| 研究生: |
鄭婷方 Cheng, Ting-fang |
|---|---|
| 論文名稱: |
藉由生物資訊學及細胞學分析方法探討C型肝炎病毒五端非轉譯區與非結構蛋白2的共同演變關係 Study on the co-evolutionary relationship between 5’-untranslated region and non-structural protein-2 of hepatitis C virus by bioinformatic and cell-based analysis |
| 指導教授: |
張定宗
Chang, Ting-tsung 楊孔嘉 Young, Kung-chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | C型肝炎病毒 、生物資訊 、五端非轉譯區 、非結構蛋白2 、共同演化 |
| 外文關鍵詞: | co-evolution, bioinformatics, NS2, 5'UTR, HCV |
| 相關次數: | 點閱:135 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
C型肝炎病毒(HCV)是引發慢性肝炎、肝硬化及肝癌的一個主要成因。HCV的非結構蛋白5B(NS5B)可以轉譯出一個以RNA為模版進行複製的RNA聚合酶(RdRp),但是這樣的聚合酶在病毒複製的過程中卻缺乏了校正的功能。由於NS5B蛋白的特性,導致HCV具有很高的基因歧異度,並可發現在慢性感染HCV的病人體中有許多類種(Quasispecies)的存在。根據這些發現,科學家們試著去探討在C型肝炎病毒基因體上出現的變異點以及這些變異點對病毒致病力與抗病毒治療的一些影響。在此研究中,我們從Los Alomas HCV資料庫下載了225條存在於病人體中的HCV全長序列,並利用生物資訊軟體Weka其中的關連法則(Association rule)尋找發生在HCV基因體的非轉譯區(5’UTR and 3’UTR)及非結構蛋白2、3、5B(NS2, NS3, NS5B)其中的共同演化現象(co-evolutionary effects)。從結果中,我們找出了133組共同演化配對(co-evolutionary pair)。為了探討這些共同變異配對對於C型肝炎病毒複製能力的影響,我們研究了存在於5’UTR核苷酸第243位點由鳥嘌呤(Guanine)變成腺嘌呤(Adenine)配對NS2氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的交互影響,並利用HCV次基因複製子(Subgenomic replicon)pFKI341Pi Luc/NS2-3’/ET來進行研究。從結果中,我們發現到單獨出現非結構蛋白2(NS2)其氨基酸第76個位置由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)時,subgenomic replicon的複製能力會顯著降低。然而,假如同時再置換位於5’UTR核苷酸第243位點由鳥糞嘌呤(Guanine)變成腺嘌呤(Adenine),則會回復其複製能力。除此之外,單獨置換5’UTR核苷酸第243位點由鳥糞嘌呤(Guanine)為腺嘌呤(Adenine),對於subgenomic replicons pFKI341Pi Luc/NS2-3’/ET和pFKI341Pi Luc/NS3-3’/ET的複製能力沒有顯著影響。從置換5’UTR核苷酸第243位點為胞嘧啶(Cytosine)及胸腺嘧啶(Thymidine)的結果中,我們發現,將5’UTR第243位點置換成胞嘧啶(Cytosine)會降低一半subgenomic replicon正常的複製能力; 將5’UTR第243位點置換成胸腺嘧啶(Thymidine),subgenomic replicon 的複製能力則會幾乎消失殆盡。為了研究5’UTR 核苷酸第243位點和NS2氨基酸第76位點的交互作用,我們利用了RNA免疫沈澱法將會產生交互作用的RNA從表現有FKI341Pi Luc/NS3-3’/ET及NS2蛋白的細胞株中粹取出來。由結果可知,帶有氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的NS2蛋白,會和HCV subgenomic replicons的RNAs有交互作用。由此可知,結合帶有氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的NS2蛋白可能會阻斷HCV RNAs的正常折疊而降低其複製的能力。接下來,我們更建構了帶有螢火蟲冷光酵素基因(Firefly luciferae gene)及新酵素磷酸轉移酶基因(Neomycin phosphotransferase gene)融合蛋白(Fusion protein)的subgenomic replicons,並將此融合蛋白命名為Feo 蛋白,再藉由這種subgenomic replicons來研究適應性突變(Adaptive mutation)在細胞培養中的產生情形。經由篩選後,我們放大並比對包含5’UTR到NS2的序列。然而,我們並沒有發現到有符合co-evolutionary pair的adaptive mutations出現。總結來說,5’UTR第243位點由鳥嘌呤(Guanine)變成腺嘌呤(Adenine)配對NS2氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的共同演化配對可能是一組和複製相關並存在感染HCV的病人體中的共同演化配對。
Hepatitis C virus (HCV) is one of the major etiologies to cause chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The nonstructural (NS) protein 5B of HCV is an RNA-dependent RNA polymerase lacking full proofreading activity during replication. Because of the characteristics of NS5B, HCV demonstrates great genetic diversity and viral quasispecies in individuals chronically infected with HCV. Consequently, numerous efforts