簡易檢索 / 詳目顯示

研究生: 莊竣貿
Chuang, Chun-Mao
論文名稱: 腰椎經皮微創手術導引系統雛型開發
A Prototype Guiding System for Minimally Invasive Percutaneous Surgery in the Lumbar Spine
指導教授: 方晶晶
Fang, Jing-Jing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 腰椎經皮微創手術C-arm手術導引系統
外文關鍵詞: minimally invasive lumbar spine surgery, C-arm, surgical navigation system
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著醫療科技的進步,經皮脊椎微創手術可部分取代治療脊椎相關疾病的開放式手術,這類術式的優點在於傷口小、失血量少、復原時間短。本研究以經皮椎弓根導引手術與經皮內視鏡椎間盤切除術的導引裝置雛型系統為發展目標,協助術者更精準快速的找到病灶所在,適應症包含治療腰椎的椎孔狹窄、腰椎滑脫、椎體骨折,與椎間盤突出等腰椎微創手術。
    傳統經皮脊椎微創手術過程須不斷拍攝C-arm影像確認導針進針的路徑,醫病雙方恐有過量輻射的風險。本研究開發的腰椎最小侵入式經皮系統可降低C-arm拍攝張數,改良YESS腰椎內視鏡椎間盤切除術流程,為改善前期研究導引機構固定性不佳的問題,原先放置於病患背後皮膚表面之機構設計改以固定於手術床上,增加整體機構剛性,並整合前期經皮椎弓根導引規劃技術到椎間盤內視鏡導引規劃軟體,透過軟體計算獲得硬體機構雙平移雙旋轉參數,以機構實現實體進針路徑。
    透過獨立實驗檢測軟體計算上,以及20cm導針於硬體機構上導針與規劃路徑的誤差,分別為0.921±0.243mm與1.428±0.3mm,加總系統最大誤差2.349mm。以假體實驗模擬椎間盤切除術獲得針尖點誤差3.17±0.56mm,假體實驗C-arm平均拍攝張數7.23±0.41次,實驗平均耗時513.5±20.7秒。比較醫師以傳統方式與使用本導引系統進行一次規劃與導引4個腰椎間盤的結果,針尖點平均誤差由4.02±1.70 mm降至3.24±0.41 mm,C-arm拍攝張數由25.75±5.91張降至10±1.41張,平均耗時分別為512.25±77.71秒與556.25±30秒。以本研究定義目標針尖點誤差分級,於可接受誤差範圍2mm的等級I與等級II,比例由25%提升至37.5%。

    Due to the advancement of medical technology, percutaneous spinal minimally invasive surgery can replace traditional surgery for the treatment of spine-related pathologies. The advantages of this kind of surgery include small wounds, low blood loss and accelerated recovery time. This study is aimed to assist the surgeon to locate the symptom more accurately and quickly for percutaneous pedicle-guided surgery and percutaneous endoscopic discectomy. The indications include the treatment of the lumbar vertebral foramen Lumbar spine minimally invasive surgery such as stenosis, lumbar spondylolisthesis, vertebral fracture, and intervertebral disc herniation.
    In traditional percutaneous spinal minimally invasive surgery, C-arm images must be taken continuously to confirm the path of the guide needle. The surgeon and the patient may be at risk of excessive radiation. The minimally invasive percutaneous system for the lumbar spine developed in this research, which is an improved YESS lumbar endoscopic discectomy procedure, can reduce the number of C-arm shots and eliminate the problem of poor fixation of the guiding mechanism in the previous research; it was originally placed on the skin. The new mechanism can be fastened to the operating table to enhance its rigidity. The percutaneous pedicle guidance planning technology was integrated into the intervertebral disc endoscopic guidance planning software, and obtain the dual translation and dual rotation parameters of the hardware mechanism through software calculations. The mechanism then realizes the physical needle path.
