簡易檢索 / 詳目顯示

研究生: 邱國智
Chiu, Kuo-Chih
論文名稱: 利用表面強化拉曼散射於單一DNA生物分子層結構之分析
DNA Monolayer Structural Analysis by Using Surface-enhanced Raman Scattering
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 衰減全反射粒子電漿子生物感測器表面強化拉曼散射表面電漿子
外文關鍵詞: particle pla, surface-enhanced Raman scattering
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   於生物分子的研究上,建立一多功能之光學生物感測平台作為生物分子交互作用分析(biomolecular interaction analysis,BIA)為一項重要的研究工作,其中,藉由表面電漿共振(surface plasmon resonance,SPR)感測技術來提供生物分子交互作用之動力學資訊,並結合提供生物分子結構資訊之表面強化拉曼散射技術(surface-enhanced Raman scattering,SERS),將可建立一更完善之生物分子辨識平台,獲得更多所需的資訊。

      而SERS這項技術則具有探測單一分子的能力,將可與SPR技術一樣利用衰減全反射方式(attenuated total reflection,ATR)來激發表面電漿子(surface plasmons,SPs)以檢測感測器表面上生物分子的訊號。然而由於生物分子之拉曼訊號相當微弱,必須藉由粒子電漿子(particle plasmons,PPs)的操控,來加以放大信號。本論文中,先介紹拉曼散射之基本理論,再接著介紹SPs與PPs之近場電磁強化作用,藉以作為SERS物理機制之基礎,並以化學機制為輔助,以期對電漿子強化拉曼訊號的機制有理論上之依據。在實驗部份,則利用化學合成方式來製造奈米銀粒子,用來排列於奈米膜層上之金屬粒子大小與其分佈情形,並建立衰減全反射方式微拉曼光譜儀來加以量測分析,目標為研究固定於表面之生物分子結構資訊,例如:分子異構物,去氧核糖核酸的雜交反應,DNA的二次結構變異,蛋白質二級結構變異等等,得到其SERS光譜訊號並加以分析討論,作為與本論文研究動機與目的之驗証。經由這些實驗結果,我們將可建構一藉由電漿子來強化量測訊號之SERS的生物分子辨識平台,提供生物分子的結構改變之資訊,以期在生物分子結構的研究上有所幫助與貢獻。

      To establish a multi-purpose optical biosensing platform for biomolecular interaction analysis (BIA) is a key research work in biomolecule. With helps of surface plasmon resonance (SPR) to analyze the kinetics of biomolecular interactions and of surface-enhanced Raman scattering (SERS) to detect the structural change of biomolecules, an advanced biomolecular recognition system with the both techniques can provide more information in a variety of BIA.

      SERS can be used to identify the molecular structure on sensor surface with the enhancement of electro-magnetic (EM) field through exciting surface plasmons (SPs) based on the attenuated total reflection (ATR) method. However, the Raman signal of biomolecule is still tiny, and hence it is needed to be magnified by other approaches such as manipulating particle plasmons (PPs). In this thesis, the near-field EM enhancement through SPs and PPs excitation is introduced. The physical and chemical mechanisms of SERS are investigated to provide a scientific basis for understanding the plasmonic enhancement of Raman signal. Using a chemical synthesis approach to fabricate Ag nanoparticles, the size and distribution of embedded metal nanoparticles can be controlled on the sensor surface to enhance the near EM field. Finally, the Raman signal of deoxyribonucleic acid (DNA) by using the homemade ATR-Raman spectroscopes are tested and verified the motivation and intent of this thesis. According to these preliminary achievements, the biomolecular recognition platform utilizing the plasmonic enhanced signal of SERS offers the structural information of biomolecules.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 2 1-3 文獻回顧 4 1-4 論文架構 5 第二章 表面強化拉曼散射 6 2-1 拉曼散射 6 2-2 拉曼散射光譜術與紅外吸收光譜術之互補性 14 2-3 表面強化拉曼散射 18 2-3-1 物理機制 18 2-3-2 化學機制(第一層效應) 21 第三章 電漿子激發 26 3-1 表面電漿子 26 3-1-1 表面電漿子之色散關係 26 3-1-2 光激發表面電漿子 30 3-1-3 表面電漿子之近場電磁強化 33 3-2 粒子電漿子 40 3-2-1 粒子電漿子之激發機制 40 3-2-2 粒子電漿子之近場電磁強化 43 第四章 光譜量測與校正 50 4-1 光譜系統之架設 50 4-2 譜線校正 56 4-3 TIR與ATR區域電場強化之比較 59 第五章 DNA結構分析 64 5-1 去氧核醣核酸分子 64 5-1-1 DNA分子 66 5-1-2 去氧核糖核酸探針固定化試驗 67 5-1-3 DNA雜交分析 69 5-2 樣品製備 73 5-2-1 銀粒子製備及其固定方法 73 5-3 聚焦激發微拉曼光譜儀 77 5-3-1 DNA二次結構之表面強化拉曼散射光譜 77 5-4 衰減全反射式激發微拉曼光譜儀 83 5-4-1 DNA二次結構之表面強化拉曼散射光譜 83 第六章 結論 87 參考文獻 89

    1.S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B 27, 1401-1404 (1983).
    2.S. Hayashi, T. Kitagawa, Y. Sekiguchi, T. Kume, “Enhanced-Raman scattering from organic thin films in an attenuated total reflection geometry mediated by half-leaky guided modes,” Thin Solid Film 342, 249-256 (1999).
    3.M. Futamata, E. Keim, A. Bruckbauer, D. Schumacher, A. Otto, “Enhanced Raman scattering from copper phthalocyanine on Pt by use of a Weierstrass prism,” Appl. Surf. Sci. 100-101, 60-63 (1996).
    4.D. Zerulla, G. Isfort, M. Kolbach, A. Otto, K. Schierbaum, “Sensing molecular properties by ATR-SPP Raman spectroscopy onelectrochemically structured sensor chips,” Electrochim. Acta 48, 2943-2947 (2003).
    5.M. Futamata, “Surface plasmon polariton enhanced Raman scattering of thickness and dielectric properties of constituents,” Langmuir 11, 3894-3901 (1995).
    6.M. Futamata, “Surface-plasmon-polariton-enhanced Raman scattering from self-assembled monolayers of p-Nitrothiophenol and p-Aminothiophenol on silver,” J. Phys. Chem. 99, 11901-11908 (1995).
    7.M. Futamata, “Application of attenuated total reflection surface-plasmon-polariton Raman spectroscopy to gold and copper,” Appl. Opt. 36, 364-375 (1997).
    8.M. Futamata, “Highly-sensitive Raman spectroscopy to characterize adsorbates on the electrode,” Surf. Sci. 386, 89-92 (1997).
    9.S. Takahashi, M. Futamata, and I. Kojima, “Spectroscopy with scanning near-field optical microscopy using photon tunnelling mode,” J. Microsc. Oxford 194, 519-522 (1999).
    10.M. Futamata and A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425-430 (2001).
    11.M. Futamata and A. Bruckbauer, “Attenuated total reflection-scanning near-field Raman spectroscopy,” Jpn. J. Appl. Phys. 40, 4423-4429 (2001).
    12.T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim and M. I. Simon, “SERS method and instrumentation for genomics and biomedical analysis,” J. Raman Spectrosc. 30, 785-793 (1999).
    13.J.M. Bello, V. A. Narayanan, D. L. Stokes, and T. Vo-Dinh, “Fiber-optic remote sensor for in situ surface-enhanced Raman scattering analysis,” Anal. Chem. 62, 2437-2441 (1990).
    14.D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sensor. Actuat. B Chem. 69, 28-36 (2000).
    15.M. Futamata and D. Diesing, “Adsorbed state of pyridine, uracil and water on gold electrode surfaces,” Vib. Spectrosc. 19, 187-192 (1999).
    16.M. Futamata, “In-situ ATR-IR study of water on gold electrode surface,” Surf. Sci. 427-428, 179-183 (1999).
    17.M. Futamata, “Coadsorbed state of uracil, water and sulfate species on the gold electrode surface,” Chem. Phys. Lett. 317, 304-309 (2000).
    18.M. Futamata, “Unique adsorbed state of 4,4’-BiPy and -BiPyH22+ on Au(111) electrode,” Chem. Phys. Lett. 332, 421-427 (2000).
    19.T. Tanaka, S. Nagao, and H. Ogawa, “Attenuated total reflection Fourier transform infrared (ATR-FTIR),” Anal. Sci. 17, i1081-i1084 (2001).
    20.M. Futamata, “Coadsorption of anions and water molecule during underpotential deposition of Cu and Pb on the Au (111) electrode surface,” Chem. Phys. Lett. 333, 337-343 (2001).
    21.M. Futamata, “Characterization of the first layer and second layer adsorbates on Au electrodes using ATR-IR spectroscopy,” J. Electroanal. Chem. 550-551, 93-103 (2003).
    22.K. L. A. Chan and S. G. Kazarian, “New Opportunities in micro- and macro-ATR infrared spectroscopic imaging spatial resolution and sampling versatility,” Appl. Spectrosc. 57, 381-389 (2003).
    23.D. Roy and J. Fendler, “Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials,” Adv. Mater. 16, 479-508 (2004).
    24.D. Kambhampati, P. E. Nielsen, W. Knoll, “Investigating the kinetics of DNADNA and PNADNA interactions using SPR-enhanced fluorescence spectroscopy,” Biosens. Bioelectron. 16, 1109-1118 (2001).
    25.T. Liebermann, W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surface. A 171, 115-130 (2000).
    26.T. Neumann, M-L Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater 12, 575-586 (2002).
    27.http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
    28.K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari and M. S Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
    29.易政男,藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散射生物感測器,國立中央大學光電科學研究所,九十四學年博士論文。
    30.Derek A. Long, The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, New York: John Wiley & Sons, 2002.
    31.S. Gasiorowicz, Quantum Physics, John Wiley & Sons, 1995. , ch. 1.
    32.E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
    33.Siegfried Wartewig, IR and Raman spectroscopy :fundamental processing, Weinheim, Wiley-VCH, 2003.
    34.M. Kuwahara, T. Nakano, C. Mihalcea, T. Shima, J.H. Kim, J. Tominaga, and N. Atoda, “Less than 0.1 um linewidth fabrication by visible light using super-resolution near-field structure,” Microelectronic Engineering 57-58, 883-890, 2001.
    35.J.-J. Chyou, S.-J. Chen, C.-S. Chu, et al., “Multi-experiment linear data analysis for ATR biosensors,” Proc. SPIE 4089, (Seattle, Washington), July 2002.
    36.C.L. Lei, C.C. Wei, M.C. Chen, S.Y. Ou, W.-H. Li, and K.C. Lee, “Enhanced Raman scattering from crystal violet and benzoic acid molecules adsorbed on silver nanocrystals,” Materials Science and Engineering B 32, 39-45, 1995.
    37.P.-T. Leung, D. Pollard-Knight, G.P. Malan, and M.F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sensors and Actuator B 22, 175-180, 1994.
    38.P.M . Hui and D. Stroud, “Complex dielectric response of metal-particle clusters,” Physical Review B, 33, 2163-2169, 1986.
    39.M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles,” Appl. Opt. 19, 3373-3388 (1980).
    40.D.-S. Wang and M. Kerker,, “Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids,” Phys. Rev. B 24, 1777-1790 (1981).
    41.H. Xu, J. Aizpurua, M. Ka¨ll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
    42.A. Otto, I. Mrozek, H. Grabhorn and W. Akemann, “Surface-enhanced Raman scattering,” J. Phy.: Condens. Matter 4, 1143-1212(1992).
    43.R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957).
    44.C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev. 118, 640 (1960).
    45.H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag Berlin Heidelberg, (1988).
    46.H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation”, Opt. Lett. 6, 3, 122-124 (1981).
    47.A.D. Boardman., Electromagnetic surface modes, New York: Wiley, 1982. ch. 9.
    48.U. Kreibig, M. Vollmer, Optical properties of metal clusters, Berlin: Springer-Verlag, 1994. ch. 2.2.
    49.M. Futamata, Y. Maruyama, M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
    50.B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    51.Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, Boston: Artech House, 1990.
    52.Allen Taflove, Computational electrodynamics: the finite-difference time-domain method, Boston: Artech House, 1995.
    53.D. Mackowski and M. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    54.K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effect on plasmon resonances of nanogold particles,” Nano Letters 3, 1087-1090 (2003).
    55.H. Xu, J. Aizpurua, M. Ka¨ll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
    56.F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397, 429-434 (2004).
    57.P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
    58.P. Hildebrandt and M. Stockburger, “Enhanced resonance Raman spectroscopy of rhodamine 6G absorbed on colloidal silver,” J. Phys. Chem. 88, 5935-5944 (1984).

    下載圖示 校內:2007-08-10公開
    校外:2007-08-10公開
    QR CODE