簡易檢索 / 詳目顯示

研究生: 謝政麟
Hsieh, Cheng-Lin
論文名稱: 台灣西南部地區邊坡穩定性之數值分析
Slope stability with numerical analysis in south-western Taiwan
指導教授: 林冠瑋
Lin, Guan-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 崩塌潛勢數值分析極限平衡法TRIGRSScoops3D
外文關鍵詞: Potential landslides, numerical analysis, limit equilibrium method, TRIGRS, Scoops3D
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極端的降雨事件常誘發山坡地發生崩塌災害,以極限平衡法作為計算理論的數值分析,是常見用來分析邊坡穩定性的方式之一。本研究採用TRIGRS與Scoops3D數值分析軟體,前者可運用於分析降雨期間邊坡地下水位的連續狀態,後者則可用於建構符合邊坡地質條件之數值模型並計算安全係數。
    本研究透過結合TRIGRS與Scoops3D的優點,分析高雄燕巢泥岩崩塌邊坡、嘉義中心崙潛在大規模崩塌邊坡,以及嘉義檨仔寮地表變形邊坡等案例邊坡,在受到降雨影響時之穩定性的變化歷程。分析結果顯示 (1)燕巢泥岩崩塌邊坡受到2016年梅姬颱風影響的期間,崩塌邊坡之不穩定區域的發展歷程及崩塌時間,均接近真實崩塌事件的調查結果;(2)中心崙崩塌邊坡受到2018年8月豪雨影響的期間,邊坡上不穩定區域的分佈與陡峭地形有關;(3)檨仔寮邊坡受到2013年潭美颱風及康芮颱風影響的期間,邊坡具有相同的穩定性趨勢。綜合以上研究結果,結合TRIGRS與Scoops3D進行邊坡穩定性之數值分析方式,能夠正確地反映邊坡之安全係數在受到降雨影響時的變化歷程,同時也反映地形對邊坡穩定性的影響。
    此外,本研究也針對TRIGRS與Scoops3D兩模型的穩定性分析結果、參數設定,及模型設定對兩模型之分析結果的影響進行討論。討論結果顯示:(1)TRIGRS之穩定性分析的安全係數結果,普遍低於Scoops3D的結果;(2)影響TRIGRS之地下水位分析結果最甚的參數為土壤層厚度;(3)影響Scoops3D之安全係數分析結果最甚的參數為內摩擦角;(4)使用Scoops3D分析穩定性時,Fellenius法分析所得之安全係數結果,普遍較Bishop簡化法所得之結果低;(5)Scoops3D之搜尋配置的討論中,分析結果的影響主要受到水平乘數控制。

    In recent years, frequent extreme rainfall events have often caused rainfall-induced landslides on mountain slopes. In order to reduce the impact of landslide disasters, limit equilibrium method is one of the common methods to evaluate the slope stability. With the vigorous development of computer and numerical analysis, not only the efficiency of the slope stability calculation process is improved, but the visualization of the analysis results can directly realize the unstable area on the slope. TRIGRS and Scoops3D are applied in this study for analyzing the progression of the factor of safety (FS) during the period when the slope is affected by the rainfall event. TRIGRS is able to calculate the continuous situation of the groundwater level during the rainfall event. Besides, Scoops3D is able to construct a model based on the geological conditions and calculate the FS of the slope.