    Through independent experiments to test the software calculation, and the 20cm guide needle on the hardware mechanism, the error between the guide needle and the planned path is 0.921±0.243mm and 1.428±0.3mm, respectively, and the total system maximum error is 2.349mm. The prosthesis experiment that simulated the discectomy to obtain a needle point has an error of 3.17±0.56mm. The average number of C-arm images taken during the prosthesis experiment was 7.23±0.41 shots, and the experiment took an average of 513.5±20.7 seconds. Comparing the conventional planning method on all four lumbar intervertebral discs by a physician to our system, the average needle tip error has decreased from 4.02±1.70 mm to 3.24±0.41 mm using our system; the number of C-arm images has decreased from 25.75±5.91 to 10±1.41. The average time is 512.25±77.71 seconds and 556.25±30 seconds, respectively. The target needle point error grading is defined in this research. The ratio of grade I to grade II within the acceptable error range 2mm has increased by 25% to 37.5%.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 第一章 前言 1 1.1 研究背景 3 1.2 研究動機與目的 4 1.3 本文架構 5 第二章 文獻回顧 7 2.1 脊椎手術 7 2.2 椎間盤切除術 12 2.3 手術導航系統 17 第三章 腰椎經皮微創手術導引系統 22 3.1 系統架構 22 3.2 硬體架構 25 3.3 軟體架構 30 第四章 可調式導引機構與規劃軟體 33 4.1 機構設計 33 4.2 導引機構 38 4.3 系統操作流程 46 4.4 軟體路徑規劃方法 50 第五章 系統精度及穩定度 55 5.1 軟體計算誤差 55 5.1.1 治具設計與製作 56 5.1.2 實驗設計與實驗結果 61 5.2 機構誤差 64 5.2.1 機構移動量誤差 65 5.2.2 機構角度誤差 71 5.3 系統誤差 75 5.4 系統穩定性實驗 76 5.4.1 實驗設計 76 5.4.2 實驗結果 81 第六章 結論與未來展望 89 6.1 討論 89 6.2 結論 93 6.3 未來展望 95 參考文獻 97 附錄A 角度誤差實驗 108 附錄B 假體實驗 110

    [1] 蔡諄樺, "脊椎手術輔助訓練系統設計與製作," 成功大學機械工程學系學位論文, pp.1-126, 2004.
    [2] 顏毓宏, "智慧型脊椎手術導航流程與訓練系統之研發," 成功大學機械工程學系學位論文, pp.1-113, 2007.
    [3] 侯誠育, "脊椎椎足鑽孔手術導引定位件之研發," 成功大學機械工程學系學位論文, pp.1-99, 2009.
    [4] 莊禮魁, "應用於脊椎後固定術之光學式脊椎椎足鑽孔導航系統," 2010.
    [5] 鎖皓泉, "應用於椎體成形術之 C-arm 穿刺導引雛型系統," National Cheng Kung University Department of Mechanical Engineering, 2014.
    [6] 吳承穎, "可攜式經皮椎體成形術導引系統的實現," 成功大學機械工程學系學位論文, pp.1-124, 2016.
    [7] 林俊仲, "脊椎經皮穿刺導引系統精進與體外試驗," 2019.
    [8] Jones, E. L., Heller, J. G., Silcox, D. H., and Hutton, W. C., "Cervical pedicle screws versus lateral mass screws: anatomic feasibility and biomechanical comparison," Spine, Vol.22, No.9, pp.977-982, 1997.
    [9] Vaccaro, A. R., Rizzolo, S. J., Balderston, R. A., Allardyce, T. J., Garfin, S. R., Dolinskas, C., and An, H. S., "Placement of pedicle screws in the thoracic spine. Part II: An anatomical and radiographic assessment," JBJS, Vol.77, No.8, pp.1200-1206, 1995.
    [10] Hermantin, F. U., Peters, T., Quartararo, L., and Kambin, P., "A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy," JBJS, Vol.81, No.7, pp.958-65, 1999.