have been put to investigate the emerging of mutations appearing on HCV genome, as well as the effects of these mutations toward viral virulence and efficacy of antiviral therapeutics. In this study, by utilizing the Weka bioinformatic software, we used the association rule to discern “co-evolutionary effects” between the untranslated regions (5’UTR and 3’UTR) and the NS proteins (NS2, NS3, NS5B) of 225 full-length genomic sequences from patient samples retrieved from Los Alamos HCV database. The results showed that there were 133 co-evolutionary pairs predicted by the association rule. To investigate whether the putative co-evolutionary pairs play roles in HCV replication, we investigated further the mutual effects between 5’UTR ntG243A and NS2 aaI76V in the HCV pFKI341Pi Luc/NS2-3’/ET subgenomic replicon. The experiments demonstrated that the single mutation of NS2 aaI76V significantly impaired HCV replication activity. However, double mutations of 5’UTR ntG243A and NS2 aaI76V could restore the replication activity, while, the single mutation of 5’UTR ntG243A had slight or no impact on the activities of replicons pFKI341Pi Luc/NS2-3’/ET and pFKI341Pi Luc/NS3-3’/ET, respectively. In addition, the replacement of 5’UTR ntG243 to C reduced HCV replication to half and the substitution of 5’UTR ntG243 to T fully eliminated the replication activity. To investigate whether interaction exists between 5’UTR nt243 and NS2 aa76, RNA-immunoprecipitation assay was conducted to pull down RNAs from cHuh7/Rep Pi Feo/NS3-3’/ET with ectopic expressed NS2 proteins. The result indicated that only NS2-I76V mutant protein could interact with HCV replicon RNA, suggesting that the replication process might be down-regulated by the binding of NS2-I76V protein to HCV RNAs. Furthermore, we constructed subgenomic replicons with a fusion protein of firefly luciferase and neomycin phosphotransferase (Feo) to study the adaptive mutations generated in cultivated cells. After selection, we amplified and sequenced the segment spanning 5’UTR to NS2. However, co-evolutionary pair between 5’UTR nt243 and NS2 aa76 was undetectable under the in vitro selection. In conclusion, 5’UTR ntG243A and NS2 aaI76V might be one of the replication-dependent co-evolutionary events, which existed in HCV from patient samples.
1. Dehesa-Violante, M. & Nunez-Nateras, R.
Epidemiology of hepatitis virus B and C.
Arch Med Res 38, 606-11 (2007).
2. Alter, M. J. Epidemiology of viral
hepatitis and HIV co-infection. J
Hepatol 44, S6-9 (2006).
3. Global burden of disease (GBD) for
hepatitis C. J Clin Pharmacol 44, 20-9
(2004).
4. Sun, C. A. et al. Persistent
hyperendemicity of hepatitis C virus
infection in Taiwan: the important role
of iatrogenic risk factors. J Med Virol
65, 30-4 (2001).
5. Alter, M. J. Epidemiology of hepatitis
C virus infection. World J Gastroenterol
13, 2436-41 (2007).
6. Williams, R. Global challenges in liver
disease. Hepatology 44, 521-6 (2006).
7. Le Guillou-Guillemette, H. et al. Genetic
diversity of the hepatitis C virus: impact
and issues in the antiviral therapy. World
J Gastroenterol 13, 2416-26 (2007).
8. Ramia, S. & Eid-Fares, J. Distribution of
hepatitis C virus genotypes in the Middle
East. Int J Infect Dis 10, 272-7 (2006).
9. Lee, C. M. et al. Viral etiology of
hepatocellular carcinoma and HCV geno-
types in Taiwan. Intervirology 49, 76-81
(2006).
10. Choo, Q. L. et al. Isolation of a cDNA
clone derived from a blood-borne non-A,
non-B viral hepatitis genome. Science 244,
359-62 (1989).
11. Moradpour, D., Penin, F. & Rice, C. M.
Replication of hepatitis C virus. Nat Rev
Microbiol 5, 453-63 (2007).
12. Bukh, J., Purcell, R. H. & Miller, R. H.
Sequence analysis of the 5' noncoding region
of hepatitis C virus. Proc Natl Acad Sci U S
A 89, 4942-6 (1992).
13. Honda, M., Beard, M. R., Ping, L. H. & Lemon,
S. M. A phylogenetically conserved stem-loop
structure at the 5' border of the internal
ribosome entry site of hepatitis C virus is
required for cap-independent viral
translation. J Virol 73, 1165-74 (1999).
14. Spahn, C. M. et al. Hepatitis C virus IRES
RNA-induced changes in the con-formation of
the 40s ribosomal subunit. Science 291,
1959-62 (2001).
15. Friebe, P., Lohmann, V., Krieger, N. &
Bartenschlager, R. Sequences in the 5'
nontranslated region of hepatitis C virus
required for RNA replication. J Virol 75,
12047-57 (2001).
16. Jopling, C. L., Yi, M., Lancaster, A. M.,
Lemon, S. M. & Sarnow, P. Modula-tion of
hepatitis C virus RNA abundance by a liver-
specific MicroRNA. Science 309, 1577-81
(2005).
17. Lerat, H., Shimizu, Y. K. & Lemon, S. M.
Cell type-specific enhancement of hepatitis
C virus internal ribosome entry site
-directed translation due to 5'
nontranslated region substitutions selected
during passage of virus in lym-phoblastoid
cells. J Virol 74, 7024-31 (2000).
18. Laporte, J. et al. Differential distribution
and internal translation efficiency of
hepatitis C virus quasispecies present in
dendritic and liver cells. Blood 101, 52-7
(2003).
19. Kolykhalov, A. A., Feinstone, S. M. & Rice,
C. M. Identification of a highly conserved
sequence element at the 3' terminus of
hepatitis C virus genome RNA. J Virol 70,
3363-71 (1996).
20. Tanaka, T., Kato, N., Cho, M. J., Sugiyama,
K. & Shimotohno, K. Structure of the 3'
terminus of the hepatitis C virus genome.
J Virol 70, 3307-12 (1996).
21. Yi, M. & Lemon, S. M. 3' nontranslated RNA
signals required for replication of hepatitis
C virus RNA. J Virol 77, 3557-68 (2003).
22. Shavinskaya, A., Boulant, S., Penin, F.,
McLauchlan, J. & Bartenschlager, R. The lipid
droplet binding domain of hepatitis C virus
core protein is a major determinant for
efficient virus assembly. J Biol Chem 282,
37158-69 (2007).
23. McLauchlan, J. Properties of the hepatitis C
virus core protein: a structural protein that
modulates cellular processes. J Viral Hepat 7,
2-14 (2000).
24. Suzuki, R. et al. Nuclear localization of the
truncated hepatitis C virus core protein with
its hydrophobic C terminus deleted. J Gen Virol
76 ( Pt 1), 53-61 (1995).
25. Suzuki, T., Ishii, K., Aizaki, H. & Wakita, T.
Hepatitis C viral life cycle. Adv Drug Deliv
Rev 59, 1200-12 (2007).
26. Op De Beeck, A., Cocquerel, L. & Dubuisson, J.
Biogenesis of hepatitis C vi-rus envelope
glycoproteins. J Gen Virol 82, 2589-95 (2001).
27. Bartosch, B. et al. Cell entry of hepatitis C
virus requires a set of co-receptors that
include the CD81 tetraspanin and the SR-B1
scavenger receptor. J Biol Chem 278, 41624-30
(2003).
28. Weiner, A. J. et al. Evidence for immune selection
of hepatitis C virus (HCV) putative envelope
glycoprotein variants: potential role in chronic
HCV infec-tions. Proc Natl Acad Sci U S A 89,
3468-72 (1992).
29. Carrere-Kremer, S. et al. Subcellular
localization and topology of the p7 poly-peptide
of hepatitis C virus. J Virol 76, 3720-30 (2002).
30. Pavlovic, D. et al. The hepatitis C virus p7
protein forms an ion channel that is inhibited
by long-alkyl-chain iminosugar derivatives. Proc
Natl Acad Sci U S A 100, 6104-8 (2003).
31. Sakai, A. et al. The p7 polypeptide of hepatitis
C virus is critical for infectivity and contains
functionally important genotype-specific
sequences. Proc Natl Acad Sci U S A 100, 11646-51
(2003).
32. Jones, C. T., Murray, C. L., Eastman, D. K.,
Tassello, J. & Rice, C. M. Hepati-tis C virus p7
and NS2 proteins are essential for production of
infectious virus. J Virol 81, 8374-83 (2007).
33. Yamaga, A. K. & Ou, J. H. Membrane topology of
the hepatitis C virus NS2 protein. J Biol Chem
277, 33228-34 (2002).
34. Grakoui, A., McCourt, D. W., Wychowski, C.,
Feinstone, S. M. & Rice, C. M. A second hepatitis
C virus-encoded proteinase. Proc Natl Acad Sci
U S A 90, 10583-7 (1993).
35. Hijikata, M. et al. Two distinct proteinase
activities required for the processing of a
putative nonstructural precursor protein of
hepatitis C virus. J Virol 67, 4665-75 (1993).
36. Lorenz, I. C., Marcotrigiano, J., Dentzer, T. G.
& Rice, C. M. Structure of the catalytic domain of
the hepatitis C virus NS2-3 protease. Nature 442,
831-5 (2006).
37. Lohmann, V. et al. Replication of subgenomic
hepatitis C virus RNAs in a he-patoma cell line.
Science 285, 110-3 (1999).
38. Franck, N., Le Seyec, J., Guguen-Guillouzo, C. &
Erdtmann, L. Hepatitis C virus NS2 protein is
phosphorylated by the protein kinase CK2 and
targeted for degradation to the proteasome. J
Virol 79, 2700-8 (2005).
39. Pietschmann, T. et al. Construction and
characterization of infectious intrage-notypic and
intergenotypic hepatitis C virus chimeras. Proc
Natl Acad Sci U S A 103, 7408-13 (2006).
40. Kim, D. W., Gwack, Y., Han, J. H. & Choe, J.
C-terminal domain of the hepa-titis C virus NS3
protein contains an RNA helicase activity. Biochem
Biophys Res Commun 215, 160-6 (1995).
41. Kim, J. L. et al. Crystal structure of the
hepatitis C virus NS3 protease domain complexed
with a synthetic NS4A cofactor peptide. Cell 87,
343-55 (1996).
42. Gale, M., Jr. & Foy, E. M. Evasion of
intracellular host defence by hepatitis C virus.
Nature 436, 939-45 (2005).
43. De Francesco, R. & Migliaccio, G. Challenges and
successes in developing new therapies for
hepatitis C. Nature 436, 953-60 (2005).
44. Serebrov, V. & Pyle, A. M. Periodic cycles of RNA
unwinding and pausing by hepatitis C virus NS3
helicase. Nature 430, 476-80 (2004).
45. Levin, M. K., Gurjar, M. & Patel, S. S. A
Brownian motor mechanism of translocation and
strand separation by hepatitis C virus helicase.
Nat Struct Mol Biol 12, 429-35 (2005).
46. Dumont, S. et al. RNA translocation and unwinding
mechanism of HCV NS3 helicase and its coordination
by ATP. Nature 439, 105-8 (2006).
47. Jennings, T. A. et al. RNA unwinding activity of
the hepatitis C virus NS3 he-licase is modulated
by the NS5B polymerase. Biochemistry 47, 1126-35
(2008).
48. Hugle, T. et al. The hepatitis C virus
nonstructural protein 4B is an integral
endoplasmic reticulum membrane protein. Virology
284, 70-81 (2001).
49. Lundin, M., Monne, M., Widell, A., Von Heijne, G.
& Persson, M. A. Topology of the membrane-
associated hepatitis C virus protein NS4B. J
Virol 77, 5428-38 (2003).
50. Elazar, M., Liu, P., Rice, C. M. & Glenn, J. S.
An N-terminal amphipathic helix in hepatitis C
virus (HCV) NS4B mediates membrane association,
correct localization of replication complex
proteins, and HCV RNA replication. J Virol 78,
11393-400 (2004).
51. Egger, D. et al. Expression of hepatitis C virus
proteins induces distinct mem-brane alterations
including a candidate viral replication complex.
J Virol 76, 5974-84 (2002).
52. Gao, L., Aizaki, H., He, J. W. & Lai, M. M.
Interactions between viral non-structural
proteins and host protein hVAP-33 mediate the
formation of hepati-tis C virus RNA replication
complex on lipid raft. J Virol 78, 3480-8 (2004).
53. Lohmann, V., Hoffmann, S., Herian, U., Penin, F.
& Bartenschlager, R. Viral and cellular
determinants of hepatitis C virus RNA replication
in cell culture. J Virol 77, 3007-19 (2003).
54. Einav, S., Elazar, M., Danieli, T. & Glenn, J. S.
A nucleotide binding motif in hepatitis C virus
(HCV) NS4B mediates HCV RNA replication. J Virol
78, 11288-95 (2004).
55. Koch, J. O. & Bartenschlager, R. Modulation of
hepatitis C virus NS5A hyperphosphorylation by
nonstructural proteins NS3, NS4A, and NS4B. J
Virol 73, 7138-46 (1999).
56. Florese, R. H., Nagano-Fujii, M., Iwanaga, Y.,
Hidajat, R. & Hotta, H. Inhibition of protein
synthesis by the nonstructural proteins NS4A and
NS4B of he-patitis C virus. Virus Res 90, 119-31
(2002).
57. Piccininni, S. et al. Modulation of the hepatitis
C virus RNA-dependent RNA polymerase activity by
the non-structural (NS) 3 helicase and the NS4B
membrane protein. J Biol Chem 277, 45670-9 (2002).
58. Tellinghuisen, T. L., Marcotrigiano, J.,
Gorbalenya, A. E. & Rice, C. M. The NS5A protein
of hepatitis C virus is a zinc metalloprotein. J
Biol Chem 279, 48576-87 (2004).
59. Tellinghuisen, T. L., Foss, K. L., Treadaway, J.
C. & Rice, C. M. Identification of residues
required for RNA replication in domains II and
III of the hepatitis C virus NS5A protein. J
Virol 82, 1073-83 (2008).
60. Gale, M. J., Jr. et al. Evidence that hepatitis
C virus resistance to interferon is mediated
through repression of the PKR protein kinase by
the nonstructural 5A protein. Virology 230,
217-27 (1997).
61. Blight, K. J., Kolykhalov, A. A. & Rice, C. M.
Efficient initiation of HCV RNA replication in
cell culture. Science 290, 1972-4 (2000).
62. Krieger, N., Lohmann, V. & Bartenschlager, R.
Enhancement of hepatitis C virus RNA replication
by cell culture-adaptive mutations. J Virol 75,
4614-24 (2001).
63. Lohmann, V., Korner, F., Dobierzewska, A. &
Bartenschlager, R. Mutations in hepatitis C virus
RNAs conferring cell culture adaptation. J Virol
75, 1437-49 (2001).
64. Moradpour, D. et al. Membrane association of the
RNA-dependent RNA po-lymerase is essential for
hepatitis C virus RNA replication. J Virol 78,
13278-84 (2004).
65. Lesburg, C. A. et al. Crystal structure of the
RNA-dependent RNA polymerase from hepatitis C
virus reveals a fully encircled active site.
Nat Struct Biol 6, 937-43 (1999).
66. Butcher, S. J., Grimes, J. M., Makeyev, E. V.,
Bamford, D. H. & Stuart, D. I. A mechanism for
initiating RNA-dependent RNA polymerization.
Nature 410, 235-40 (2001).
67. Simmonds, P. et al. Classification of hepatitis
C virus into six major genotypes and a series
of subtypes by phylogenetic analysis of the NS5
region. J Gen Virol 74 ( Pt 11), 2391-9 (1993).
68. Matsuo, E. et al. Characterization of HCV-like
particles produced in a human hepatoma cell line
by a recombinant baculovirus. Biochem Biophys
Res Commun 340, 200-8 (2006).
69. Ezelle, H. J., Markovic, D. & Barber, G. N.
Generation of hepatitis C virus-like particles
by use of a recombinant vesicular stomatitis
virus vector. J Virol 76, 12325-34 (2002).
70. Matsuura, Y. et al. Characterization of
pseudotype VSV possessing HCV envelope proteins.
Virology 286, 263-75 (2001).
71. Wakita, T. et al. Production of infectious
hepatitis C virus in tissue culture from a
cloned viral genome. Nat Med 11, 791-6 (2005).
72. Lindenbach, B. D. et al. Complete replication
of hepatitis C virus in cell cul-ture. Science
309, 623-6 (2005).
73. Pileri, P. et al. Binding of hepatitis C virus
to CD81. Science 282, 938-41 (1998).
74. Scarselli, E. et al. The human scavenger receptor
class B type I is a novel can-didate receptor for
the hepatitis C virus. Embo J 21, 5017-25 (2002).
75. Agnello, V., Abel, G., Elfahal, M., Knight, G. B.
& Zhang, Q. X. Hepatitis C virus and other
flaviviridae viruses enter cells via low density
lipoprotein re-ceptor. Proc Natl Acad Sci U S A
96, 12766-71 (1999).
76. Evans, M. J. et al. Claudin-1 is a hepatitis C
virus co-receptor required for a late step in
entry. Nature 446, 801-5 (2007).
77. Blanchard, E. et al. Hepatitis C virus entry
depends on clathrin-mediated endocytosis. J
Virol 80, 6964-72 (2006).
78. Koutsoudakis, G. et al. Characterization of the
early steps of hepatitis C virus infection by
using luciferase reporter viruses. J Virol 80,
5308-20 (2006).
79. Dubuisson, J., Penin, F. & Moradpour, D.
Interaction of hepatitis C virus proteins with
host cell membranes and lipids. Trends Cell Biol
12, 517-23 (2002).
80. Salonen, A., Ahola, T. & Kaariainen, L. Viral RNA
replication in association with cellular
membranes. Curr Top Microbiol Immunol 285, 139-73
(2005).
81. Quinkert, D., Bartenschlager, R. & Lohmann, V.
Quantitative analysis of the hepatitis C virus
replication complex. J Virol 79, 13594-605 (2005).
82. Tanaka, Y. et al. Selective binding of hepatitis
C virus core protein to synthetic oligonucleotides
corresponding to the 5' untranslated region of the
viral genome. Virology 270, 229-36 (2000).
83. Blight, K. J., McKeating, J. A. & Rice, C. M.
Highly permissive cell lines for subgenomic and
genomic hepatitis C virus RNA replication. J Virol
76, 13001-14 (2002).
84. Friebe, P., Boudet, J., Simorre, J. P. &
Bartenschlager, R. Kissing-loop interaction in the
3' end of the hepatitis C virus genome essential
for RNA replication. J Virol 79, 380-92 (2005).
85. Bartenschlager, R., Frese, M. & Pietschmann, T.
Novel insights into hepatitis C virus replication
and persistence. Adv Virus Res 63, 71-180 (2004).
86. Blight, K. J., McKeating, J. A., Marcotrigiano,
J. & Rice, C. M. Efficient replication of
hepatitis C virus genotype 1a RNAs in cell
culture. J Virol 77, 3181-90 (2003).
87. Kato, T. et al. Efficient replication of the
genotype 2a hepatitis C virus subgenomic replicon.
Gastroenterology 125, 1808-17 (2003).
88. Zhu, Q., Guo, J. T. & Seeger, C. Replication of
hepatitis C virus subgenomes in nonhepatic
epithelial and mouse hepatoma cells. J Virol 77,
9204-10 (2003).
89. Moradpour, D. et al. Insertion of green
fluorescent protein into nonstructural protein 5A
allows direct visualization of functional
hepatitis C virus replication complexes. J Virol
78, 7400-9 (2004).
90. Brass, V., Moradpour, D. & Blum, H. E. Molecular
virology of hepatitis C virus (HCV): 2006 update.
Int J Med Sci 3, 29-34 (2006).
91. Yi, M., Villanueva, R. A., Thomas, D. L., Wakita,
T. & Lemon, S. M. Production of infectious
genotype 1a hepatitis C virus (Hutchinson strain)
in cultured human hepatoma cells. Proc Natl Acad
Sci U S A 103, 2310-5 (2006).
92. Combet, C. et al. euHCVdb: the European hepatitis
C virus database. Nucleic Acids Res 35, D363-6
(2007).
93. Kuiken, C., Hraber, P., Thurmond, J. & Yusim, K.
The hepatitis C sequence database in Los Alamos.
Nucleic Acids Res 36, D512-6 (2008).
94. Kuiken, C. et al. Hepatitis C databases,
principles and utility to researchers. Hepatology
43, 1157-65 (2006).
95. Ian H. Witten, E. F. Data Mining: Practical
Machine Learning Tools and Techniques (Second
Edition) (Elsevier, London, 2005).
96. Edelstein, H. A. Introduction to data mining and
knowledge discovery (Two Crow Corporation, 2005).
97. Kamber, J. H. a. M. Data Mining: Concepts and
Techniques, 2nd ed. (Morgan Kaufmann 2006).
98. Usama Fayyad, G. P.-S., and Padhraic Smyth. in AI
MAGAZINE 37-54 (1996).
99. Beerenwinkel, N. et al. Diversity and complexity
of HIV-1 drug resistance: a bioinformatics
approach to predicting phenotype from genotype.
Proc Natl Acad Sci U S A 99, 8271-6 (2002).
100. G. Elizabeth, A. V., C. Francisco. Using neural
networks for differential diag-nosis for Alzheimer
disease and Vascular dementia. Expert Systems with
Applications 14, 219-225 (1998).
101. Jerome Friedman, T. H., and Robert Tibshirani The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction (2001).
102. Rakesh Agrawal, T. I., Arun Swami. Database
Mining: A Performance Perspective. IEEE
Transactions on Knowledge and Data Engineering 5,
914-925 (1993).
103. Rakesh Agrawal, T. I., Arun Swami. in ACM SIGMOD
International Confe-rence on Management of Data
(1993).
104. Frank, E., Hall, M., Trigg, L., Holmes, G. &
Witten, I. H. Data mining in bioinformatics using
Weka. Bioinformatics 20, 2479-81 (2004).
105. Kretschmann, E., Fleischmann, W. & Apweiler, R.
Automatic rule generation for protein annotation
with the C4.5 data mining algorithm applied on
SWISS-PROT. Bioinformatics 17, 920-6 (2001).
106. Tobler, J. B., Molla, M. N., Nuwaysir, E. F.,
Green, R. D. & Shavlik, J. W. Evaluating machine
learning approaches for aiding probe selection for
gene-expression arrays. Bioinformatics 18 Suppl 1,
S164-71 (2002).
107. Li, J., Liu, H., Downing, J. R., Yeoh, A. E. &
Wong, L. Simple rules underly-ing gene expression
profiles of more than six subtypes of acute
lymphoblastic leukemia (ALL) patients.
Bioinformatics 19, 71-8 (2003).
108. Taylor, J., King, R. D., Altmann, T. & Fiehn, O.
Application of metabolomics to plant genotype
discrimination using statistics and machine
learning. Bioin-formatics 18 Suppl 2, S241-8
(2002).
109. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J.
K. & Pease, L. R. Site-directed mutagenesis by
overlap extension using the polymerase chain
reaction. Gene 77, 51-9 (1989).
110. Yokota, T. et al. Inhibition of intracellular
hepatitis C virus replication by syn-thetic and
vector-derived small interfering RNAs. EMBO Rep 4,
602-8 (2003).
111. Zielinski, J. et al. In vivo identification of
ribonucleoprotein-RNA interactions. Proc Natl Acad
Sci U S A 103, 1557-62 (2006).
112. Fried, M. W. et al. Peginterferon alfa-2a plus
ribavirin for chronic hepatitis C virus infection.
N Engl J Med 347, 975-82 (2002).
113. Baker, D. E. Pegylated interferon plus ribavirin
for the treatment of chronic hepatitis C. Rev
Gastroenterol Disord 3, 93-109 (2003).
114. Yi, M., Ma, Y., Yates, J. & Lemon, S. M.
Compensatory mutations in E1, p7, NS2, and NS3
enhance yields of cell culture-infectious
intergenotypic chimeric hepatitis C virus. J
Virol 81, 629-38 (2007).
115. Hwang, D. R., Lai, H. Y., Chang, M. L., Hsu, J.
T. & Yeh, C. T. Emergence of mutation clusters in
the HCV genome during sequential viral passages in
Sip-L expressing cells. J Virol Methods 129, 170-7
(2005).
116. Okamoto, T. et al. A single-amino-acid mutation
in hepatitis C virus NS5A disrupting FKBP8
interaction impairs viral replication. J Virol 82,
3480-9 (2008).
117. Tanaka, M. et al. Single-point mutations of
hepatitis C virus NS3 that impair p53 interaction
and anti-apoptotic activity of NS3. Biochem
Biophys Res Commun 340, 792-9 (2006).
118. Gosert, R. et al. Characterization of
nonstructural protein membrane anchor deletion
mutants expressed in the context of the hepatitis
C virus polyprotein. J Virol 79, 7911-7 (2005).
119. Pelemans, H. et al. Mutations at amino acid
positions 63, 189, and 396 of human
immunodeficiency virus type 1 reverse
transcriptase (RT) partially restore the DNA
polymerase activity of a Trp229Tyr
mutant RT. Virology 287, 143-50 (2001).
120. Delaney, W. E. t. et al. The hepatitis B virus
polymerase mutation rtV173L is selected during
lamivudine therapy and enhances viral replication
in vitro. J Virol 77, 11833-41 (2003).
121. Moratorio, G. et al. Evolution of naturally
occurring 5'non-coding region variants of
Hepatitis C virus in human populations of the
South American region. Virol J 4, 79 (2007).
122. Roque-Afonso, A. M. et al. Compartmentalization
of hepatitis C virus geno-types between plasma and
peripheral blood mononuclear cells. J Virol 79,
6349-57 (2005).
123. Randall, G. et al. Cellular cofactors affecting
hepatitis C virus infection and replication. Proc
Natl Acad Sci U S A 104, 12884-9 (2007).