簡易檢索 / 詳目顯示

研究生: 莊維德
Chuang, Wei-Te
論文名稱: 自主飛行四旋翼的控制與設計
Design and Control of Quadrotor with Application to Autonomous Flying
指導教授: 譚俊豪
Tarn, Jiun-Haur
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 自主飛行觀察器軌跡追蹤
外文關鍵詞: Autonomous Flight, Observer, Trajectory Following
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人駕駛飛行載具(UAV)是可以進行遠距遙控的穩定飛行或路線規劃自主飛行的飛行載具,本論文所使用的無人載具為四旋翼,其優點在於垂直起飛和降落,並且可懸停在一個固定點。而本論文的最終目的是要達成四旋翼的自主飛行並完成軌跡追蹤,因此在整個過程可分做三大部分,分別是:(一)建立四旋翼的動力模型; (二)姿態及位置的資料整合以及(三)軌跡控制器的設計。
    建立四旋翼的動力模型是為了能在模擬的環境下模擬四旋翼自主飛行的結果,避免每次的實際飛行造成機具的損壞,並且透過找出實際載具參數,使得動力模型盡量近似於實際載具的飛行情形。為了達到四旋翼準確的自主飛行,則須具備有精確的觀察器及穩定的控制器。首先,在觀察器方面,本論文分別建立高效率定向濾波器來取得正確的姿態,而位置的估計則是使用慣性測量儀的加速規估計目前位置並搭配全球定位系統在卡曼濾波器的修正來求得正確位置。控制器方面則是依Backstepping control 方式依序設計四旋翼姿態控制器及位置控制器,為了改善導航飛行加入軌跡控制器使得載具達到軌跡追蹤效果。最後,本論文由於未完成軌跡控制中的路徑規劃,所以在實驗結果的部分則是設計一個圓形軌跡來驗證軌跡控制器效果。

    Unmanned aerial vehicle (UAV) is a stable, long-ranged remotely-controlled, autonomous aerial vehicles. In this thesis, the unmanned vehicles used is a quadrotor which has the advantage of vertical takeoff, landing and hovering. The goal is to achieve autonomous flight with precise trajectory tracking. Therefore, the thesis is divided into three parts: first, a dynamic model of the quadrotor, then the building of an attitude and position observer following by the design of the trajectory tracking controller.
    First, we find out the dynamic model parameters to simulate the actual vehicle flights. Second, the attitude observer with high-efficiency orientation filter is designed to obtain the correct attitude. And the position observer uses the accelerometer signals to calculate the estimates of the current position which will be periodically corrected by the Global Positioning System using the Kalman filtering technique. Then, a cascaded attitude and position controller is designed by Backstepping method. In order to improve the vehicle trajectory-following performances, feed-forward control is also designed. Finally, a circular trajectory is used to validate the proposed trajectory controller.

    摘要I AbstractII 致謝III 目錄IV 表目錄VII 圖目錄VIII 第一章:緒論1 1.1前言1 1.2研究與動機1 1.3文獻回顧2 1.4論文大綱3 第二章:動力模型5 2.1參考座標5 2.1.1運動學在座標之間的關係6 2.2簡易的動力模型7 2.2.1飛行原理7 2.2.2動力模型的假設8 2.2.3動力模型8 2.2.4馬達模型9 第三章:資料整合11 3.1四元數介紹11 3.2高效率定向濾波器的推導13 3.2.1根據陀螺儀所求得的姿態13 3.2.2透過加速規及磁力計求得姿態14 3.2.3整合濾波器演算法17 3.2.4感測器補償18 3.2.4.1磁力計的修正18 3.2.4.2陀螺儀飄移的修正19 3.3濾波器分析20 3.3.1卡爾曼濾波器(Kalman Filter, KF)20 3.3.2擴展式卡爾曼濾波器(Extended Kalman Filter, EKF)23 3.4位置及速度資料整合24 3.4.1導航方程式25 3.4.2線性誤差過程模型26 3.4.3線性量測模型27 3.4.4預測階段:28 3.4.5更新階段:28 3.4.6誤差修正:29 第四章: 控制器30 4.1小角度姿態控制器30 4.2位置控制器31 4.3軌跡追蹤控制器32 4.4大角度姿態控制器33 4.5 三維軌跡追蹤控制器34 4.6參數調整36 第五章: 實驗結果與討論38 5.1 硬體簡介38 5.2模擬與分析40 5.3 實驗結果45 第六章:結論與未來展望53 6. 1結論53 6. 2 未來展望53 參考文獻55