    [11] Righesso, O., Falavigna, A., and Avanzi, O., "Comparison of open discectomy with microendoscopic discectomy in lumbar disc herniations: results of a randomized controlled trial," Neurosurgery, Vol.61, No.3, pp.545-549, 2007.
    [12] Mobbs, R. J., Sivabalan, P., and Li, J., "Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies," Journal of Clinical Neuroscience, Vol.19, No.6, pp.829-835, 2012.
    [13] Foley, K. T., Holly, L. T., and Schwender, J. D., "Minimally invasive lumbar fusion," Spine, Vol.28, No.15S, pp.S26-S35, 2003.
    [14] Guiot, B. H., Khoo, L. T., and Fessler, R. G., "A minimally invasive technique for decompression of the lumbar spine," Spine, Vol.27, No.4, pp.432-438, 2002.
    [15] Holly, L. T., Schwender, J. D., Rouben, D. P., and Foley, K. T., "Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications," Neurosurgical focus, Vol.20, No.3, pp.1-5, 2006.
    [16] Schwender, J. D., Holly, L. T., Rouben, D. P., and Foley, K. T., "Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results," Clinical Spine Surgery, Vol.18, pp.S1-S6, 2005.
    [17] Yeung, A. T. and Yeung, C. A., "Minimally invasive techniques for the management of lumbar disc herniation," Orthopedic Clinics of North America, Vol.38, No.3, pp.363-372, 2007.
    [18] 周以和, "醫學內視鏡的發展與應用," 高醫醫訊月刊, Vol.36, No.8, 2017.
    [19] Ruetten, S., Komp, M., Merk, H., and Godolias, G., "Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study," Spine, Vol.33, No.9, pp.931-939, 2008.
    [20] Ruetten, S., Komp, M., Merk, H., and Godolias, G., "Recurrent lumbar disc herniation after conventional discectomy: a prospective, randomized study comparing full-endoscopic interlaminar and transforaminal versus microsurgical revision," Clinical Spine Surgery, Vol.22, No.2, pp.122-129, 2009.
    [21] Ruetten, S., Komp, M., Merk, H., and Godolias, G., "Surgical treatment for lumbar lateral recess stenosis with the full-endoscopic interlaminar approach versus conventional microsurgical technique: a prospective, randomized, controlled study," Journal of Neurosurgery: Spine, Vol.10, No.5, pp.476-485, 2009.
    [22] Amber, K. T., Landy, D. C., Amber, I., Knopf, D., and Guerra, J., "Comparing the accuracy of ultrasound versus fluoroscopy in glenohumeral injections: a systematic review and meta‐analysis," Journal of Clinical Ultrasound, Vol.42, No.7, pp.411-416, 2014.
    [23] Jee, H., Lee, J.-H., Park, K. D., Ahn, J., and Park, Y., "Ultrasound-guided versus fluoroscopy-guided sacroiliac joint intra-articular injections in the noninflammatory sacroiliac joint dysfunction: a prospective, randomized, single-blinded study," Archives of physical medicine and rehabilitation, Vol.95, No.2, pp.330-337, 2014.
    [24] Nagel, M., Schmidt, G., Petzold, R., and Kalender, W. A., "A navigation system for minimally invasive CT-guided interventions," in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.33-40, 2005.
    [25] Otake, Y., Armand, M., Armiger, R. S., Kutzer, M. D., Basafa, E., Kazanzides, P., and Taylor, R. H., "Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration," IEEE transactions on medical imaging, Vol.31, No.4, pp.948-962, 2011.
    [26] Watts, C., Hutchison, G., Stern, J., and Clark, K., "Comparison of intervertebral disc disease treatment by chymopapain injection and open surgery," Journal of neurosurgery, Vol.42, No.4, pp.397-400, 1975.
    [27] Perez-Cruet, M. J., Foley, K. T., Isaacs, R. E., Rice-Wyllie, L., Wellington, R., Smith, M. M., and Fessler, R. G., "Microendoscopic lumbar discectomy," Neurosurgery, Vol.51, No.suppl_2, pp.S2-129-S2-136, 2002.