    Three cases were analyzed in this study, including Yanchao mudstone landslide slope, Jhongsinlun potential large-scale landslide slope, and Shezailiao surface-deformed slope. According to the results, during the period when Yanchao slope was affected by Typhoon Megi in 2016, the progression of the FS and the moment when landslide occurred were consistent with the practical record. During the period when Jhongsinlun slope was affected by the rainfall event in August 2018, the distribution of low FS on the slope was related to the steep topography. During the period when Shezailiao slope was affected by Typhoon Trami and Typhoon Kong-rey in 2013, respectively, the FS of the cliff on the slope decreased while the accumulated precipitation exceeded 250 mm. On the other hand, the FS of the whole slope still maintained at about 1.50. Consequently, the combination of TRIGRS and Scoops3D can analyze the progression of the FS while the slope is under the influence of rainfall, and also reflect the influence of terrain on the slope stability.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第二章 文獻回顧 5 2.1 降雨誘發崩塌之潛勢分析 5 2.1.1 統計分析 5 2.1.2 確定性分析 7 2.2 極限平衡法 9 2.2.1無限邊坡法 10 2.2.2切片法 11 2.3 地質材料之水文性質 13 2.3.1 水力傳導係數與水力擴散係數 13 2.3.2 初始入滲率 16 第三章 研究方法 18 3.1 研究流程 18 3.2 TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-Stability) 19 3.2.1 TRIGRS的計算理論 19 3.2.2 TRIGRS的分析流程 25 3.2.3 TRIGRS的適用性與限制 26 3.3 Scoops3D 27 3.3.1 Scoops3D的分析理論 27 3.3.2 Scoop3D的分析流程 35 3.3.3 Scoop3D的適用性與限制 36 第四章 研究區域 37 4.1高雄燕巢泥岩崩塌邊坡 37 4.1.1 地形與地質 37 4.1.2 氣候與水文 38 4.1.3 地形模型與分析參數 39 4.2 嘉義縣中心崙潛在大規模崩塌邊坡 41 4.2.1 地形與地質 42 4.2.2 氣候與水文 43 4.2.3 地質模型與分析參數 44 4.3 嘉義縣檨仔寮地表變形邊坡 48 4.3.1 地形與地質 48 4.3.2 氣候與水文 49 4.3.3 地質模型與分析參數 51 第五章 研究結果 53 5.1燕巢泥岩崩塌邊坡之穩定性分析結果 53 5.2中心崙潛在大規模崩塌邊坡之穩定性分析結果 56 5.3檨仔寮地表變形邊坡之穩定性分析結果 61 第六章 研究討論 65 6.1 TRIGRS與Scoops3D之安全係數結果比較 65 6.2水文地質參數對TRIGRS入滲分析的影響 69 6.3地質材料與水文地質參數對Scoops3D穩定性分析的影響 70 6.4 Scoops3D模型設定對分析結果的影響 71 6.4.1 Fellenius法與Bishop簡化法分析結果之差異 71 6.4.2潛在破壞規模準則 72 6.4.3搜尋網格 73 第七章 結論 80 參考文獻 82

    行政院農業委員會水土保持局 (2016)。105年梅姬颱風重大土砂災例摘要報告-燕巢區東燕里。南投縣:行政院農業委員會水土保持局。
    行政院農業委員會水土保持局 (2018)。107年度中心崙崩塌地調查監測計畫。南投縣:行政院農業委員會水土保持局南投分局。
    林聖琪、張志新、劉哲欣 (2015)。潛在大規模崩塌區之地貌圖幅分析。工程環境會刊,35,17-43。
    施國欽 (2014)。大地工程學(二)基礎工程篇 (六版)。文笙書局。
    國家災害防救科技中心 (2016)。2016年梅姬颱風災害報告。新北市:國家災害防救科技中心。
    陳天健、王晉倫、許中立 (2004)。七二水災引致坡地崩塌之因子研究。坡地防災學報,3 (2),69-80。
    陳則佑、馮正一、莊育蓁 (2011)。應用 TRIGRS 程式於邊坡破壞機率分析-以奧萬大地區為例。中華水土保持學報,42 (3),228-239。
    陳朝龍 (2001)。山坡地生態土地利用適宜性規劃--以汐止市為例。中國文化大學地學研究所博碩士論文,1-115。
    陳嬑璇、譚志豪、冀樹勇 (2011)。不同廣域降雨促崩分析模式於山崩預警應用之探討。2011第十四屆大地工程研討會,桃園市,台灣,
    馮正一、劉怡安、張育瑄 (2009)。應用 TRIGRS 分析集水區中尺寸坡地入滲與穩定性。中華水土保持學報,41(3),339-356。
    黃雅喬、林國峰、張明瑞、何瑞益 (2016)。支援向量機於降雨引致崩塌潛勢分析之研究。中國土木水利工程學刊,28(1),57-66。
    經濟部中央地質調查所 (2008)。易淹水地區上游集水區地質調查與資料庫建置(第1期96年度):集水區水文地質對坡地穩定性影響之調查評估計畫。經濟部中央地質調查所報告,96-24-A.
    經濟部中央地質調查所 (2011)。易淹水地區上游集水區地質調查與資料庫建置(第2期99年度):集水區水文地質對坡地穩定性影響之調查評估計畫(3/3)。經濟部中央地質調查所報告,99-20.
    賴志強 (2008)。台灣地區降雨及地震誘發崩塌之特性研究。成功大學水利及海洋工程學系碩士論文,1-137。
    顧承宇、陳建忠、張怡文、許世孟、陳耐錦、溫惠鈺 (2012)。氣候變遷下極端降雨引致廣域坡地災害評估技術之研究。中華水土保持學報,43(1),75-84。
    Abedini, M. and Tulabi, S. (2018). Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environmental earth sciences, 77(11), 1-13.
