簡易檢索 / 詳目顯示

研究生: 林大偉
Lin, T.W.
論文名稱: 分子動力學於奈米系統熱流現象之研究
Molecular Dynamics Modeling for Heat and Mass Transfer in Nano-Systems
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 168
中文關鍵詞: 分子動力學奈米流道平板完全發展流TIP4P勢能
外文關鍵詞: molecular dynamics, nano channel, plane Poiseuille flow, TIP4P potential
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要採用理想之Lennard-Jones勢能函數以及能模擬水分子電子對效應(pair effect)之TIP4P (transferable intermolecular potential with 4 points) 勢能函數模擬系統中分子彼此間之交互作用,利用該二種勢能函數並以分子動力學方法配合蛙跳法則(leap-frog method)分別探討空穴流(lid-driven cavity flow)、平板完全發展流(plane fully developed Poiseuille flow)及自然對流(natural convection)之流場、溫度場及邊界特性。於進行平板完全發展流問題研究時,並進一步探討當二種不同勢能函數被使用時,其系統之物理現象有何差別。其中各種模型之壁面邊界均模擬成原子結構,並模擬壁面呈現一種完全為水分子之所覆蓋之類似冰結構之平面,以更趨近真實情況。於研究中吾人發現系統整體之現象不論是採用Lennard-Jones勢能函數或是TIP4P勢能函數其結果均相當一致,但是在局部的現象則有明顯之不同。

      本論文中首先比較Lennard-Jones與TIP4P勢能函數間特性之不同,觀察到TIP4P勢能函數因其電子對效應之故,其分子間之函數值會隨分子間之相對角度改變而產生變化,但Lennard-Jones勢能則無此一現象。

      於問題模擬中,首先進行二種矩形與三角形之上側板拖曳空穴流問題,結果觀察到渦流隨時間演進之現象。當計算時間足夠長時,吾人可於較小之三角形空穴中觀察到類似紊流之現象發生。此外,於結果中可以明顯地檢視到在三角形空穴中之渦流強度遠較矩形空穴中之渦流強度較強。

      其次,再進行平板完全發展流之研究,並分別以TIP4P與Lennard-Jones勢能函數模擬水分子間之交互作用。我們在研究中藉著液-壁界面上不同的邊界條件,及不同大小尺寸流道寬度之影響,觀察流場中之速度場及邊界上速度梯度變化之現象。我們能清楚的觀察到在液-壁界面上有明顯地速度落差(velocity jump),若有效流道寬度(effect channel width)小於一臨界值後,速度曲線即明顯地偏離古典速度曲線。且在此發現”滑動條件”(slip condition)存在於虛擬滑移界面(virtual slip plane)上。此外,在邊界的速度梯度隨著有效流道寬度及液-壁界面上碰撞條件f值之減少而增加。我們也合理的推測出表面效應應存在於奈米流道之中而且對應力將會有所影響。於奈米尺度下,本研究率先使用真實之物理參數及TIP4P勢能函數並以分子動力學進行水的三維平板完全發展流模擬,以了解水在奈米流道內之各種現象。

      最後,本論文將致力於以分子動力學方法探討自然對流之基礎熱傳現象。研究中以一高寬比(aspect ratio)為2之矩形空穴為基礎模型,其邊界條件設定為上下邊界保持一固定溫差,並逐漸增大溫度差。結果觀察到系統之溫度分布分為熱邊界層(thermal boundary layer)及等溫分布層(isothermal layer),此結果與巨觀之實驗相當一致。但隨著 之增加,其最大流線函數 並未有明顯之變化。換言之,當奈米系統在此尺寸大小時因溫差所造成之熱浮力並不足以驅動自然對流。系統溫度分佈主要之形成原因是由於界面熱傳之界面熱落差(thermal jump)所造成,並非由自然對流形成。

      本論文期望能將模擬方法應用於奈米系統上,能預測其熱流現象,更進一步分析其物理意義,最終有助於奈米系統熱流理論之建立。

      The TIP4P and Lennard-Jones potentials are used to predict the velocity profiles in the 3-D liquid water heat and mass transfer problems. These problems are investigated by the leap-frog method in the field of molecular dynamics. In these works, the wall boundary condition is considered to be the situation that the water is absorbed on the metal wall and is then formed to be flat ice. And, the periodic boundary condition is used under the infinite condition.

