簡易檢索 / 詳目顯示

研究生: 鄭婷方
Cheng, Ting-fang
論文名稱: 藉由生物資訊學及細胞學分析方法探討C型肝炎病毒五端非轉譯區與非結構蛋白2的共同演變關係
Study on the co-evolutionary relationship between 5’-untranslated region and non-structural protein-2 of hepatitis C virus by bioinformatic and cell-based analysis
指導教授: 張定宗
Chang, Ting-tsung
楊孔嘉
Young, Kung-chia
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 99
中文關鍵詞: C型肝炎病毒生物資訊五端非轉譯區非結構蛋白2共同演化
外文關鍵詞: co-evolution, bioinformatics, NS2, 5'UTR, HCV
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C型肝炎病毒(HCV)是引發慢性肝炎、肝硬化及肝癌的一個主要成因。HCV的非結構蛋白5B(NS5B)可以轉譯出一個以RNA為模版進行複製的RNA聚合酶(RdRp),但是這樣的聚合酶在病毒複製的過程中卻缺乏了校正的功能。由於NS5B蛋白的特性,導致HCV具有很高的基因歧異度,並可發現在慢性感染HCV的病人體中有許多類種(Quasispecies)的存在。根據這些發現,科學家們試著去探討在C型肝炎病毒基因體上出現的變異點以及這些變異點對病毒致病力與抗病毒治療的一些影響。在此研究中,我們從Los Alomas HCV資料庫下載了225條存在於病人體中的HCV全長序列,並利用生物資訊軟體Weka其中的關連法則(Association rule)尋找發生在HCV基因體的非轉譯區(5’UTR and 3’UTR)及非結構蛋白2、3、5B(NS2, NS3, NS5B)其中的共同演化現象(co-evolutionary effects)。從結果中,我們找出了133組共同演化配對(co-evolutionary pair)。為了探討這些共同變異配對對於C型肝炎病毒複製能力的影響,我們研究了存在於5’UTR核苷酸第243位點由鳥嘌呤(Guanine)變成腺嘌呤(Adenine)配對NS2氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的交互影響,並利用HCV次基因複製子(Subgenomic replicon)pFKI341Pi Luc/NS2-3’/ET來進行研究。從結果中,我們發現到單獨出現非結構蛋白2(NS2)其氨基酸第76個位置由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)時,subgenomic replicon的複製能力會顯著降低。然而,假如同時再置換位於5’UTR核苷酸第243位點由鳥糞嘌呤(Guanine)變成腺嘌呤(Adenine),則會回復其複製能力。除此之外,單獨置換5’UTR核苷酸第243位點由鳥糞嘌呤(Guanine)為腺嘌呤(Adenine),對於subgenomic replicons pFKI341Pi Luc/NS2-3’/ET和pFKI341Pi Luc/NS3-3’/ET的複製能力沒有顯著影響。從置換5’UTR核苷酸第243位點為胞嘧啶(Cytosine)及胸腺嘧啶(Thymidine)的結果中,我們發現,將5’UTR第243位點置換成胞嘧啶(Cytosine)會降低一半subgenomic replicon正常的複製能力; 將5’UTR第243位點置換成胸腺嘧啶(Thymidine),subgenomic replicon 的複製能力則會幾乎消失殆盡。為了研究5’UTR 核苷酸第243位點和NS2氨基酸第76位點的交互作用,我們利用了RNA免疫沈澱法將會產生交互作用的RNA從表現有FKI341Pi Luc/NS3-3’/ET及NS2蛋白的細胞株中粹取出來。由結果可知,帶有氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的NS2蛋白,會和HCV subgenomic replicons的RNAs有交互作用。由此可知,結合帶有氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的NS2蛋白可能會阻斷HCV RNAs的正常折疊而降低其複製的能力。接下來,我們更建構了帶有螢火蟲冷光酵素基因(Firefly luciferae gene)及新酵素磷酸轉移酶基因(Neomycin phosphotransferase gene)融合蛋白(Fusion protein)的subgenomic replicons,並將此融合蛋白命名為Feo 蛋白,再藉由這種subgenomic replicons來研究適應性突變(Adaptive mutation)在細胞培養中的產生情形。經由篩選後,我們放大並比對包含5’UTR到NS2的序列。然而,我們並沒有發現到有符合co-evolutionary pair的adaptive mutations出現。總結來說,5’UTR第243位點由鳥嘌呤(Guanine)變成腺嘌呤(Adenine)配對NS2氨基酸第76位點由異白胺酸(Isoleucine)轉變為纈胺酸(Valine)的共同演化配對可能是一組和複製相關並存在感染HCV的病人體中的共同演化配對。

    Hepatitis C virus (HCV) is one of the major etiologies to cause chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The nonstructural (NS) protein 5B of HCV is an RNA-dependent RNA polymerase lacking full proofreading activity during replication. Because of the characteristics of NS5B, HCV demonstrates great genetic diversity and viral quasispecies in individuals chronically infected with HCV. Consequently, numerous efforts have been put to investigate the emerging of mutations appearing on HCV genome, as well as the effects of these mutations toward viral virulence and efficacy of antiviral therapeutics. In this study, by utilizing the Weka bioinformatic software, we used the association rule to discern “co-evolutionary effects” between the untranslated regions (5’UTR and 3’UTR) and the NS proteins (NS2, NS3, NS5B) of 225 full-length genomic sequences from patient samples retrieved from Los Alamos HCV database. The results showed that there were 133 co-evolutionary pairs predicted by the association rule. To investigate whether the putative co-evolutionary pairs play roles in HCV replication, we investigated further