    [1]Kalman, R.E., “A New Approach to Linear Filtering and Prediction Problems”, Transactions of the ASME–Journal of Basic Engineering, 82(Series D), pp. 35-45, 1960.
    [2]Frazzoli, E., Robust Hybrid Control for Autonomous Vehicle Motion Planning, Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, 2001.
    [3]Davison,A.J.,“Monoslam: Real-time single camera slam”, IEEE Transactions on Pattern Analysis and Machine Intelligence,29(6):pp. 1052-1067,2007.
    [4]Mahony,R. and T. Hamel,“Non-linear complementary filters on the special orthogonal group”,IEEE Transactions on Automatic Control,53(5),2008.
    [5]Madgwick,S.O.H.,A.J.L. Harrison, and R.Vaidyanathan, “Estimation of imu and marg orientation using a gradient descent algorithm”,IEEE International Conference on Rehabilitation Robotics (ICORR),11: pp. 1-7, 2011.
    [6]Mary, C.,Modelling and Control of Autonomous Quad-Rotor, Electronic Systems,Aalborg,2010.
    [7]Mellinger, D.,Trajectory Generation and Control for Quadrotors, Mechanical Engineering and Applied Mechanics, Pennsylvania,2012.
    [8]McKerrow,P.,“Modelling the draganflyer four-rotor helicopter”,International Conference on Robotics and Automation,New Orleans,LA: IEEE, 2004.
    [9]Hoffmann,G.M., et al., Quadrotor helicopter flight dynamics and control theory and experiment,2007.
    [10]Friis,J.,E.Nielsen,and R.F.Andersen,Autonomous Landing on a Moving Platform,Electronic System,Aalborg,2009.
    [11]Savage,P.,Strapdown Analytic: Part 1,2,Strapdown Associates,2000.
    [12]Kim,J.,Autonomous Navigation for Airborne Applications, Aerospace,Mechanical and Mechatronic Engineering,Sydney, 2004.
    [13]Sukkarieh,S.,Low Cost,High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles,Mechanical and Mechatroni Engineering,Sydney, 2000.
    [14]N., V.K.,Integration of Inertial Navigation System and Global Positioning System Using Kalman Filtering,Aerospace Engineering, Indian Institute of Technology,Mumbai,2004.
    [15]Sun, H., et al.,“Analysis of the Kalman Filter With Different INS Error Models for GPS/INS Integration in Aerial Remote Sensing Applications”,The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,XXXVII: pp.Part B5,2008.
    [16]Gavrilets,V.,Autonomous Aerobatic Maneuvering of Miniature Helicopters,in Aeronautics and Astronautics, Massachusetts Institute of Technology,2003.
    [17]Khalil,H.,Nonlinear Systems,Prentice Hall,1996.
    [18]Hoffmann,G.,S.Waslander,and C.Tomlin,“Quadrotor helicopter trajectory tracking control”,In AIAA Guidance, Navigation and Control Conference and Exhibit,Honolulu, Hawaii,2008.
    [19]Lee,T., M.Leok,and N.McClamroch,Geometric tracking control of a quadrotor uav on SE(3),Decision and Control, 2010.
    [20]R.Alur,C.C.,et al.,“The algorithmic analysis of hybrid systems”, Theoretical Computer Science,138(1):pp. 3-34, 1995.
    [21]Arimoto,S.,S.Kawamura,and F.Miyazaki, “Bettering operation of robots by learning”,Journal of Robotic Systems, 1(2): pp.123-140,1984.

    下載圖示 校內:2015-08-28公開
    校外:2015-08-28公開
    QR CODE