      First, the TIP4P potential is used to predict the velocity profiles in the 3-D (about 100,000 molecules)liquid water lid-driven cavity flow. The vortices in the cavity are generated with the upper side wall moving with a constant speed. Two kinds of problems are investigated in this paper to demonstrate the feature of the velocity profiles and traced the particle in the system, one is the cavity flow problem with square cavity and the other is with V-shape cavity. The realistic parameters of the water molecule are adopted in this research.

      In a very short time, the velocity profiles are evident that the vortices are driven by the moving top plate in all cases. And, the blow-up phenomena is observed in the small triangular cavity when the calculating time is long enough. In addition, the vortex-like profiles in the triangular cavity is stronger and more obvious than the ones in the rectangular cavity. Therefore, the strength of vortex would be affected by the variation of the geometry. It emerges from that the dynamic transport properties like the thermal conductivity, diffusion coefficient and shear stress, et al. would be varied by the variation of the geometry.

      Next, the flow characteristics of the 3-D plane fully developed Poiseuille flow in the nano-channel driven by a constant external force are studied by the Lennard-Jones and TIP4P potentials. Both global effect (effective channel width) and local effect (wall boundary types) are examined to demonstrate the features of the distributions of velocity and its gradient in the system. When the effective channel width is less than a critical value, the numerical results show that the Navier-Stokes theory would be fail to predict the velocity distribution. Furthermore, the velocity profile at a virtual slip plane presents the slip condition. And, we can reason that the surface effect exists and will affect the shear stress in the nano-channel.

      Finally, to understanding and treating the heat transfer problem is the most important purpose of this study. And, it will be a molecular dynamic analysis for Bernad convection across rectangular enclosures. The temperature drop between the top and bottom wall is applied to this model, i.e., the temperature of the top plate is lower than the bottom plate. The numerical result shows that the distribution of the temperature consists of the boundary layer and the isothermal layer. This result agrees with the earlier experimental study. But, the value of the maximum stream function does not change obviously since increases. Namely, the natural convection could not be driven by the buoyancy force induced by the temperature difference in nano-system. The thermal-jump is the reason of the formation of the temperature gradient in the solid-liquid interface. To get the reliable results of the heat transfer problem of Benard convection is the purpose of this research in order to build the basis of the work of molecular dynamics.

    中文摘要 Ⅳ 英文摘要 Ⅶ 誌謝 ⅩⅠ 表目錄 ⅩⅡ 圖目錄 ⅩⅢ 符號說明 ⅩⅨ 第一章 緒論 1 1-1 前言 1 1-2本文架構 7 第二章 文獻回顧 10 2-1分子動力學之奠基研究 11 2-2空穴流研究之文獻回顧 14 2-3奈米尺寸流道研究之文獻回顧 16 2-4自然對流研究之文獻回顧 22 第三章 數學模型 25 3-1保守系統 26 3-2勢能函數 29 3-3勢能函數特性 33 3-4邊界條件 37 3-4-1空穴流問題之邊界條件 41 3-4-2平板流之邊界條件 41 3-4-3自然對流之邊界條件 43 3-5動力性質 44 3-5-1時間關係函數 44 3-5-2徑向分布函數 46 3-6自然對流之數學模式 48 第四章 數值模式 59 4-1無因次分析 59 4-2分子速度 62 4-3數值計算法 64 4-4表列法則 68 4-5分子速度修正 70 4-5-1動量0處理 70 4-5-2熱平衡 71 4-6 程式計算法則 73 4-6-1平衡過程 73 4-6-2問題模擬 74 4-7李雅普諾夫穩定性 77 第五章 結果與討論 83 5-1 空穴流 86 5-2 平板完全發展流 92 5-3 自然對流 99 第六章 結論 142 參考文獻 150 個人著作 163 作者 168

    Alder, B.J., and Wainwright, T.E., Phase Transition for a Hard Sphere System, J. Chem. Phys., 27, 1208-1209, 1957.

    Alder, B.J., and Wainwright, T.E., Studies in Molecular Dynamics. I. General Method, J. Chem. Phys., 31, 459-466, 1959.

    Andersen, H.C., Molecular Dynamics at Constant Pressure and/or Temperature, J. Chem. Phys., 72, 2384-2393, 1980.

    Allen, M.P., and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, New York, 1987.

    Auerbach, D.J., Paul, W., Lutz, C., Bakker, F.A., Rudge, W.E., and Abraham, F.F., Aspecial Purpose Parallel Computer for Molecular Dynamics: Motivation, Design, Implementation, and Application, J. Phys. Chem., 91, 4881-4890, 1987.