the mutual effects between 5’UTR ntG243A and NS2 aaI76V in the HCV pFKI341Pi Luc/NS2-3’/ET subgenomic replicon. The experiments demonstrated that the single mutation of NS2 aaI76V significantly impaired HCV replication activity. However, double mutations of 5’UTR ntG243A and NS2 aaI76V could restore the replication activity, while, the single mutation of 5’UTR ntG243A had slight or no impact on the activities of replicons pFKI341Pi Luc/NS2-3’/ET and pFKI341Pi Luc/NS3-3’/ET, respectively. In addition, the replacement of 5’UTR ntG243 to C reduced HCV replication to half and the substitution of 5’UTR ntG243 to T fully eliminated the replication activity. To investigate whether interaction exists between 5’UTR nt243 and NS2 aa76, RNA-immunoprecipitation assay was conducted to pull down RNAs from cHuh7/Rep Pi Feo/NS3-3’/ET with ectopic expressed NS2 proteins. The result indicated that only NS2-I76V mutant protein could interact with HCV replicon RNA, suggesting that the replication process might be down-regulated by the binding of NS2-I76V protein to HCV RNAs. Furthermore, we constructed subgenomic replicons with a fusion protein of firefly luciferase and neomycin phosphotransferase (Feo) to study the adaptive mutations generated in cultivated cells. After selection, we amplified and sequenced the segment spanning 5’UTR to NS2. However, co-evolutionary pair between 5’UTR nt243 and NS2 aa76 was undetectable under the in vitro selection. In conclusion, 5’UTR ntG243A and NS2 aaI76V might be one of the replication-dependent co-evolutionary events, which existed in HCV from patient samples.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgements V Index VI Table/Figure/Appendixes index X Reagents and Instruments XIII Chapter 1: Introduction 1 1.1 Hepatitis C virus (HCV) 2 1.1.1 Epidemiology of HCV 2 1.1.2 Genotypes of HCV 3 1.1.3 HCV genome and untranslated regions (UTRs) 3 1.1.4 Structural and non-structural proteins of HCV 6 1.1.5 HCV viral life cycle and cultivated cell system 11 1.1.6 HCV databases 16 1.2 Bioinformatic research 17 1.2.1 Data-mining 17 1.2.2 Association rule 17 1.2.3 Bioinformaitc software-Weka 18 1.3 Study goal and experimental design 19 Chapter 2: Materials and Methods ` 22 2.1 Data-mining for co-evolutionary sites 24 2.1.1 Sequences collection 24 2.1.2 Sequences-analyzing condition and sequences alignment 24 2.1.3 Data-mining and association rule 26 2.2 Cell line and culture 26 2.2.1 Cured-Huh7 cells 26 2.2.2 Cell culture 26 2.3 Mutant replicons preparation for studying in co-evolutionary effects 27 2.3.1 Site-directed mutagenesis by PCR 27 2.3.2 Midi-plasmid extraction 28 2.3.3 Replicon linearization 29 2.3.4 DNA purification 29 2.3.5 In vitro transcription 30 2.3.6 RNA purification 30 2.3.7 Electroporation 31 2.3.8 Luciferase activity assay 31 2.3.9 Total RNA extraction from mammalian cells 32 2.3.10 Reverse-transcription 32 2.3.11 Quantification of HCV subgenomic replicons RNA by real-time PCR 33 2.4 Detection of co-evolutionary sites 33 2.4.1 Fusion of neomycin phosphotransferase gene by PCR 33 2.4.2 G418 selection 34 2.4.3 Total RNA extraction from mammalian cells 35 2.4.4 Reverse-transcription 35 2.4.5 Detection of co-evolutionary sites by cloning and sequencing 35 2.5 Interaction between HCV RNA and NS2 protein 36 2.5.1 Plasmid construction 36 2.5.2 Electroporation 37 2.5.3 Immunoblot analysis 37 2.5.4 Immunoprecipitation of RNA-protein complexes 38 Chapter 3: Results 40 3.1 There are 133 co-evolutionary pairs 41 predicted between the nucleotide sequences of HCV UTRs and the amino acid sequences of NS2, NS3, and NS5B by association rule. 3.2 The co-evolutionary pair of 5’UTR ntG243A 42 and NS2 aaI76V has the compensatory effect on HCV replication. 