    [28] Schick, U., Döhnert, J., Richter, A., König, A., and Vitzthum, H., "Microendoscopic lumbar discectomy versus open surgery: an intraoperative EMG study," European spine journal, Vol.11, No.1, pp.20-26, 2002.
    [29] Huang, T. J., Hsu, R. W. W., Li, Y. Y., and Cheng, C. C., "Less systemic cytokine response in patients following microendoscopic versus open lumbar discectomy," Journal of Orthopaedic Research, Vol.23, No.2, pp.406-411, 2005.
    [30] Choi, G., Lee, S.-H., Raiturker, P. P., Lee, S., and Chae, Y.-S., "Percutaneous endoscopic interlaminar discectomy for intracanalicular disc herniations at L5–S1 using a rigid working channel endoscope," Operative Neurosurgery, Vol.58, No.suppl_1, pp.ONS-59-ONS-68, 2006.
    [31] Ryu, K.-S. and Seocho-gu, S., "Percutaneous endoscopic lumbar discectomy for L5-S1 disc herniation: transforaminal versus interlaminar approach," Pain physician, Vol.16, pp.547-56, 2013.
    [32] Sinkemani, A., Hong, X., Gao, Z.-X., Zhuang, S.-Y., Jiang, Z.-L., Zhang, S.-D., Bao, J.-P., Zhu, L., Zhang, P., and Xie, X.-H., "Outcomes of microendoscopic discectomy and percutaneous transforaminal endoscopic discectomy for the treatment of lumbar disc herniation: a comparative retrospective study," Asian spine journal, Vol.9, No.6, p.833, 2015.
    [33] Kambin, P., "Arthroscopic microdiskectomy," The Mount Sinai journal of medicine, New York, Vol.58, No.2, pp.159-164, 1991.
    [34] Kambin, P., O'Brien, E., Zhou, L., and Schaffer, J. L., "Arthroscopic microdiscectomy and selective fragmentectomy," Clinical orthopaedics and related research, No.347, pp.150-167, 1998.
    [35] Kambin, P. and Savitz, M. H., "Arthroscopic microdiscectomy: an alternative to open disc surgery," The Mount Sinai journal of medicine, New York, Vol.67, No.4, pp.283-287, 2000.
    [36] Min, J.-H., Kang, S.-H., Lee, J.-B., Cho, T.-H., Suh, J.-K., and Rhyu, I.-J., "Morphometric analysis of the working zone for endoscopic lumbar discectomy," Clinical Spine Surgery, Vol.18, No.2, pp.132-135, 2005.
    [37] Park, K. D., Lee, J., Jee, H., and Park, Y., "Kambin triangle versus the supraneural approach for the treatment of lumbar radicular pain," American journal of physical medicine & rehabilitation, Vol.91, No.12, pp.1039-1050, 2012.
    [38] Yeung, A. T., "The evolution of percutaneous spinal endoscopy and discectomy: state of the art," The Mount Sinai journal of medicine, New York, Vol.67, No.4, pp.327-332, 2000.
    [39] Yeung, A. T. and Tsou, P. M., "Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases," Spine, Vol.27, No.7, pp.722-731, 2002.
    [40] Yeung, A. T. and Yeung, C. A., "Advances in endoscopic disc and spine surgery: foraminal approach," Surgical technology international, Vol.11, pp.255-263, 2003.
    [41] Yeung, A., "The Yeung percutaneous endoscopic lumbar decompressive technique (YESSTM)," J Spine, Vol.7, No.408, p.2, 2018.
    [42] Hoogland, T., Schubert, M., Miklitz, B., and Ramirez, A., "Transforaminal posterolateral endoscopic discectomy with or without the combination of a low-dose chymopapain: a prospective randomized study in 280 consecutive cases," Spine, Vol.31, No.24, pp.E890-E897, 2006.
    [43] Sanusi, T., Davis, J., Nicassio, N., and Malik, I., "Endoscopic lumbar discectomy under local anesthesia may be an alternative to microdiscectomy: A single centre's experience using the far lateral approach," Clinical neurology and neurosurgery, Vol.139, pp.324-327, 2015.
    [44] Xin, G., Shi‐Sheng, H., and Hai‐Long, Z., "Morphometric analysis of the YESS and TESSYS techniques of percutaneous transforaminal endoscopic lumbar discectomy," Clinical Anatomy, Vol.26, No.6, pp.728-734, 2013.
    [45] Krempien, R., Hassfeld, S., Kozak, J., Tuemmler, H.-P., Däuber, S., Treiber, M., Debus, J., and Harms, W., "Frameless image guidance improves accuracy in three-dimensional interstitial brachytherapy needle placement," International Journal of Radiation Oncology* Biology* Physics, Vol.60, No.5, pp.1645-1651, 2004.
    [46] Levy, E. B., Tang, J., Lindisch, D., Glossop, N., Banovac, F., and Cleary, K., "Implementation of an electromagnetic tracking system for accurate intrahepatic puncture needle guidance: Accuracy results in an in vitro model," Academic radiology, Vol.14, No.3, pp.344-354, 2007.
    [47] Stoffner, R., Augschöll, C., Widmann, G., Böhler, D., and Bale, R., "Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study," in RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, pp.851-858, 2009.
    [48] Lin, M. L., Yang, B. D., Wang, Y. H., Yang, C. L., and Wang, J. L., "A miniature patient‐mount navigation system for assisting needle placement in CT‐guided intervention," The International Journal of Medical Robotics and Computer Assisted Surgery, Vol.7, No.4, pp.423-430, 2011.
    [49] 吳承穎, "可攜式經皮椎體成形術導引系統的實現," 國立成功大學機械工程研究所碩士論文, 2017.
    [50] 方晶晶FANGJING-JING, 林瑞模LINRUEY-MO, 林政立LINCHENG, 鎖皓泉SOHAO, 吳承穎WUCHENG, and 林俊仲LINCHUN, 脊椎經皮穿刺導引系統與穿刺方位規劃方法. 2017.
    [51] Healthcare, G., "Technische Information OEC Fluorostar 7900 Series Digitaler Mobiler GE C-Bogen Ed," <https://eba-ag.de/assets/Uploads/Technische-Information-OEC-Fluorostar-7900-Series-Digitaler-Mobiler-GE-C-Bogen-EN-4th-Ed.pdf>, accessed on 11 June 2020.
    [52] STERIS, "The standard for versatility, reliability and quality Amsco® 3085 SP Surgical Table," <https://www.steris-healthcare.fr/medias/docs/748f771b0ceb70d056344b9c20382da4f5cdfa1c.pdf>, access on 11 June 2020.
    [53] OpenCV, "OpenCV," <http://opencv.org/>, accessed on 16 April 2019.
    [54] Imebra, "Imebra DICOM SDK," <https://imebra.com/>, accessed on 16 April 2019.
    [55] 鎖皓泉, "應用於椎體成形術之 C-arm穿刺導引雛型系統," 國立成功大學機械工程研究所碩士論文, 2014.
    [56] AROSmicro™, "Steel Surgical Ruler, 8” (20cm) | AROSmicro™ 02.340.20," <https://www.arosurgical.com/surgical-ruler-metal-mm-inch-graduated-20cm-8-inches/>, access on 11 June 2020.
    [57] Technologies, S., "MicroScribe® MX," <http://www.dirdim.com/pdfs/DDI_Immersion_MicroScribe_MX.pdf>, access on 11 June 2020.
    [58] Ravi, B., Zahrai, A., and Rampersaud, R., "Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws," Spine, Vol.36, No.1, pp.84-91, 2011.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE