簡易檢索 / 詳目顯示

研究生: 許家豪
Hsu, Chia-Hao
論文名稱: 以化學吸收法處理煙道氣二氧化碳之研究
Study on Carbon Dioxide Removals from Flue Gas Using Chemical Absorption Method
指導教授: 朱信
Chu, Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 193
中文關鍵詞: 溫室效應二氧化碳化學吸收
外文關鍵詞: chemical absorption, greenhouse effect, carbon dioxide
相關次數: 點閱:108下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大氣中二氧化碳之增加主要係由化石燃料大量消耗之結果,二氧化碳會吸收由地球表面反射之紅外線而造成溫度上升、海平面上升等氣候變遷而稱之為” 溫室效應”。由氣候綱要公約及京都議定書之協定均可瞭解:此時已屆研究及發展各項減少溫室效應氣體技術之際,而如何降低二氧化碳之最大排放源產生之二氧化碳更為首要之務。
    本研究建立一套去除煙道氣中二氧化碳系統之攪拌槽型式實驗設備,分別 以MEA(aq)、DEA(aq)、MDEA(aq)、NH3(aq)、NaOH(aq)及混合醇胺溶液為吸收劑測定各種操作狀況下之吸收速率,以瞭解其較佳之吸收劑及較適之操作條件,並求得此系統的各項反應動力數據。
    本研究成果如下:
    1. 以MEA吸收CO2
    實驗結果顯示當氣體流速增加,其吸收速率會隨之增加,但隨著氣體流速增加其改變吸收速率的量會越少。而在不同濃度的吸收劑下,當吸收劑的濃度越高,其吸收速率越快,然在MEA=30%時的吸收速率為最大。當進氣CO2濃度越高其吸收速率越快,而吸收劑的情形跟上述雷同。
    溫度改變時,當溫度越高其吸收速率會越高,而不同濃度的MEA其情形跟上述雷同。由不同吸收劑濃度之MEA(10~50%)吸收不同進流濃度之CO2(5~20%),中可以得到下面之反應速率關係式。

    在不同溫度的操作條件下,我們可以得到活化能為
    Ea=32.26 Kj/mol;
    反應速率常數為 [(L/mol)-0.2/sec]

    2. 以氨水吸收CO2實驗:
    結果顯示吸收速率NA隨氨水濃度、氣體流量、進氣濃度CO2濃度、溫度增加而上升,但不受O2濃度影響。在上述之操作條件下,CO2與NH3(aq)之反應速率分別約與CO2濃度之零次方及NH3(aq)濃度的2次方成正比,其反應動力式為 ,平均反應速率常數值為2235.4(cm3/mol/sec)。CO2之吸收速率皆隨著氣相條件(進氣流量與濃度)以及液相條件(吸收液濃度)之改變而有所變化,然而改變吸收液濃度對於吸收速率的影響較大,因此CO2的吸收可以說是偏向於液膜控制。而改變操作溫度(25℃~65℃)可求得CO2與氨水反應之活化能約為48.0 kj/mol,其反應速率常數與溫度的關係為 。
    3. 加入NOx、SO2對MEA吸收CO2之影響
    加入NOx = 300~800 ppm或SO2 = 500~1500 ppm或同時加入NOx=500 ppm + SO2=1000 ppm,吸收劑為MEA=10~50% (W/W)的情形下。其結果顯示加入NOx及SO2後,NOx及SO2的存在會對MEA吸收CO2有降低的作用。
    4. 比較混合醇胺同時吸收CO2+NOx+SO2之關係
    吸收劑分別為MEA/NH3= 30/1、30/3,MEA/DEA=30/10、30/20,MEA/MDEA=30/5、30/10之吸收結果顯示,加入NH3有助於吸收速率的增加,同時又抵抗了NOx、SO2對MEA吸收CO2不良的影響,加入越多的NH3吸收CO2效果越好。加入DEA時對MEA吸收CO2有不良的影響,加入越多其反效果越大。加入MDEA時對MEA吸收CO2有不良的影響,加入越多其反效果越大。
    5. 比較不同吸收劑吸收CO2之關係
    在溫度50℃,氣體流量12 L/min,進氣CO2濃度15% (V/V) 情行下,吸收劑為NH3=0.57~2.51M、NaOH=1~3M、MEA=1.64~4.91M、DEA=0.98~2.93M、 MDEA=0.87~2.62M。其結果為吸收速率的快慢分別為:NH3>MEA>NaOH>DEA>MDEA。

    The increase in atmospheric carbon dioxide has primarily resulted from the consumption of fossil fuels for energy. The atmospheric CO2 is transparent to visible light but absorbs infrared radiation returning from the earth. Thus, the atmospheric CO2 may alter the radioactive balance of the earth and raise the global temperature. This so-called “greenhouse effect” could dramatically cause global climatic and environmental changes in precipitation, storm patterns, and increases in sea level. Therefore, it is the time to research and develop technologies for reducing CO2 emissions from energy production system that is the largest source of CO2 emissions.
    This study was set up a bench-scale agitated vessel reactor system to removal CO2 in the simulated fuel gas. To measure the absorption rate of CO2 at various operating conditions; followed by using MEA(aq); DEA(aq); MDEA(aq); NH3(aq); NaOH(aq) and mixing amine as the additive and absorbent, respectively, to determine the chemical kinetics data.
    The result of this study shows the following:
    1. The effect of MEA concentration on CO2 absorption rate
    The result shows that the absorption rate increase by increasing the gas flow rate but the amount of changing absorption rate decrease with increasing the gas flow rate. In different concentration of absorbent condition, the absorption rate increase by increasing the concentration of absorbent, however, the absorption rate is the fast in MEA=30%. The result shows that the absorption rate increase by increasing temperature.
    We get the reaction kinetics equation from difference absorbent concentration absorbs difference CO2 concentration.

    In difference operating temperature (30~70℃), we can get active energy , and reaction constant equation.
    Ea=32.26 Kj/mol ,
    kmn=

    2. The effect of ammonia solution concentration on CO2 absorption rate
    The result shows that the absorption rate NA(mol/sec/cm2) goes up by increasing the concentration of ammonia solution, CO2 inert concentration, gas flow rate and operation temperature, but not affected by the concentration of oxygen. Under the above-mentioned conditions, the reaction orders for CO2 and ammonia solution are respectively about 0 and 2, and the reaction kinetics equation cab be written as ,reaction rate constant is 2235.4(cm3/mol/sec)。. The absorption is varying by changing gas phase condition (gas flow rate and gas concentration) and liquid phase condition (absorbent concentration). However, changing absorbent concentration affects the absorption rate much more than changing gas phase condition does. Therefore, we can say that the absorption of CO2 should tend to liquid-film control. We also can get the active energy (about 48.0 kj/mol)of the reaction between CO2 and ammonia solution by changing operation temperature. The relationship between reaction rate constant and temperature is .
    2. The effect of NOx and SO2 on CO2 absorption rate
    The result shows that the absorption rate reduces by entering NOx and SO2.
    3. The effect of additives CO2 absorption rate
    Absorbent MEA/NH3 = 30/1, 30/3, MEA/DEA = 30/10, 30/20, MEA/MDEA = 30/5, 30/10. The result shows that entering NH3 can help to increase absorption rate and compete to NOx, SO2 bad affecting for MEA absorb CO2 and the absorption rate increase with increasing NH3 concentration.
    4. The effect of absorbent type on CO2 absorption rate
    Absorbent concentration NH3=0.57~2.51M; NaOH=1~3M; MEA=1.64~4.91M; DEA=0.98~2.93M; MDEA=0.87~2.62M. The result shows that the absorption rate is NH3>MEA>NaOH>DEA>MDEA.

    第一章緒論…………………………………………………………..1 1-1 研究動機……………………………………………………………………1 1-2 研究目的…………………………………………………………………..5 2-1 二氧化碳的來源特性及對環境的影響……………………………….8 2-2 二氧化碳的控制技術…………………………………………………….15 2-2-1 物理性處理二氧化碳技術……………………………….16 2-2-2 化學性處理二氧化碳技術………………………………18 2-2-3 生物性處理二氧化碳技術……………………………….21 2-3 使用醇胺及氨吸收二氧化碳之反應機制…………………………..25 2-4 混合液吸收二氧化碳…………………………………………..29 2-5 吸收理論分析……………………………………………………………30 2-5-1 物理吸收與化學反應吸收……………………………..37 2-5-2 氣體吸收的質傳理論………………………………....41 2-5-3 雙膜理論有關反應動力之各項參數…………………..46 第三章研究方法……………………………………………………59 3-1 實驗設備………………………………………………………………….59 3-1-1 進料系統………………………………………………..59 3-1-2 反應器……………………………………………………60 3-1-3 取樣系統………………………………………………..63 3-1-4 分析儀器…………………………………………………66 3-1-5 其他實驗設備……………………………………………76 3-2 實驗材料…………………………………………………………………..77 3-3 實驗方法與步驟………………………………………………………….80 3-3-1 實驗規劃………………………………………………….80 3-3-2 實驗程序與操作條件…………………………………..83 3-3-3 實驗前之預備工作……………………………………..84 3-3-4 實驗步驟………………………………………………..90 第四章胺類吸收二氧化碳性能之研究……………………………94 4-1 儀器之校正及測漏……..………………………………………94 4-1-1 系統測漏………………………………………………..94 4-1-2 Mass flow monitor 之校正…...………………….…...94 4-1-3 攪拌槽之校正…………………………………………..101 4-1-4 分析儀器之校正……………………………………….103 4-2 穩定實驗……….………………………………………………104 4-2-1 CO2 穩定實驗.……..…………………………….…….104 4-2-2 SO2 穩定實驗.….………………………………….…..105 4-2-3 NOx 穩定實驗…...………………………………….….105 4-3 數據分析…………………………………………………………106 4-4 以MEA 吸收不同濃度之CO2……………..…………………..111 4-5 以MEA 吸收不同進氣流量的CO2……………………………117 4-6 溫度對MEA 吸收CO2 之影響……………………………..….120 4-7 以MEA 同時吸收CO2+NOx……...…………………………..124 4-8 以MEA 同時吸收CO2+SO2…………………..………… …....126 4-9 以MEA 同時吸收CO2+NOx+SO2……...……………….……..128 4-10 液相中濃度分析…………………………………………....131 4-11 胺類吸收之結論……………………………………………..…133 第五章氨水吸收二氧化碳性能之研究……………………………134 5-1 以氨水吸收CO2…………………………………………………………134 5-2 氨水濃度對CO2 吸收速率的影響……………………………….136 5-3 溫度對CO2 吸收速率的影響……………………………………143 5-4 氣體流量對吸收速率之影響……………………………………147 5-5 氧氣濃度之影響………………………………………………..149 5-6 pH 值對吸收速率之影響…………………………….……..149 5-7 液相CO2 濃度分析…………………………………………………….152 5-8 各種吸收劑吸收CO2 之比較…………………………………..154 5-9 以MEA 及混合醇胺吸收CO2………………….……….……. 156 5-10 反應動力模式之驗證………………………….……….……. 158 5-11 氨水吸收之結論……………..……………….……….…….160 第六章化學吸收除二氧化碳之經濟可行性分析………………..162 6-1 經濟可行性之概述……………………………………………………..162 6-2 二氧化碳化學吸收法之成本推估…………………………………..167 第七章總結與未來展望…………………………………………..173 7-1 總結………………………………………………………………………..173 7-2 建議與展望……………………………………………… ……175 參考文獻................................................ 177 附錄一.............................................. 192 CO2 在水中飽和溶解度(CAi)的計算方法............... 192 附錄二.............................................. 193 以範例說明如何計算(2-4-17)式中之各項未知參數....... 193 附錄三 穩定實驗結果……………………………………….. ....... 197 附錄四.............................................. 203 以範例說明由氣相中移除之CO2 莫耳數計算方式... 203 附錄五.............................................. 204 ASPEN PLUS 以化學吸收法處理二氧化碳之部分資料204

    外文部分

    l Abanades, J.C., and Alvarez, D., 2003, “Conversion Limits in the Reaction of CO2 with Lime”, Energy & Fuel.17,308-315.

    l Abanades, J.C., 2002, “The maximum capture of CO2 using a carbonation/calcinations cycle of CaO/CaCO3”, chem Eng J., 90, 303-306.

    l Alper, E., 1990, Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide. Ind. Eng. Chem. Res. 29, 1725-1728.

    l Alvarez-Fuster, C., Midoux, N., Laurent, A. and Charpentier, J. C., 1980, Chemical kinetics of the reaction of carbon dioxide with amines in pseudo m - nth order conditions in aqueous and organic solutions. Chem. Eng. Sci. 35, 1717-1723.

    l Anthony, L. H. and Robert, N. M., 1985, Mass Transfer-Fundamentals and Applications, Pretice-Hall, Inc.

    l Aroonwilas, A. Tontiwachwuthikul, P., 2000, “Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions”, Chemical Engineering Science. 55, 3651-3663,.

    l Aroua, M. K., Haji-Sulaiman, M. Z., and Ramasamy, K., 2002, Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus. Sep. Purif. Technol. 29, 153-162.

    l Bai H. and Yeh An Chin, 1997, Removal of CO2 greenhouse gas by Ammonia Scrubbing, Ind. and Eng. Chem. Res., 36, 2490-2493.

    l Bai H. and Yeh An Chin, 1999, Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions, The Sci. of Total Enviro., 228, 121-133.

    l Bird, R. B., 1960, Transport Phenomena, Wiley, New York, 495-518.

    l Bishnoi, S., Rochelle, G. T., 2000, Absorption of carbon dioxide into aqueous piperazine kinetics, mass transfer and solubility. Chem. Eng. Sci. 55, 5531-5543.

    l Blauwhoff, P. M. M., Versteeg, G. F. and van Swaaij, W. P. M., 1983, A study on the reaction between CO2 and alkanolamines in aqueous solution. Chem. Eng. Sci. 38, 1411-1429.

    l Bosch, H., Versteeg, G. F. and van Swaaij, W. P. M., 1990, Kinetics of the reaction of CO2 with the sterically hindered amine 2-amino-2-methyl-propanol at 298 K. Chem. Eng. Sci. 45. 1167-1173.

    l Caplow, M., 1968, Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90, 6795-6803.

    l Chakraborty, A. K., Astarita, G. and Bischoff, K. B., 1986, CO2 absorption in aqueous solutions of hindered amines. Chem. Eng. Sci. 41, 997-1003.

    l Cussler, E. L. , 1984 ,”Diffusion, Mass transfer in fluid system”, Press Syndicate of the University of Cambridge, 105~111.

    l Crooks, J. E. and Donnellan, J. P., 1989, Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution. J. chem. Soc, Perkin Trans. II 331-333.

    l Danckwerts. P. V. and Sharma, M. M., 1966, Absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide). Chem. Engr. 10, CE 244-288.

    l Danckwerts. P. V., 1970, Gas-Liquid Reactions. McGraw-Hill, New York.

    l Danckwerts. P. V., 1979, The reaction of CO2 with ethanolamines. Chem Engng Sci. 34, 443-446.

    l Dang, H., and Rochelle, G. T, 2003, CO2 Absorption rate and solubility in monoethanolamine/piperazine/water, Sep. Sci. Technol., 38. 2. 337-357

    l David, C. C.and Alley, F. C. 1996, Air Pollution Control: A Design Approach, 5-12,.

    l David R. Lide, 1999~2000, CRC Handbook of Chemistry and Physics, National Institute of Standards and Technology,80, 6-188.

    l Dittmer, D., Fredenhagen, A., Oei, S.B., and Eggers, S.B., 2003, Interfacial tensions of ethanol-carbon dioxide and ethanol-nitrogen. Dependence of the Interfacial tension on the fluid density- prerequisites and physical reasoning. Chem. Eng. Sci. 58, 1223-1233.

    l Erga. O. and Lidal. H., 1991, Equilibrium model for CO2 absorption in an aqueous solution of 2-amino-2-methyl-1-propanol. Chem. Eng. Technol. 14, 394-398.

    l Fleiseher, C., Becker, S., and Eigennerger. G., Detailed Modeling of the chemisorption of CO2 in NaOH solutions”, Chemical Engineering Science, 51, 1715-1724,1996.

    l Goldstein, A. M., Brown, E. C., Heinzelmann, F. J. and Say, G. R., 1986, New FLEXORB gas treating technology for acid gas removal. Energy Prog. 7, 67-70.

    l Gupta, H., Fan, L.S., “Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas”, Ind. Eng. Chem. Res, 41, 4035-4042, 2002.

    l Haimour, N., Bidarian, A. and Sandall, O. C., 1987, Kinetics of the reaction between carbon dioxide and methyldiethanolamine. Chem. Eng. Sci. 42, 1393-1398.

    l Haimour, N, and Sandall, O. C., 1984, Absorption of carbon dioxide into aqueous methyldiethanolamine. Chem. Eng. Sci. 39. 1791-1796.

    l Halmann, M. M. and Steinberg, M., 1999, Greenhouse Gas Carbon Dioxide Mitigation, Lewis Publishers, London

    l Harris, W. E. and Kratochvil B., 1981, ” An Introduction to Chemical Analysis”, CBS Inc, New York.

    l Hendriks, C., 1994, Carbon Dioxide Removal from Coal-Fired Power Plant, Kluwer Academic Publishers, London

    l Heo, J. H., Shin, H.Y., Park, J. U., Joung, S.N., Kim, S. Y. and Yoo, K. P., 2001, Vapor-liquid equilibria for binary mixtures of CO2 with 2-methyl-2-propanol, 2-methyl-2-butanoll, octanoic acid, and decanoic acid at temperatures from 313.5 to 353.15 K and pressure from 3 to 24 MPa. J. chem. Eng. Data 46, 355-358.

    l Herskowits, D., Herskowits, V. and Stephan, K., 1990, “Characterization of a two-phase impinging jet absorber - Ⅱ.Absorption with chemical reaction of CO2 in NaOH solutions”, Chem. Environ. Sci, 44, 1281-1287.

    l Hileman, B., 2003,Greenhouse gases. Chem. Eng. News, 81, 12

    l Hikita, H., Asai, S., Ishikawa, H. and Honda, M., 1977, The kinetics of reactions of carbon dioxide with monoethanola nine. Diethanolamine and triethanolamine by a rapid mixing method. Chem. Eng. J. 13, 7-12.

    l Hikita, H., Asai, S., Ishikawa, H. and Honda, M., 1977b, The kinetics of reactions of carbon dioxide with monoisopropanolamine, diglycolamine and ethylenediamine by a rapid mixing method. Chem. Eng. J. 14, 27-30.

    l Hsu, C. H., Chu, H., Cho, C. M., 2003, Absorption and reaction kinetics of amines and ammonia solutions with carbon dioxide in flue gas, J. Air Waste Manage., 53 246-252.

    l Hsu, C. H., Chu, H., Cho, C. M., 2001, Absorption of Amines/Ammonia Mixtures with CO2 in Flue Gas, Proceedings of the 94th Air & Waste Management Association Annual Meeting & Exhibition, Orlando, FL, USA.

    l Hsu, C. H., Chu, H., Cho, C. M., 2000, Absorption and Reaction Kinetics of Ammonia Solutions with Carbon Dioxide in the Flue Gas, Proceedings of the 7th International Conference on Atmospheric Sciences and Applications to Air Quality and Exhibition, Taipei, Taiwan.

    l Huang, H., Shin Ger Chang, 2001 , “Method to Regenerate Ammonia for the Capture of Carbon Dioxide” ,Energy Fuel.

    l Jane, I. S. and Li, M. H.., 1997, Solubilities of CO2 and H2S in water + Diethanolamine + 2-Amino-2-methyl-1-propanol, J. chem, Eng. Data 42, 98-105.

    l Jui-Fu Shen ,Yu-Min Yang and Jer-Ru Maa,1999 ,“Promotion Mechanism for CO2 Absorption into Partially Carbonated Ammonia Solutions”, Journal of Chem. Eng. of Japan , 32, 3, 378-381.

    l Jimmy Xiao, Chih-Wei Li, Meng-Hui Li, 2000,” Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine” Chem. Eng. Sci. 55, 161-175

    l Jiun-Jie Ko, Meng-Hui Li, 2000, ” Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water”, Chem. Eng. Sci., 55, 4138-4147

    l Kawa, Y., 1995, The role of CO2 removal and disposal, Energy Convers. Mgmt. 36, 375

    l Keeth R., Blagg R., Burklin C., 2000, Coal Utility Environmental Cost Workbook User’s Manual, Version 1.0, U.S. E.P.A. Washington DC 20460

    l Kimura, N., Omata, K., Kiga, T., Takano, S. and Shikisima, S., 1995, Characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery, Energy Convers. Mgmt. 36, 805

    l Kumar P.S., Hogendoorn, J. A., Versteeg, G.F., Feron, P. H. M., 2003, Kinetics of the reaction of CO2 with aqueiue potassium salt of taurine and glycine, AIC Journal., 49, 203-213

    l Kumar P.S., Hogendoorn, J. A., Feron, P. H. M., Versteeg, G.F., 2002, New absorption liquids for the remonal of CO2 from dilute gas streams using membrane contactors, Chem. Eng. Sci., 57, 1639-1651

    l Kumar P.S., Hogendoorn, J. A., Feron, P. H. M., Versteeg, G.F., 2001, Density, viscosity, solubity and diffusivity of N2O in aqueous amino acid salt solutions, J. chem, Eng. Data 46, 1357-1361.

    l Laddha, S. S. and Danckwerts, P. V., 1981, Reaction of CO2 with ethanolamines: kinetics from gas-absorption. Chem. Eng. Sci, 36, 479-482.

    l Laddha, S. S. Diaz, J. M. and Dankwerts, P. V., 1981, The N2O analogy: the solubilities of CO2 and N2O in aqueous solutions of organic compounds. Chem. Eng. Sci. 36, 228-229.

    l Laddha, S. S. and Danckwerts, P. V., 1981, Reaction of CO2 with ethanolamines; Kinetics from gas-absorption. Chem. Eng. Sci. 36, 229-230.

    l Leder, F., 1971, The absorption of CO2 into chemically reactive solutions at high temperatures. Chem. Engng Sci. 26, 1381-1390.

    l Lee, J.W., Li, Rongfu, 2003, “Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production”, Energy Conversion and Management, 44, 1535-1546.

    l Li, M. H., and Lee, W. C., 1996, Solubility and Diffusivity of N2O and CO2 in (Diethanolamine + Methyldiethanolamine+ water) and in (Diethanolamine + 2-Amino-2-methyl-1-propanol+ water) , J. chem, Eng. Data 41, 551-556.

    l Li, M. H., and Lai, M. D., 1995, Solubility and Diffusivity of N2O and CO2 in (monoethanolamine + Methyldiethanolamine+ water) and in (monoethanolamine + 2-Amino-2-methyl-1-propanol+ water) , J. chem, Eng. Data 40, 486-492.

    l Li, M. H., and Chang, B. C., 1994, Solubilities of Carbon Dioxide in water+ monoethanolamine + 2-Amino-2-methyl-1-propanol , J. chem, Eng. Data 39, 448-452.

    l Li, M. H., and Lie, Y. C., 1994, Densities and Viscosities of solutions of monoethanolamine + Methyldiethanolamine+ water and monoethanolamine + 2-Amino-2-methyl-1-propanol+ water , J. chem, Eng. Data 39, 444-447.

    l Little, R. J., Bos, M. and Knoop, G. J., 1990a, Dissociation constants of some alkanolamines at 293, 303, 318 and 333 K. J. chem, Eng. Data 35, 276-277.

    l Little, R. J., van Swaaij, W. P. M. and Versteeg, G. F., 1990b, The kinetics of carbon dioxide with tertiary amines in aqueous solution. A.I.Ch.E. J. 36, 1633-1640.

    l Little, R. J., Filmer, B., Versteeg, G. F. and van Swaaij, W. P. M., 1991a, Modelling of simultaneous absorption of H2S and CO2 in alkanolamine solutions: the influence of parallel and consecutive reversible reactions and the coupled diffusion of ionic species. Chem. Eng. Sci. 46, 2303-2313.

    l Little, R. J., Versteeg, G. F. and van Swaaij, W. P. M., 1992, Kinetics of CO2 with primary and secondary amines in aqueous solutions-I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines. Chem. Eng. Sci. 47, 2027-2035.

    l Mackenzie L., Davis and David A., Cornwell, 1999, ” Introduction to Environmental Engineering”, 461-550.

    l Mandal, B. P., Guha, M., Biswas, A.K., and Bandyopadhyay, S. S., 2001, Removal of carbon dioxide by absorption in mixed amines:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem. Eng. Sci. 56, 6217-6224.

    l Noel De Nevers, 1998, Air Pollution Control Engineering, p 517-542.

    l Nunge, R. J. and Gill, W. N., 1963, Gas-liquid kinetics: the absorption of carbon dioxide in diethanolamine. A.I.Ch.E.J. 9, 469-474.

    l Pacheco, M. A., Kaganoi, S., Rochelle, G. T., 2000, CO2 absorption into aqueous mixtures of Dirlycolamine and methyldiethanolamine, Chem. Eng. Sci.55, 5125-5140

    l Pani, F. , Alain, G., et al., 1997, Kinetics of Absorption of CO2 in Concentrated Aqueous Methyldiethanolamine Solutions in the range 296K to 343K, J. chem, Eng. Data 42, 353-359.

    l Park, S. W., Sohn, I. J., Park, D. W. and Oh, K. J, 2003, Absorption of carbon dioxide into non-newtonian liquid. I. Effect of viscoelasticity, Sep. Sci. Technol., 38. 6. 1361-1384

    l Paul, J. and Pradier, C. M., 1994, Carbon Dioxide Chemistry: Environmental Issues. The Royal Society of Chemistry, Cambridge.

    l Penny, D. E. and Ritter, T. J., 1983, Kinetic study of the reaction between carbon dioxide and primary amines. J. chem. Soc. Faraday Trans. I 79, 2103-2109.

    l Peters M. S., and Timmerhaus K. D., 1991, Plant Design and Economics for Chemical Engineers, McGraw-Hill, Singapore

    l Pohorecki, R. and Moniuk, W., 1988, Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous elctrolyte solutions. Chem. Eng. Sci. 43, 1677-1684.

    l Polishuk, I., Wisniak, J., and Segura, H., 2001, Simultaneous prediction of the critical and sub-critical phase behavior in mixtures using equation of state I.Carbon dioxide-alkanols. Chem. Eng. Sci. 56, 6485-6510.

    l Ralph H. Weiland, John C. Dingman, D. Benjamin Cronin, and Gregory J. Browning, 1998, ” Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends”, J. chem. Eng. Data 43, 378-382.

    l Roberts, D, and Danckwerts, P. V., 1961, Kinetics of CO2 absorption in alkaline sloutions-1. Transient absorption rates and catalysis by arsenite. Chem. Eng. Sci. 17, 961-969.

    l Rodriguez Sevilla, J. M. , 1993, ” Absorption of SO2 Determination of mass tranfer coefficients in a continuous stirred-tank reactor”, International Chem. Eng., 33(1),85~91.

    l Rowely, R. L., Adams, M. E., et al., 1997, Measurement of Diffusion Coefficients Important in Modeling the Absorption Rate of Carbon Dioxide into Aqueous N-Methyldiethanolamine, J. chem, Eng. Data 42, 310-317.

    l Sada, E., Kumazawa, H., Han, Z. Q. and Matsuyama, H., 1985, Chemical kinetics of the reaction of carbon dioxide with ethanolamines in nonaqueous solvents. A.I.Ch.E. J. 31, 1297-1303.

    l Sada, E., Kumazawa, H., Osawa, Y., Mastsuura, M, and Han, Z. Q., 1986, Reaction kinetics of carbon dioxide with amines in non-aqueous solvents. Chem. Eng. J. 33, 87-95.

    l Sada, E., Kumazawa, H., Butt, M. A. and Lozano, j.e., 1977, Interfacial turbulence accompanying chemical absorption. Can. J. chem. Eng. 55, 293.

    l Sada, E. Kumazawa, H. and Butt, M. A., 1977, Solubilities of gases in aqueous solutions of amines. J. chem. Eng. 22, 277-278.

    l Sada, E. Kumazawa, H. and Butt, M. A., 1978, Solubilities and diffusivities of gases in aqueous solutions of amines. J. chem. Eng. Data 23, 161-163.

    l Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K.1993. Solubility and diffusivity of N2O and CO2 in aqueous solutions of 2-amino-2methl-1-propanol. J. chem Eng. Data 38, 78-82.

    l Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K.1995. Kinetics of CO2 into aqueous solutions of 2-amino-2methl-1-propanol. Chem Eng Sci 50, 3587-3598.

    l Sartori, G., Ho, W. S., Savage, D. W., Chludzinski.G.R. and Wiechert. S., 1987, Sterically-hindered amines for acid-gas absorption Separation Purification Methods 16, 171-200.

    l Savage, D. W. and Kim, C. J., 1985, Chemical kinetics of carbon dioxide reactions with diethanolamine and diiso-propanolamine in aqueous solutions. A.I.Ch.E. J. 31, 296-301.

    l Say, G. R., Heinzelmann, F. J., Iyengar, J. N., Savage, D.W., Bisio, A. and Sartori, G., 1984, Treating acid and sour gas: A new hindered amine concept for simultaneous removal of CO2 and H2S from gases. Chem. Eng. Prog. 10, 72-77.

    l Shale, C. C., Simpsn, D. G. , Lewis, P. S. , 1971,”Removal of Sulfur and Nitrogen Oxides from Stack Gases by Ammonia”,Chem. Eng. Prog. Symp. Ser., 67, 52.

    l Sharma, M. M., 1964, Kinetics of gas absorption. Absorption of CO2 and COS in alkaline and amine solutions. Ph. D. thesis, University of Cambridge.

    l Sharma, M. M., 1965, Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines and catalysis by Bronsted bases of the hydrolysis of COS. Trans.Faraday. Soc. 61, 681-688.

    l Sheng H. Lin, Ching T. Shyu, 1999, ” Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column”, Waste Management 19, 255-262

    l Shepherd, W. D. , 1998, “Energy Studies”,World Scientific Publishing Co. Pte. Ltd.

    l Siggia, S., Hanna, J. G. and Kervenski, I. R., 1950, Quantitative analysis of mixtures of primary, secondary, and tertiary aromatic amines. Analyt. Chem. 12, 1295-1297.

    l Song , J. H., Park, S. B., et al., 1997, Solubility of Carbon Dioxide in Monoethanolamine + EthyleneGlycol+ water and Monoethanolamine + poly(EthyleneGlycol)+ water at 333.2K, J. chem, Eng. Data 42, 143-144.

    l Song , J. H., Park, S. B., et al., 1996, Solubility of Carbon Dioxide in Monoethanolamine + EthyleneGlycol+ water and Monoethanolamine + poly(EthyleneGlycol)+ water, J. chem, Eng. Data 41, 497-499.

    l Teng, T.T. and Mather, A. E. 1989, Solubility of H2S, CO2 and their mixtures in an AMP solution. Can. J. chem. Eng. 67,846-850

    l Teng, T.T. and Mather, A. E. 1990, Solubility of CO2 in AMP solution. J. chem. Eng. Data 35,410-411

    l Teramoto, M., Ohnishi, N., Takeuchi, N., Kitada, S. and Matsuyama, H., 2003, Seperation and enrichment measurement of carbon dioxide by capillary membrane module with permeation of carrier solution. Sep. Purif. Technol. 30, 215-227

    l Teramoto, M., Takeuchi, N., Mike. T., and Matsuyama, H., 2002, Facilitated transport of CO2 through liquid membrane accompanied by permeation of carrier solution. Sep. Purif. Technol. 27, 25-31

    l Teramoto, M., Takeuchi, N., Mike. T., and Matsuyama, H., 2002, Gas seperation by liquid membrane accompanied by permeation of membrane liquid through membrane: physical transport. Sep. Purif. Technol. 24, 101-112

    l Teramoto, M., Nakatani, R., Huang, Q. and Watari, T., 1997, Measurement of Rate Constant of Reaction between Carbon Dioxide and Monoprotonated Ethyleneamine by Chemical Absorption Method. J. chem. Eng. of Japan 30,176-178

    l Teramoto, M., Nakatani, R., Huang, Q. and Watari, T., 1997, Facilitated Transport of CO2 Through Supported Liquid Membranes of various Amine Solutions- Effects of Rate and Equilibrium of Reaction between CO2 and Amine. J. chem. Eng. of Japan 30,328-335

    l Tontiwachwuthikul. P., Meisen. A. and Lim, C. J., 1991, Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions. J. chem. Eng. Data 36,130-133

    l Tontiwachwuthikul. P., Meisen. A. and Lim, C. J., 1992, CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem. Engng Sci. 47, 381-390.

    l Tseng, P. C., Ho, W. S. and Savage, D. W., 1988, Carbon dioxide absorption into promoted carbonate solutions. A.I.Ch.E. J. 34, 922-931.

    l Tung-Chien Tsai, and Meng-Hui Li, 2000, ” Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions”, J. Chem. Eng. Data, 45, 341-347

    l Versteeg, G. F. and van Swaaij, W. P. M., 1988b, Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions. J. chem. Eng. Data 33, 29-34.

    l Versteeg, G. F. and Oyevaar, M. H., 1989, The reactiion between CO2 and diethanolamine at 298K. Chem. Eng. Sci. 44, 1264-1268.

    l Versteeg, G. F. and van Swaaij, W. P. M., 1989, liquid mass transfer with parallel reversible reactions I. Absorption of CO2 into solutions of sterically indcred amines. Chem. Eng. Sci. 44, 2723-2734.

    l Wang, Y. W., and Mather, A. E., 1992, ” Solubility of N2O in Alkanolamine and in Mixing Solvents”, Chem. Eng. J., 48, 31-40

    l Welty, J. R. and Wicks, C. E. and Wilson, R. E. , 1960, ”Fundamentals of Momentum, Heat, and Mass Transfer”, Wiley, New York, 471-507.

    l Wolsky, A. M., Daniels, E. J. and Jody, B. J.,1994, CO2 capture from the flue gas of conventional fossil-fuel-fired power plant, Environ. Progress, 13,214

    l Xu, S., Otto, F. D. and Mather, A. E., 1991, Physical properties of aqueous AMP solutions J. chem. Eng. Data 36,71-75.

    l Yeon, S. H., Sea, B., Park, Y. I., Lee, K. H.,2003, Determination of mass transfer rates in PVDF and PTFE hollow fiber membrane for CO2 absorption, Sep.Sci.Technol., 38, 271-293

    l Zarzychi, R., and Chacuk, A., 1993, Absorption Fundamentals & Applications, Pergamon Press Ltd.

    l Zhang, X., Wang, J., Zhang C. F., Yang, Y. H., and Xu, J. J., 2003, Absorption rate into a MDEA aqueous solution blended with piperazine under a high CO2 partial pressure, Ind. Eng. Chem. Res. 42, 118-122.

    l Zhang, X., Zhang C. F., Qin, S. J., and Zheng, Z. S., 2001, A kinetics study on absorption of carbon dioxide into mixed aqueous solution of methyldiethanolamine and piperazine, Ind. Eng. Chem. Res. 40, 3785.

    l Zhang, X., Wang, J., Zhang C. F., Yang, Y. H., and Xu, J. J., 2001, An experimental apparatus for mimicking carbon dioxide removal and optimum concentrationa, Ind. Eng. Chem. Res. 40, 898.

    l Zioudas, A. P. and Dadach, Z., 1986, Absorption rates of carbon dioxide and hydrogen sulphide in sterically hindered amines. Chem. Eng. Sci. 41, 405-408.

    中文部分

    l 侯山林,「溫室效應問題之探討」,台灣經濟研究月刊,第14卷第8期,1991。

    l 姜善鑫,「全球氣候變遷(上)」,環境教育季刊第十六期,p1-11,1993。

    l 姜善鑫,「全球氣候變遷(下)」,環境教育季刊第十七期,p31-35,1993。

    l 姜善鑫,「森林與氣候變遷」,環境教育季刊第三十期,p2-14,1998。

    l 張耀仁,「造紙外的造福運動-因應CO2排放減量可行作法」,台灣經濟研究月刊,第22卷第6期,1999。

    l 周嫦娥,「環境與經濟的夢魘」,台灣經濟研究月刊,第21卷第3期,1998。

    l 潘守保,「以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究」,國立交通大學環工所碩士論文,民國87年6月,1998。

    l 中華民國環科協會,「鋼鐵、塑化、水泥業對CO2排放減量之因應」講習會專輯,p.1-2,民國87年7月,1998。

    l 柳中明,「全球氣候變遷對我國的衝擊」,環耕雜誌第七期,p52-59,1997

    l 許振邦,「二氧化碳排放減量的衝擊與因應」,貿易週刊第1781期,1998。

    l 陳詩叢、潘守保、葉安晉、白曛綾,「以混合醇胺溶液(MEA/AMP)去除二氧化碳氣體之填充式吸收塔設計」,國科會研究計畫NSC 88-2621-Z009-001,民國八十八年,1999。

    l 李玉鈴,「台灣二氧化碳減量之因應對策與建議」,工業簡訊第二十八卷 一期,p22-42,1998。
    l 邱崇銘,「以氨水溶液去除煙道氣中二氧化碳之反應動力研究」,成功大學環工所碩士論文,2000。

    l 施育林,「在噴霧塔中以氨水溶液去除二氧化碳之研究」,成功大學環工所碩士論文,2001。

    l 涂博維,「以亞氯酸鈉與氫氧化鈉在煙道氣中同時除硫除氮之反應動力研究」,國立成功大學環工所碩士論文, 1994。

    l 李旂緯,「同時吸收二氧化硫與一氧化氮之研究」,中原大學化工所碩士論文」,1987。

    l 廖彥智編譯,「有機化學」,高立出版,1999。

    l 朱信、徐偉傑、簡聰文,「南高屏地區空氣污染總量管制規劃:氮氧化物控制技術、效率、及成本資料調查分析」,2000

    l 成功大學環境研究中心,「高雄市固定污染源氮氧化物排放減量輔導研究」,1998

    l 吳清文,「空氣污染防制設備的基本設計與成本預估模式」,成功大學環境工程研究所碩士論文,1998

    l 楊斐喬,「二氧化碳之分離及捕集,民生化工產業溫室氣體減量報導」,第7期,2000。

    l 廖培欣,「二氧化碳液體在海洋中的溶解之研究」,國立成功大學化學工程所碩士論文,1999。

    l 顧洋,「氣候變遷對工業發展之影響,地球環境變遷-地球溫暖化、溫室效應氣體對策研討會論文集」,pp.99-103,1995。

    l 李忠達,「氫氧化鈣與二氧化碳反應之反應動力之研究」,國立成功大學環境工程所碩士論文,1996。

    l 吳哲次,「都市焚化爐廢氣中二氧化碳減之探討」,國立臺灣大學環境工程學研究所碩士,2001。

    l 康育豪,「深海掩埋液態CO2技術之最佳注入深度及液滴大小探討」,國立交通大學環境工程所碩士論文,2000。

    l 陳重修,「二氧化碳與二氧化硫整合性控制技術之研究」,國立臺灣大學環境工程學研究所碩士,2000。

    l 康城工程顧問公司,「硝煙、己二酸、氨、煉鋼及非鐵金屬鑄造等業別及排放管制計畫:期中報告」,行政院環保署,1998

    下載圖示 校內:2004-08-05公開
    校外:2004-08-05公開
    QR CODE