3.3 The nucleotide substitution of 5’UTR 43 G243→A on HCV subgenomic replicon (pFKI341Pi Luc/NS3-3’/ET) shows similar replication activities. 3.4 The nucleotide substitutions of 5’UTR 44 G243→A, G243→C, and G243→T on HCV subgenomic replicon (pFKI341PI Luc/NS2-3’ /ET) affect HCV replication activities. 3.5 The adaptive mutations appeared in the 45 G418-selected replicon cell lines do not show the co-evolutionary pair of 5’UTR ntG243A and NS2 aaI76V after being cultivated for 1 month. 3.6 The sequence alignment results from PBMCs 46 of patient infected with HCV. 3.7 The interaction between HCV 5’UTR nt243 47 and NS2 aa76. Chapter 4: Discussion 48 4.1 The co-evolution results from 49 association rule. 4.2 The co-evolutionary effect of 5’UTR nt243 50 and NS2 aa76. 4.3 The influence of substitutions at 51 5’UTR nt243. 4.4 The adaptive mutations and co-evolution. 52 4.5 The co-evolutionary study in clinical samples. 53 4.6 The RNA immunoprecipitation assay. 54 4.7 Conclusion 55 References 56 Tables and Figures 65 Appendixes 92 Author 99

    1. Dehesa-Violante, M. & Nunez-Nateras, R.
    Epidemiology of hepatitis virus B and C.
    Arch Med Res 38, 606-11 (2007).
    2. Alter, M. J. Epidemiology of viral
    hepatitis and HIV co-infection. J
    Hepatol 44, S6-9 (2006).
    3. Global burden of disease (GBD) for
    hepatitis C. J Clin Pharmacol 44, 20-9
    (2004).
    4. Sun, C. A. et al. Persistent
    hyperendemicity of hepatitis C virus
    infection in Taiwan: the important role
    of iatrogenic risk factors. J Med Virol
    65, 30-4 (2001).
    5. Alter, M. J. Epidemiology of hepatitis
    C virus infection. World J Gastroenterol
    13, 2436-41 (2007).
    6. Williams, R. Global challenges in liver
    disease. Hepatology 44, 521-6 (2006).
    7. Le Guillou-Guillemette, H. et al. Genetic
    diversity of the hepatitis C virus: impact
    and issues in the antiviral therapy. World
    J Gastroenterol 13, 2416-26 (2007).
    8. Ramia, S. & Eid-Fares, J. Distribution of
    hepatitis C virus genotypes in the Middle
    East. Int J Infect Dis 10, 272-7 (2006).
    9. Lee, C. M. et al. Viral etiology of
    hepatocellular carcinoma and HCV geno-
    types in Taiwan. Intervirology 49, 76-81
    (2006).
    10. Choo, Q. L. et al. Isolation of a cDNA
    clone derived from a blood-borne non-A,
    non-B viral hepatitis genome. Science 244,
    359-62 (1989).
    11. Moradpour, D., Penin, F. & Rice, C. M.
    Replication of hepatitis C virus. Nat Rev
    Microbiol 5, 453-63 (2007).
    12. Bukh, J., Purcell, R. H. & Miller, R. H.
    Sequence analysis of the 5' noncoding region
    of hepatitis C virus. Proc Natl Acad Sci U S
    A 89, 4942-6 (1992).
    13. Honda, M., Beard, M. R., Ping, L. H. & Lemon,
    S. M. A phylogenetically conserved stem-loop
    structure at the 5' border of the internal
    ribosome entry site of hepatitis C virus is
    required for cap-independent viral
    translation. J Virol 73, 1165-74 (1999).
    14. Spahn, C. M. et al. Hepatitis C virus IRES
    RNA-induced changes in the con-formation of
    the 40s ribosomal subunit. Science 291,
    1959-62 (2001).
    15. Friebe, P., Lohmann, V., Krieger, N. &
    Bartenschlager, R. Sequences in the 5'
    nontranslated region of hepatitis C virus
    required for RNA replication. J Virol 75,
    12047-57 (2001).
    16. Jopling, C. L., Yi, M., Lancaster, A. M.,
    Lemon, S. M. & Sarnow, P. Modula-tion of
    hepatitis C virus RNA abundance by a liver-
    specific MicroRNA. Science 309, 1577-81
    (2005).
    17. Lerat, H., Shimizu, Y. K. & Lemon, S. M.
    Cell type-specific enhancement of hepatitis
    C virus internal ribosome entry site
    -directed translation due to 5'
    nontranslated region substitutions selected
    during passage of virus in lym-phoblastoid
    cells. J Virol 74, 7024-31 (2000).
    18. Laporte, J. et al. Differential distribution
    and internal translation efficiency of
    hepatitis C virus quasispecies present in
    dendritic and liver cells. Blood 101, 52-7
    (2003).
    19. Kolykhalov, A. A., Feinstone, S. M. & Rice,
    C. M. Identification of a highly conserved
    sequence element at the 3' terminus of
    hepatitis C virus genome RNA. J Virol 70,
    3363-71 (1996).
    20. Tanaka, T., Kato, N., Cho, M. J., Sugiyama,
    K. & Shimotohno, K. Structure of the 3'
    terminus of the hepatitis C virus genome.
    J Virol 70, 3307-12 (1996).
    21. Yi, M. & Lemon, S. M. 3' nontranslated RNA
    signals required for replication of hepatitis
    C virus RNA. J Virol 77, 3557-68 (2003).
    22. Shavinskaya, A., Boulant, S., Penin, F.,
    McLauchlan, J. & Bartenschlager, R. The lipid
    droplet binding domain of hepatitis C virus
    core protein is a major determinant for
    efficient virus assembly. J Biol Chem 282,
    37158-69 (2007).
    23. McLauchlan, J. Properties of the hepatitis C
    virus core protein: a structural protein that
    modulates cellular processes. J Viral Hepat 7,
    2-14 (2000).
    24. Suzuki, R. et al. Nuclear localization of the
    truncated hepatitis C virus core protein with
    its hydrophobic C terminus deleted. J Gen Virol
    76 ( Pt 1), 53-61 (1995).
    25. Suzuki, T., Ishii, K., Aizaki, H. & Wakita, T.
    Hepatitis C viral life cycle. Adv Drug Deliv
    Rev 59, 1200-12 (2007).
    26. Op De Beeck, A., Cocquerel, L. & Dubuisson, J.
    Biogenesis of hepatitis C vi-rus envelope
    glycoproteins. J Gen Virol 82, 2589-95 (2001).
    27. Bartosch, B. et al. Cell entry of hepatitis C
    virus requires a set of co-receptors that
    include the CD81 tetraspanin and the SR-B1
    scavenger receptor. J Biol Chem 278, 41624-30
    (2003).
    28. Weiner, A. J. et al. Evidence for immune selection
    of hepatitis C virus (HCV) putative envelope
    glycoprotein variants: potential role in chronic
    HCV infec-tions. Proc Natl Acad Sci U S A 89,
    3468-72 (1992).
    29. Carrere-Kremer, S. et al. Subcellular
    localization and topology of the p7 poly-peptide
    of hepatitis C virus. J Virol 76, 3720-30 (2002).
    30. Pavlovic, D. et al. The hepatitis C virus p7
    protein forms an ion channel that is inhibited
    by long-alkyl-chain iminosugar derivatives. Proc
    Natl Acad Sci U S A 100, 6104-8 (2003).
    31. Sakai, A. et al. The p7 polypeptide of hepatitis
    C virus is critical for infectivity and contains
    functionally important genotype-specific
    sequences. Proc Natl Acad Sci U S A 100, 11646-51
    (2003).
    32. Jones, C. T., Murray, C. L., Eastman, D. K.,
    Tassello, J. & Rice, C. M. Hepati-tis C virus p7
    and NS2 proteins are essential for production of
    infectious virus. J Virol 81, 8374-83 (2007).
    33. Yamaga, A. K. & Ou, J. H. Membrane topology of
    the hepatitis C virus NS2 protein. J Biol Chem
    277, 33228-34 (2002).
    34. Grakoui, A., McCourt, D. W., Wychowski, C.,
    Feinstone, S. M. & Rice, C. M. A second hepatitis
    C virus-encoded proteinase. Proc Natl Acad Sci
    U S A 90, 10583-7 (1993).
    35. Hijikata, M. et al. Two distinct proteinase
    activities required for the processing of a
    putative nonstructural precursor protein of
    hepatitis C virus. J Virol 67, 4665-75 (1993).
    36. Lorenz, I. C., Marcotrigiano, J., Dentzer, T. G.
    & Rice, C. M. Structure of the catalytic domain of
    the hepatitis C virus NS2-3 protease. Nature 442,
    831-5 (2006).
    37. Lohmann, V. et al. Replication of subgenomic
    hepatitis C virus RNAs in a he-patoma cell line.
    Science 285, 110-3 (1999).
    38. Franck, N., Le Seyec, J., Guguen-Guillouzo, C. &
    Erdtmann, L. Hepatitis C virus NS2 protein is
    phosphorylated by the protein kinase CK2 and
    targeted for degradation to the proteasome. J
    Virol 79, 2700-8 (2005).
    39. Pietschmann, T. et al. Construction and
    characterization of infectious intrage-notypic and
    intergenotypic hepatitis C virus chimeras. Proc
    Natl Acad Sci U S A 103, 7408-13 (2006).
    40. Kim, D. W., Gwack, Y., Han, J. H. & Choe, J.
    C-terminal domain of the hepa-titis C virus NS3
    protein contains an RNA helicase activity. Biochem
    Biophys Res Commun 215, 160-6 (1995).
    41. Kim, J. L. et al. Crystal structure of the
    hepatitis C virus NS3 protease domain complexed
    with a synthetic NS4A cofactor peptide. Cell 87,
    343-55 (1996).
    42. Gale, M., Jr. & Foy, E. M. Evasion of
    intracellular host defence by hepatitis C virus.
    Nature 436, 939-45 (2005).
    43. De Francesco, R. & Migliaccio, G. Challenges and
    successes in developing new therapies for
    hepatitis C. Nature 436, 953-60 (2005).
    44. Serebrov, V. & Pyle, A. M. Periodic cycles of RNA
    unwinding and pausing by hepatitis C virus NS3
    helicase. Nature 430, 476-80 (2004).
    45. Levin, M. K., Gurjar, M. & Patel, S. S. A
    Brownian motor mechanism of translocation and
    strand separation by hepatitis C virus helicase.
    Nat Struct Mol Biol 12, 429-35 (2005).
    46. Dumont, S. et al. RNA translocation and unwinding
    mechanism of HCV NS3 helicase and its coordination
    by ATP. Nature 439, 105-8 (2006).
    47. Jennings, T. A. et al. RNA unwinding activity of
    the hepatitis C virus NS3 he-licase is modulated
    by the NS5B polymerase. Biochemistry 47, 1126-35
    (2008).
    48. Hugle, T. et al. The hepatitis C virus
    nonstructural protein 4B is an integral
    endoplasmic reticulum membrane protein. Virology
    284, 70-81 (2001).
    49. Lundin, M., Monne, M., Widell, A., Von Heijne, G.
    & Persson, M. A. Topology of the membrane-
    associated hepatitis C virus protein NS4B. J
    Virol 77, 5428-38 (2003).
    50. Elazar, M., Liu, P., Rice, C. M. & Glenn, J. S.
    An N-terminal amphipathic helix in hepatitis C
    virus (HCV) NS4B mediates membrane association,
    correct localization of replication complex
    proteins, and HCV RNA replication. J Virol 78,
    11393-400 (2004).
    51. Egger, D. et al. Expression of hepatitis C virus
    proteins induces distinct mem-brane alterations
    including a candidate viral replication complex.
    J Virol 76, 5974-84 (2002).
    52. Gao, L., Aizaki, H., He, J. W. & Lai, M. M.
    Interactions between viral non-structural
    proteins and host protein hVAP-33 mediate the
    formation of hepati-tis C virus RNA replication
    complex on lipid raft. J Virol 78, 3480-8 (2004).
    53. Lohmann, V., Hoffmann, S., Herian, U., Penin, F.
    & Bartenschlager, R. Viral and cellular
    determinants of hepatitis C virus RNA replication
    in cell culture. J Virol 77, 3007-19 (2003).
    54. Einav, S., Elazar, M., Danieli, T. & Glenn, J. S.
    A nucleotide binding motif in hepatitis C virus
    (HCV) NS4B mediates HCV RNA replication. J Virol
    78, 11288-95 (2004).
    55. Koch, J. O. & Bartenschlager, R. Modulation of
    hepatitis C virus NS5A hyperphosphorylation by
    nonstructural proteins NS3, NS4A, and NS4B. J
    Virol 73, 7138-46 (1999).
    56. Florese, R. H., Nagano-Fujii, M., Iwanaga, Y.,
    Hidajat, R. & Hotta, H. Inhibition of protein
    synthesis by the nonstructural proteins NS4A and
    NS4B of he-patitis C virus. Virus Res 90, 119-31
    (2002).
    57. Piccininni, S. et al. Modulation of the hepatitis
    C virus RNA-dependent RNA polymerase activity by
    the non-structural (NS) 3 helicase and the NS4B
    membrane protein. J Biol Chem 277, 45670-9 (2002).
    58. Tellinghuisen, T. L., Marcotrigiano, J.,
    Gorbalenya, A. E. & Rice, C. M. The NS5A protein
    of hepatitis C virus is a zinc metalloprotein. J
    Biol Chem 279, 48576-87 (2004).
    59. Tellinghuisen, T. L., Foss, K. L., Treadaway, J.
    C. & Rice, C. M. Identification of residues
    required for RNA replication in domains II and
    III of the hepatitis C virus NS5A protein. J
    Virol 82, 1073-83 (2008).
    60. Gale, M. J., Jr. et al. Evidence that hepatitis
    C virus resistance to interferon is mediated
    through repression of the PKR protein kinase by
    the nonstructural 5A protein. Virology 230,
    217-27 (1997).
    61. Blight, K. J., Kolykhalov, A. A. & Rice, C. M.
    Efficient initiation of HCV RNA replication in
    cell culture. Science 290, 1972-4 (2000).
    62. Krieger, N., Lohmann, V. & Bartenschlager, R.
    Enhancement of hepatitis C virus RNA replication
    by cell culture-adaptive mutations. J Virol 75,
    4614-24 (2001).
    63. Lohmann, V., Korner, F., Dobierzewska, A. &
    Bartenschlager, R. Mutations in hepatitis C virus
    RNAs conferring cell culture adaptation. J Virol
    75, 1437-49 (2001).
    64. Moradpour, D. et al. Membrane association of the
    RNA-dependent RNA po-lymerase is essential for
    hepatitis C virus RNA replication. J Virol 78,
    13278-84 (2004).
    65. Lesburg, C. A. et al. Crystal structure of the
    RNA-dependent RNA polymerase from hepatitis C
    virus reveals a fully encircled active site.
    Nat Struct Biol 6, 937-43 (1999).
    66. Butcher, S. J., Grimes, J. M., Makeyev, E. V.,
    Bamford, D. H. & Stuart, D. I. A mechanism for
    initiating RNA-dependent RNA polymerization.
    Nature 410, 235-40 (2001).
    67. Simmonds, P. et al. Classification of hepatitis
    C virus into six major genotypes and a series
    of subtypes by phylogenetic analysis of the NS5
    region. J Gen Virol 74 ( Pt 11), 2391-9 (1993).
    68. Matsuo, E. et al. Characterization of HCV-like
    particles produced in a human hepatoma cell line
    by a recombinant baculovirus. Biochem Biophys
    Res Commun 340, 200-8 (2006).
    69. Ezelle, H. J., Markovic, D. & Barber, G. N.
    Generation of hepatitis C virus-like particles
    by use of a recombinant vesicular stomatitis
    virus vector. J Virol 76, 12325-34 (2002).
    70. Matsuura, Y. et al. Characterization of
    pseudotype VSV possessing HCV envelope proteins.
    Virology 286, 263-75 (2001).
    71. Wakita, T. et al. Production of infectious
    hepatitis C virus in tissue culture from a
    cloned viral genome. Nat Med 11, 791-6 (2005).
    72. Lindenbach, B. D. et al. Complete replication
    of hepatitis C virus in cell cul-ture. Science
    309, 623-6 (2005).
    73. Pileri, P. et al. Binding of hepatitis C virus
    to CD81. Science 282, 938-41 (1998).
    74. Scarselli, E. et al. The human scavenger receptor
    class B type I is a novel can-didate receptor for
    the hepatitis C virus. Embo J 21, 5017-25 (2002).
    75. Agnello, V., Abel, G., Elfahal, M., Knight, G. B.
    & Zhang, Q. X. Hepatitis C virus and other
    flaviviridae viruses enter cells via low density
    lipoprotein re-ceptor. Proc Natl Acad Sci U S A
    96, 12766-71 (1999).
    76. Evans, M. J. et al. Claudin-1 is a hepatitis C
    virus co-receptor required for a late step in
    entry. Nature 446, 801-5 (2007).
    77. Blanchard, E. et al. Hepatitis C virus entry
    depends on clathrin-mediated endocytosis. J
    Virol 80, 6964-72 (2006).
    78. Koutsoudakis, G. et al. Characterization of the
    early steps of hepatitis C virus infection by
    using luciferase reporter viruses. J Virol 80,
    5308-20 (2006).
    79. Dubuisson, J., Penin, F. & Moradpour, D.
    Interaction of hepatitis C virus proteins with
    host cell membranes and lipids. Trends Cell Biol
    12, 517-23 (2002).
    80. Salonen, A., Ahola, T. & Kaariainen, L. Viral RNA
    replication in association with cellular
    membranes. Curr Top Microbiol Immunol 285, 139-73
    (2005).
    81. Quinkert, D., Bartenschlager, R. & Lohmann, V.
    Quantitative analysis of the hepatitis C virus
    replication complex. J Virol 79, 13594-605 (2005).
    82. Tanaka, Y. et al. Selective binding of hepatitis
    C virus core protein to synthetic oligonucleotides
    corresponding to the 5' untranslated region of the
    viral genome. Virology 270, 229-36 (2000).
    83. Blight, K. J., McKeating, J. A. & Rice, C. M.
    Highly permissive cell lines for subgenomic and
    genomic hepatitis C virus RNA replication. J Virol
    76, 13001-14 (2002).
    84. Friebe, P., Boudet, J., Simorre, J. P. &
    Bartenschlager, R. Kissing-loop interaction in the
    3' end of the hepatitis C virus genome essential
    for RNA replication. J Virol 79, 380-92 (2005).
    85. Bartenschlager, R., Frese, M. & Pietschmann, T.
    Novel insights into hepatitis C virus replication
    and persistence. Adv Virus Res 63, 71-180 (2004).
    86. Blight, K. J., McKeating, J. A., Marcotrigiano,
    J. & Rice, C. M. Efficient replication of
    hepatitis C virus genotype 1a RNAs in cell
    culture. J Virol 77, 3181-90 (2003).
    87. Kato, T. et al. Efficient replication of the
    genotype 2a hepatitis C virus subgenomic replicon.
    Gastroenterology 125, 1808-17 (2003).
    88. Zhu, Q., Guo, J. T. & Seeger, C. Replication of
    hepatitis C virus subgenomes in nonhepatic
    epithelial and mouse hepatoma cells. J Virol 77,
    9204-10 (2003).
    89. Moradpour, D. et al. Insertion of green
    fluorescent protein into nonstructural protein 5A
    allows direct visualization of functional
    hepatitis C virus replication complexes. J Virol
    78, 7400-9 (2004).
    90. Brass, V., Moradpour, D. & Blum, H. E. Molecular
    virology of hepatitis C virus (HCV): 2006 update.
    Int J Med Sci 3, 29-34 (2006).
    91. Yi, M., Villanueva, R. A., Thomas, D. L., Wakita,
    T. & Lemon, S. M. Production of infectious
    genotype 1a hepatitis C virus (Hutchinson strain)
    in cultured human hepatoma cells. Proc Natl Acad
    Sci U S A 103, 2310-5 (2006).
    92. Combet, C. et al. euHCVdb: the European hepatitis
    C virus database. Nucleic Acids Res 35, D363-6
    (2007).
    93. Kuiken, C., Hraber, P., Thurmond, J. & Yusim, K.
    The hepatitis C sequence database in Los Alamos.
    Nucleic Acids Res 36, D512-6 (2008).
    94. Kuiken, C. et al. Hepatitis C databases,
    principles and utility to researchers. Hepatology
    43, 1157-65 (2006).
    95. Ian H. Witten, E. F. Data Mining: Practical
    Machine Learning Tools and Techniques (Second
    Edition) (Elsevier, London, 2005).
    96. Edelstein, H. A. Introduction to data mining and
    knowledge discovery (Two Crow Corporation, 2005).
    97. Kamber, J. H. a. M. Data Mining: Concepts and
    Techniques, 2nd ed. (Morgan Kaufmann 2006).
    98. Usama Fayyad, G. P.-S., and Padhraic Smyth. in AI
    MAGAZINE 37-54 (1996).
    99. Beerenwinkel, N. et al. Diversity and complexity
    of HIV-1 drug resistance: a bioinformatics
    approach to predicting phenotype from genotype.
    Proc Natl Acad Sci U S A 99, 8271-6 (2002).
    100. G. Elizabeth, A. V., C. Francisco. Using neural
    networks for differential diag-nosis for Alzheimer
    disease and Vascular dementia. Expert Systems with
    Applications 14, 219-225 (1998).
    101. Jerome Friedman, T. H., and Robert Tibshirani The
    Elements of Statistical Learning: Data Mining,
    Inference, and Prediction (2001).
    102. Rakesh Agrawal, T. I., Arun Swami. Database
    Mining: A Performance Perspective. IEEE
    Transactions on Knowledge and Data Engineering 5,
    914-925 (1993).
    103. Rakesh Agrawal, T. I., Arun Swami. in ACM SIGMOD
    International Confe-rence on Management of Data
    (1993).
    104. Frank, E., Hall, M., Trigg, L., Holmes, G. &
    Witten, I. H. Data mining in bioinformatics using
    Weka. Bioinformatics 20, 2479-81 (2004).
    105. Kretschmann, E., Fleischmann, W. & Apweiler, R.
    Automatic rule generation for protein annotation
    with the C4.5 data mining algorithm applied on
    SWISS-PROT. Bioinformatics 17, 920-6 (2001).
    106. Tobler, J. B., Molla, M. N., Nuwaysir, E. F.,
    Green, R. D. & Shavlik, J. W. Evaluating machine
    learning approaches for aiding probe selection for
    gene-expression arrays. Bioinformatics 18 Suppl 1,
    S164-71 (2002).
    107. Li, J., Liu, H., Downing, J. R., Yeoh, A. E. &
    Wong, L. Simple rules underly-ing gene expression
    profiles of more than six subtypes of acute
    lymphoblastic leukemia (ALL) patients.
    Bioinformatics 19, 71-8 (2003).
    108. Taylor, J., King, R. D., Altmann, T. & Fiehn, O.
    Application of metabolomics to plant genotype
    discrimination using statistics and machine
    learning. Bioin-formatics 18 Suppl 2, S241-8
    (2002).
    109. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J.
    K. & Pease, L. R. Site-directed mutagenesis by
    overlap extension using the polymerase chain
    reaction. Gene 77, 51-9 (1989).
    110. Yokota, T. et al. Inhibition of intracellular
    hepatitis C virus replication by syn-thetic and
    vector-derived small interfering RNAs. EMBO Rep 4,
    602-8 (2003).
    111. Zielinski, J. et al. In vivo identification of
    ribonucleoprotein-RNA interactions. Proc Natl Acad
    Sci U S A 103, 1557-62 (2006).
    112. Fried, M. W. et al. Peginterferon alfa-2a plus
    ribavirin for chronic hepatitis C virus infection.
    N Engl J Med 347, 975-82 (2002).
    113. Baker, D. E. Pegylated interferon plus ribavirin
    for the treatment of chronic hepatitis C. Rev
    Gastroenterol Disord 3, 93-109 (2003).
    114. Yi, M., Ma, Y., Yates, J. & Lemon, S. M.
    Compensatory mutations in E1, p7, NS2, and NS3
    enhance yields of cell culture-infectious
    intergenotypic chimeric hepatitis C virus. J
    Virol 81, 629-38 (2007).
    115. Hwang, D. R., Lai, H. Y., Chang, M. L., Hsu, J.
    T. & Yeh, C. T. Emergence of mutation clusters in
    the HCV genome during sequential viral passages in
    Sip-L expressing cells. J Virol Methods 129, 170-7
    (2005).
    116. Okamoto, T. et al. A single-amino-acid mutation
    in hepatitis C virus NS5A disrupting FKBP8
    interaction impairs viral replication. J Virol 82,
    3480-9 (2008).
    117. Tanaka, M. et al. Single-point mutations of
    hepatitis C virus NS3 that impair p53 interaction
    and anti-apoptotic activity of NS3. Biochem
    Biophys Res Commun 340, 792-9 (2006).
    118. Gosert, R. et al. Characterization of
    nonstructural protein membrane anchor deletion
    mutants expressed in the context of the hepatitis
    C virus polyprotein. J Virol 79, 7911-7 (2005).
    119. Pelemans, H. et al. Mutations at amino acid
    positions 63, 189, and 396 of human
    immunodeficiency virus type 1 reverse
    transcriptase (RT) partially restore the DNA
    polymerase activity of a Trp229Tyr
    mutant RT. Virology 287, 143-50 (2001).
    120. Delaney, W. E. t. et al. The hepatitis B virus
    polymerase mutation rtV173L is selected during
    lamivudine therapy and enhances viral replication
    in vitro. J Virol 77, 11833-41 (2003).
    121. Moratorio, G. et al. Evolution of naturally
    occurring 5'non-coding region variants of
    Hepatitis C virus in human populations of the
    South American region. Virol J 4, 79 (2007).
    122. Roque-Afonso, A. M. et al. Compartmentalization
    of hepatitis C virus geno-types between plasma and
    peripheral blood mononuclear cells. J Virol 79,
    6349-57 (2005).
    123. Randall, G. et al. Cellular cofactors affecting
    hepatitis C virus infection and replication. Proc
    Natl Acad Sci U S A 104, 12884-9 (2007).

    下載圖示 校內:2010-08-06公開
    校外:2010-08-06公開
    QR CODE