    Ayton, G., Evans, D.J., and Searles, D.J., A Local Fluctuation Theorem, J. Chemical Physics, 115, No. 5, 2033-2037, 2001.

    Aziz, K., and Hellums, J.D., Numerical Solution of the Three Dimensional Equations of Motion for Laminar Natural Convection, The Physics of Fluids, 10, 314-324, 1967.

    Barker, J.A., and Watts, R.O., Structure of Water: a Monte Carlo Calculation, Chem. Phys. Lett., 3, 144-145, 1969.

    Bajorek, S.M., and Lloyd, J.R., Experimental Investigation of Natural Convection in Partitioned Enclosures, J. Heat Transfer, 104, 527-532, 1982.

    Barojas, J., Levesque, D., and Quentrec, B., Simulation of Diatomic Homonuclear Liquids, Phys. Rev. A, 7, 1092-1105, 1973.

    Beeman, D., Some Multistep Methods for Use in Molecular Dynamics Calculations, J. Comput. Phys., 20, 130-139, 1976.

    Berendsen, H.J.C., and Van Gunsteren, W.F., Practical Algorithms for Dynamic Simulations, Molecular Dynamics Simulation of Statistical Mechanical Systems, Proceedings of the Enrico Fermi Summer School, Varenna, 1985, 43-65, Soc. Italiana di Fisica, Bologna, 1986.

    Bilski, S.M., Lloyd, J.R., and Yang, K.T., An Experimental Investigation of the Laminar Natural Convection Velocity Field in Square and Partitioned Enclosures, Proc. of the 8th International Heat Transfer Conference, 1513-1518, April 1986.

    Botella, O., and Peyret, R., Benchmark Spectral Results on the Lid Driven Cavity Flow, Computers & Fluids, 27, 421-433, 1998.

    Catton, I., Natural Convection in Enclosures, Proc. of the Sixth lnternational Heat Transfer Conference, 13-31, June 1978.

    Chang, L.C., Lloyd, J.R., and Yang, K.T., A Finite Difference Study of Natural Convection in Complex Enclosures, Proc. of the Seventh International Heat Transfer Conference, 183-188, February 1982.

    Childs, S. J., and Reddy, B. D., Finite Element Simulation of the Motion of a Rigid Body in a Fluid with Free Surface, Computer Methods in Applied Mechanics and Engineering, 175, 99-120, 1999.

    Cieplak, M., Koplik, J., and Banavar, J.R., Application of Statistical Mechanics in Subcontinuum Fluid Dynamics, Physica A, 274, 281-293, 1999.

    Cieplak, M., Koplik, J., and Banavar, J.R., Molecular Dynamics of Flows in the Knudsen Regime, Physica A, 287, 153-160, 2000.

    Chapela, G.A., Saville, G., Thompson, S.M., and Rowlinson, J.S., Computer Simulation of a Gas-Liquid Surface. Part 1, J. Chem. Soc. Faraday Ⅱ, 73, 1133-1144, 1977.

    Cormack, D.E., Leal, L.G., and Imberger, J., Natural Convection in a Shallow Cavity with Differentially Heated End Walls, Part. 1, Asymptotic Theory, J. Fluid Mechanics, 65, 209-229, 1974a.

    Cormack, D.E., Leal, L.G., and Seinfield, J.H., Natural Convection in a Shallow Cavity with Differentially Heated End Walls, Part. 2, Numerical Solutions, J. Fluid Mechanics, 65, 231-246, 1974b.

    Delhommelle, J., and Evans, D.J., Configurational Temperature Profile in Confined Fluids. Ⅰ. Atomic Fluid, J. Chemical Physics, 114, No. 14, 6229-6235, 2001a.

    Delhommelle, J., and Evans, D.J., Configurational Temperature Profile in Confined Fluids. Ⅱ. Molecular Fluids, J. Chemical Physics, 114, No. 14, 6236-6241, 2001b.

    Ewald, P., Die Berechnung Optischer und Elektrostatischer Gitterpotentiale, Ann. Phys, 64, 253-281, 1921.

    Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lectures on Physics, Addison-Wesley Reading, MA., 1963.

    Fincham, D., and Heyes, D.M., Integration Algorithms in Molecular Dynamics, CCP5 Quarterly, 6, 4-10, 1982.

    Frenkel, D., and McTague, J.P., Computer Simulations of
    Freezing and Supercooled liquids, A. Rev. Phys. Chem., 31, 491-521, 1980.

    Frenkel, D., and Smit, B., Understanding Molecular Simulation- from Algorithm to Application, Academic Press, San Diego, 1996.

    Gear, C.W., The Numerical Integration of Ordinary Differential Equations of Various Orders, Report ANL 7126, Argonne National Laboratory, 1966.

    Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Gebhart, B., Jaluria, Y., Mahaian, R.L. and Sammakia, B., Buoyancy-Induced Flows and Transport, Hemisphere, New York, 1988.

    Gomez, J. E., and Power, H., A Multiple Direct and Indirect BEM for 2D Cavity Flow at Low Reynolds Number, Engineering Analysis with Boundary Elements, 19, 17-31, 1997.

    Greenspan, D., A Molecular Mechanics-Type Approach to Turbulence, Mathl. Comput. Modeling, 26, No. 12, 85-96, 1997.

    Greenspan, D., Molecular Cavity Flow, Fluid Dynamics Research, 25, 37-56, 1999.

    Greenspan, D., Molecular Mechanics Simulations of the Three-Dimensional Cavity Problem, Comput. Methods Appl. Mech. Engrg., 188, 543-552, 2000.

    Grilet, A. M., Yang, B., Khomami, B., and Shagfeh, E. S. G, Modeling of Viscoelastic Lid Driven Cavity Flow using Finite Element Simulations, J. Non-Newtonian Fluid Mech, 88, 99-131, 1999.

    Grilet, A. M., Shagfeh, E. S. G., and Khomami, B., Observations of Elastic Instabilities in Lid-Driven Cavity
    Flow, J. Non-Newtonian Fluid Mech., 94, 15-35, 2000.

    Harp, G. D., and Berne, B. J., Linear and Angular Momentum Autocorrelation Functions in Diatomic Liquids, J. Chem. Phys., 49, 1249-54, 1968.

    Harp, G. D., and Berne, B. J., Time Correlation Functions, Memory Functions, and Molecular Dynamics, Phys. Rev. A, 2, 975-996, 1970.

    Hernandez, R., and Frederick, R.L., Spatial and Thermal Features of Three-dimensional Rayleigh-Benard Convection, Int. J. Heat Mass Transfer, 37, 411-424, 1994.

    Heyes, D. M., The liquid State-Applicaton of Molecular Simulations, John Wiley & Sons, 1998.

    Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, New York, 1967.

    Hockney, R.W., The Potential Calculation and Some Applications, Methods Comput. Phys., 9, 136-211, 1970.

    Hockney, R.W., and Eastwood, J.W., Computer Simulations using Particles, McGraw-Hill, NewYork, 1981.

    Imberger, J., Natural Convection in a Shallow Cavity with Differentially Heated End Walls, Part 3. Experimental Results, J. Fluid Mechanics, 65, 247-260, 1974.

    Isbister, D.J., Searles, D.J., and Evans, D.J., Symplectic Properties of Algorithms and Simulation Methods, Physica A, 240, 105-114, 1997.

    Jorgensen, W.L., Chandrasekhar, J.J., Madura, D., Impey , R.W. and Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys., 79, No. 2, 926-935, 1983.

    Kakac, S., Aung, W., and Viskanta, R., Natural Convection: Fundamentals and Applications, Hemisphere, Washington, DC, 1985.

    Koplik, J., and Banavar, J.R., Molecular Simulation of Viscous Flow, Rev. JSME. Int. J. Series B, 41, No. 2, 353-360, 1998.

    Kotake, S., Future Aspects of Molecular Heat and Mass Transfer Studies, Thermal Science & Eng., 2, No. 1, 12-20, 1994.

    Kotake, S., Molecular Mechanical Engineering (Review), JSME Int. J. Series B, 38, 1-7, 1995.

    Krasnopolskaya, T. S., Meleshko, V. V., Peters, G. W. M., and Meijet, H. E. H., Mixing in Stokes Flow in an Annular Wedge Cavity, Eur. J. Mech. B/Fluids, 18, 793-822, 1999.

    Lee, J.K., Barker, J.A., and Pound, G.M., Surface Structure and Surface Tension: Perturbation Theory and Monte Carlo Calculation, J. chem. Phys., 60, 1976-1980, 1974.

    Lee, T.S., Son, G.H., and Lee, S.L., Numerical Predictions of Three-dimensional Natural Convection in a Box, Proc. 1st KSME-JSME Thermal and Fluids Engng. Conference, 278-283, February 1988.

    Lin, D., and Yan, W.M., Experimental Study of Unsteady Thermal Convection in Heated Rotating Inclined Cylinders, Int. J. Heat Mass Transfer, 43, 3359-3370, 2000.

    Lipps, F.B., Numerical Simulation of Three-dimensional Benard Convection in Air, J. Fluid Mechanics, 75, 113-148, 1976.

    Mallinson, G.D., and de Vahl Davis, G., Three-Dimensional Natural Convection in Box: a Numerical Study, J. Fluid Mechanics, 83, 1-31, 1977.

    Mansour, M.M., Baras, F., and Garcia, A.L., On the Validity of Hydrodynamics in Plane Poiseuille Flow, Physica A, 240, 255-267, 1997.

    Maruyama, S., Molecular Dynamics Method for Microscale Heat Transfer, W.J. Minkowycz and E.M. Sparrow (Eds), Advances in Numerical Heat Transfer, 2, Chap. 6, 189-226, Taylor & Francis, New York, 2000.

    Maxwell, J.C., Philos. Trans. R. Soc. London Ser. A, 170, 231, 1867

    McCammon, J.A., Gelin, B.R., and Karplus, M., Dynamics of Folded Proteins, Nature, 267, 585-590, 1977.

    Morse, M.D., and Rice, S.A., Tests of Effective Pair Potentials for Water: Predicted Ice Structures, J. Chem. Phys., 76, 650-660, 1982.

    Mynett, J.A., and Duxbury, D., Temperature Distribution within Enclosed Plane Air Cells Associated with Heat Transfer by Natural Convection, Proc. of the Fifth International Heat Transfer Conference, 13-3l, March 1974﹒

    Nicolas, J.J., Gubbins, K.E., Streett, W.B. and Tildesley, D.J., Equation of State for the Lennard-Jones Fluid, Mol. Phys. 37, 1429-1454, 1979.

    Nose, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Method, J. Chem. Phys., 81, 511-519,
    1984a.

    Nose, S., A Molecular Dynamics Method for Simulation in the Canonical Ensemble, Mol. Phys., 52, 255-268, 1984b.

    Ogasawara, H., Brena, B., Nordlund, D., Nyberg, M., Pelmenschikov, A., Pettersson, L.G.M., and Nilsson, A., Structure and Bonding of Water on Pt(111), Phys. Rev. Lett., 89, No. 27, 276102, 2002

    Ostrach, S., Natural Convection in Enclosures, Advances in Heat Transfer, edited by Hartnett, J.P. and Irvine, T.F., 161-227, August 1972.

    Ostrach, S., Natural Convection Heat Transfer in Cavities and Cells, Proc. of the Sixth International Heat Transfer Conference, 365-379, January 1982.

    Ozoe, H., Yamamoto, K., Churchill, S.W. and Sayama, H., Three Dimensional Numerical Analysis of Laminar Natural Convection in a Confined Fluid Heated from Below, J. Heat Transfer, 98, 202-207, 1976.

    Pallares, J., Cuesta, I., Grau, F.X. and F. Giralt, Natural Convection in a Cubical Cavity Heated from Below at Low Rayleigh Numbers, Int. J. Heat Mass Transfer, 39, 3233-3247, 1996.

    Pan, F., and Acrivos, A., Steady Flows in a Rectangular Cavity, J. Fluid Mech., 28, 643, 1967.

    Patterson, J., and Imberger, J., Unsteady Natural Convection in a Rectangular Cavity, J. Fluid Mechanics, 100, 65-86, 1980.

    Potter, D., Computational Physics, Wiley, New York, 1972.
    Rahman, A., Correlations in the Motion of Atoms in Liquid Argon, Phys. Rev. A, 136, 405-411, 1964.

    Rahman, A., and Stillinger. F.H., Molecular Dynamics Study of Liquid Water, J. Chem. Phys., 55, 3336-59, 1971.

    Rhee, H.S., Koseff, J.R., and Street, R.L., Flow
    Visualization of a Recirculating Flow by Rheoscopic Liquid and Liquid Crystal Techniques, Exp. Fluids, 2, 57, 1984.

    Risso, D., and Cordero, P., Generalized Hydrodynamics for a Poiseuille Flow: Theory and Simulations. Physical Review E, 58, No. 1, 546-553, 1998.

    Ryckaert, J.P., and Bellemans, A., Molecular Dynamics of Liquid N-Butance near its Boiling Point, Chem. Phys. Lett., 30, 123-125, 1975.

    Schlick, T., Barth, E., and Mandziuk, M., Biomolecular Dynamics at Long Timesteps: Bridging the Timescale Gap between Simulation and Experimentation, Annu. Rev. Biophys. Struct., 26, 181-222, 1997.

    Simkins, P.G. and Dudderar, T.D., Convection in Rectangular Cavities with Differentially Heated End Walls, J. Fluid Mechanics, 110, 433-456, 1981.

    Sokhan, V.P., Nicholson, D., and Quirke, N., Fluid Flow in Nanopores: An Examination of Hydrodynamic Boundary Conditions, J. Chemical Physics, 115, No. 8, 3878-3887, 2001.

    Stillinger, F. H., Theory and Molecular Models for Water, Adv, Chem. Phys., 31, 1-101, 1975.

    Stillinger, F. H., Water revisited, Science, 209, 451-7, 1980.

    Thompson, P.A., and Troian, S.M., A General Boundary Condition for Liquid Flow at Solid Surfaces, Nature, 389, 360-362, 1997.

    Travis, K.P., Todd, B.D., and Evans, D.J., Departure from Navier-Stokes Hydrodynamics in Confined Liquids, Physical Rev. E, 55, No. 4, 4288-4295, 1996.

    Travis, K.P., Todd, B.D., and Evans, D.J., Poiseuille Flow of Molecular Fluids, Physica A, 240, 315-327, 1997a.

    Travis, K.P., Todd, B.D., and Evans, D.J., Departure from Navier-Stokes Hydrodynamics in Confined Liquids, Physical Review E, 55, No. 4, 4288-4295, 1997b.

    Travis, K.P., and Gubbins, K.E., Poiseuille Flow of Lennard-Jones Fluids in Narrow Slit Pores, J. Chemical Physics, 112, No. 4, 1984-1994, 2000.

    Travis, K.P., and Evans, D.J., Molecular Spin in a Fluid undergoing Poiseuille Flow, Physical Review E, 55, No. 2, 315-327, 1997.

    Uribe, F.J., and Garcia, A.L., Burnett Description for Poiseuille Flow, Physical Review E, 60, No. 4, 4063-4078, 1999.

    Van Gunsteren, W.F., and Berendsen, H.J.C., Algorithm for Macromolecular Dynamics and Constraint Dynamics, Mol. Phys., 34, 1311-1327, 1977.

    Verlet, L., Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 159, 98-103, 1967.

    Verlet, L., Computer ‘Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions, Phys. Rev. 165, 201-14, 1968.

    Volz, S., Saulnier, J. B., Chen, G., and Beauchamp, P., Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques, J. Microelectronics, 31, 815-819, 2000.

    Von Neumann, J., Various Techniques Used in Connection with Random Digits, Us Nat. Bur. Stand. Appl. Math. Ser., 12, 36-38, 1951.

    Wilkes, J.O., and Churchill, S.W., The Finite Difference Computation of Natural Convection in a Rectangular Enclosure, A. I. Ch. E. J1., 12, 161-166, 1966.

    Wleklinski, J.J., A Calculation of Gaseous Slip Velocity and Microscale Flow Fields from a Molecular-Continuum Matching Analysis, Physica A, 291, 197-210, 2001.

    Wood, D. W., Computer Simulation of Water and Aqueous Solutions, In Water: a Comprehensive Treatise (ed. F. Franks), 6, 279-409, Plenum Press, New York, 1979.

    Yan, W.M., Li, H.Y., and Lin, D., Mixed Convection Heat Transfer in a Radially Rotating Square Duct with Radiation Effects, Int. J. Heat Mass Transfer, 42, 35-47, 1999.

    Yan, W.M., and Lin, D., Natural Convection Heat and Mass Transfer in Vertical Annuli with Film Evaporation and Condensation, Int. J. Heat Mass Transfer, 44, No. 6, 1143-1153, 2001.

    Yin, S.H., Wung, T.Y. and Chen, K., Natural Convection in an Air Layer Enclosed within Rectangular Cavities, Int. J.
    Heat Mass Transfer, 21, 307-315, 1978.

    Yoshii, N., Miyauchi, R., Miura, S. and Okazaki S., A Molecular-Dynamics Study of the Equation of State of Water using a Fluctuating-Charge Model, Chem. Phys. Letters, 317, 414-420, 2000.

    下載圖示 校內:立即公開
    校外:2004-07-26公開
    QR CODE