    Aleotti, P. and Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the environment, 58(1), 21-44.
    Ayalew, L. and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
    Baum, R. L., Savage, W. Z., Godt, J. W. (2002). TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. US geological survey open-file report 424, 38.
    Baum, R. L., Coe, J. A., Godt, J. W., Harp, E. L., Reid, M. E., Savage, W. Z., Schulz, W. H., Brien, D. L., Chleborad, A. F., McKenna, J. P. (2005). Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides, 2(4), 266-279.
    Baum, R. L., Savage, W. Z., Godt, J. W. (2008). TRIGRS: a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. US Geological Survey Denver, CO, USA.
    Baum, R. L., Godt, J. W., Savage, W. Z. (2010). Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research: Earth Surface, 115(F3).
    Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7-17.
    Bishop, A. W. (1959). The principle of effective stress. Teknisk ukeblad, 39, 859-863.
    Cavounidis, S. (1987). On the ratio of factors of safety in slope stability analyses. Geotechnique, 37(2), 207-210.
    Chen, L. K., Chang, C. H., Liu, C. H., Ho, J. Y. (2020). Application of a three-dimensional deterministic model to assess potential landslides, a case study: Antong Hot Spring Area in Hualien, Taiwan. Water, 12(2), 480.
    Chen, S. (1985). The investigation on erosion characteristics of mudstone slope land in southwestern Taiwan (II). The Hazard Mitigation Technology Report.
    Chen, C. Y., Chen, T, C., Yu, F. C., Lin, S. C. (2005). Analysis of time-varying rainfall infiltration induced landslide. Environmental geology, 48(4-5), 466-479.
    Ching, R. and Fredlund, D. (1983). Some difficulties associated with the limit equilibrium method of slices. Canadian Geotechnical Journal, 20(4), 661-672.
    Chiang, J. L. and Kuo, C. M. (2020). Evaluation of rainfall-induced large-scale landslide potential using Scoops3D. 22nd EGU General Assembly, held online 4-8 May, 2020.
    Constantin, M., Bednarik, M., Jurchescu, M. C., Vlaicu, M. (2011). Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental earth sciences, 63(2), 397-406.
    Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. (2008). DEM-based deterministic landslide hazard analysis in the Lesser Himalaya of Nepal. Georisk, 2(3), 161-178.
    Dai, F. C., Lee, C. F., Wang, S. J. (2003). Characterization of rainfall-induced landslides. International Journal of Remote Sensing, 24(23), 4817-4834.
    Dietrich, W. E. and Montgomery, D. R. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153-1171.
    Dietrich, W. E. and Montgomery, D. R. (1998). A digital terrain model for mapping shallow landslide potential. NCASI (National Council of the Paper Industry for Air and Stream Improvement).
    D’Odorico, P., Fagherazzi, S., Rigon, R. (2005). Potential for landsliding: Dependence on hyetograph characteristics. Journal of Geophysical Research: Earth Surface, 110(F1)
    Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical engineering, 122(7), 577-596.
    Duncan, J. M., Wright, S. G., Brandon, T. L. (2014). Soil strength and slope stability, John Wiley & Sons.
    Fellenius, W. (1936). Calculation of stability of earth dam. Transactions of the second Congress on Large Dams, 445-462. Washinhton, DC, United States.
    Fredlund, D. G., Morgenstern, N. R., Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15(3), 313-321.
    Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., Foltz, R. B. (2006). Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology, 80(3-4), 178-198.
    Gui, S., Zhang, R., Turner, J. P., Xue, X. (2000). Probabilistic slope stability analysis with stochastic soil hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 126(1), 1-9.
    Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216.
    Haefeli, R. (1948). The stability of slopes acted upon by parallel seepage. International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Netherlands, 1948.
    Hammond, C. (1992). Level I stability analysis (LISA) documentation for version 2.0, US Department of Agriculture, Forest Service, Intermountain Research Station.
    Hung, C., Liu, C. H., Chang, C. M. (2018). Numerical investigation of rainfall-induced landslide in mudstone using coupled finite and discrete element analysis. Geofluids 2018.
    Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910.
    Janbu, N. (1954). Application of composite slip surface for stability analysis. Proceedings of European Conference on Stability of Earth Slopes, Sweden, 1954.
    Ko, C. K., Flentje, P., Chowdhury, R. (2004). Interpretation of probability of landsliding triggered by rainfall. Landslides, 1(4), 263-275.
    Lan, H. X., Lee, C. F., Zhou, C. H., Martin, C. D. (2005). Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. Environmental geology, 47(2), 254-267.
    Lancaster, S. T., Hayes, S. K., Grant, G. E. (2001). Modeling sediment and wood storage and dynamics in small mountainous watersheds. Geomorphic processes and riverine habitat, 4, 85-102.
    Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J. (2008). Statistical approach to storm event-induced landslides susceptibility. Natural hazards and earth system sciences, 8(4), 941-960.
    Lee, D. H., Tien, K. G., Juang, C. H. (1996). Full-scale field experimentation of a new technique for protecting mudstone slopes, Taiwan. Engineering geology, 42(1), 51-63.
    Lee, D. H.,Lin, H. M., Wu, J. H. (2007). The basic properties of mudstone slopes in southwestern Taiwan. Journal of GeoEngineering, 2(3), 81-95.
    Lin, C. H., Hung, C., Weng, M. C., Lin, M. L., Uzuoka, R. (2019). Failure mechanism of a mudstone slope embedded with steep anti-dip layered sandstones: case of the 2016 Yanchao catastrophic landslide in Taiwan. Landslides, 16(11), 2233-2245.
    Liu, C. N. and Wu, C. C. (2008). Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental geology, 55(4), 907-915.
    Liu, S. Y., Shao, L. T., Li, H. J. (2015). Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, 63, 291-298.
    Lumb, P. (1975). Slope failures in Hong Kong. Quarterly Journal of Engineering Geology, 8(1), 31-65.
    Montgomery, D. R., Dietrich, W. E., Heffner, J. T. (2002). Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding. Water Resources Research, 38(12), 10-11-10-18.
    Morgenstern, N. U. and Price, V. E. (1965). The analysis of the stability of general slip surfaces. Geotechnique, 15(1), 79-93.
    O'Callaghan, J. F. and Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.
    Pack, R. T., Tarboton, D. G., Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada, 1998.
    Park, D. W., Nikhil, N. V., Lee, S. R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural hazards and earth system sciences, 13(11), 2833-2849.
    Park, H. J., Lee, J. H., Woo, I. K. (2013). Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach. Engineering geology, 161, 1-15.
    Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., Guzzetti, F. (2014). Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development, 7(2), 495-514.
    Ramdhoni, F., Damayanti, A., Indra, T. L. (2020). Smorph application for landslide identification in Kebumen Regency. IOP Conference Series: Earth and Environmental Science.
    Rawls, W. J., Brakensiek, D. L., Miller, N. (1983). Green-Ampt infiltration parameters from soils data. Journal of hydraulic engineering, 109(1), 62-70.
    Ray, R. L. and De Smedt, F. (2009). Slope stability analysis on a regional scale using GIS: a case study from Dhading, Nepal. Environmental geology, 57(7), 1603-1611.
    Reid, M. E., Christian, S. B., Brien, D. L. (2000). Gravitational stability of three‐dimensional stratovolcano edifices. Journal of Geophysical Research: Solid Earth, 105(B3), 6043-6056.
    Reid, M. E., Christian, S. B., Brien, D. L., Henderson, S. (2015). Scoops3D—software to analyze three-dimensional slope stability throughout a digital landscape. US Geological Survey Techniques and Methods, 14(A1), 218. https://dx.doi.org/10.3133/tm14A1.
    Selby, M. J. (1982). Hillslope materials and processes. Oxford University Press, Oxford, UK.
    Sidle, R. C. (1991). A conceptual model of changes in root cohesion in response to vegetation management. Journal of environmental quality, 20(1), 43-52.
    Sidle, R. C. (1992). A theoretical model of the effects of timber harvesting on slope stability. Water Resources Research, 28(7), 1897-1910.
    Spencer, E. (1967). A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique, 17(1), 11-26.
    Srivastava, R. and Yeh, T. C. J. (1991). Analytical solutions for one‐dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resources Research, 27(5), 753-762.
    Taylor, D. W. (1937). Stability of earth slopes. J. Boston Soc. Civil Engineers, 24(3), 197-247.
    Teixeira, M., Bateira, C., Marques, F., Vieira, B. (2015). Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides, 12(3), 455-468.
    Wu, C. H. and Chen, S. C. (2009). Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 112(3-4), 190-204.
    Wu, W. and Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), 2097-2110.
    Wu, W. and Sidle, R. C. (1997). Application of a distributed Shallow Landslide Analysis Model (dSLAM) to managed forested catchments in Oregon, USA. Human Impact on Erosion and Sedimentation(Proceedings of Rabat Symposium S6, April 1997). IAHS Publ. no. 245, 1997.

    無法下載圖示 校內:2026-09-24公開
    校外:2026-09-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE