuir, 14, 6130-6139,1998.
    【67】 A. Badia, S. Arnold, V. Scheumann, M. Zizlsperger, J. Mack, G. Jung, W. Knoll, “Probing the electrochemical deposition and/or desorption of self-assembled and electropolymerizable organic thin films by surface plasmon spectroscopy and atomic force microscopy”, Sensors and Actuators B, 54, 145-165, 1999.
    【68】 吳仁貴,新型電化學式毛細管電泳微晶片之研發,國立成功大學醫學工程研究所碩士論文,2003。
    【69】 G. G. Kada, K. Kaiser, H. Falk, H. J. Gruber, “Rapid estimation of avidin and streptavidin by fluorescence quenching or fluorescence polarization”, Biochimica et Biophysica Acta, 1427, 44-48, 1999.
    【70】 D. Dong, D. Zheng, F. Q. Wang, X. Q. Yang, N. Wang, Y. G. Li, L. H. Guo, J. Cheng, “Quantitative photoelectrochemical detection of biological affinity reaction: biotin-avidin interaction”, Analytical Chemistry, 76, 499-501, 2004.
    【71】 陳春吉,自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用,國立成功大學醫學工程研究所碩士論文,2002。

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE