| 研究生: | 郭建麟 Kuo, Chien-Lin | 
|---|---|
| 論文名稱: | 功能性氧化鋅奈米材料的成長與光電性質 Growth and Optoelectrical Properties of functional ZnO-based Nanomaterials | 
| 指導教授: | 黃肇瑞 Huang, Jow-Lay | 
| 共同指導教授: | 劉全璞 Liu, Chuan-Pu | 
| 學位類別: | 博士 Doctor | 
| 系所名稱: | 工學院 - 材料科學及工程學系 Department of Materials Science and Engineering | 
| 論文出版年: | 2010 | 
| 畢業學年度: | 98 | 
| 語文別: | 中文 | 
| 論文頁數: | 124 | 
| 中文關鍵詞: | 熱化學氣相沉積 、氧化鋅長方體奈米柱陣列 、合金氣相沉積製程 | 
| 外文關鍵詞: | Thermal CVD, Alloy Evaporating Deposition, Array of Al:ZnO rectangular nanorods | 
| 相關次數: | 點閱:122 下載:3 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
奈米材料獨特的物性與化性使其合成與其應用為近幾年重要之研究領域,於本論文中,我們加入新的製程理念深入探討所合成出的奈米結構之孕核與成長,利用穿透式電子顯微鏡(TEM)研究材料之微結構,並利用發光光譜儀與電流-電壓量測系統分析其光性與電性。本論文依所合成的材料結構外觀與實驗設計分成四部份。
  
第一部份為我們所提出的一個簡單的熱化學氣相沉積方法製備兩段發光的氧化鋅奈米棒,其奈米線的一端主要的發光波長為紫外光,而另一端主要發光波長為綠光激光。此現象的原因是因為單根氧化鋅奈米棒有著氧含量的變化而導致了奈米棒的不同端有不同的氧空缺濃度,以致單根奈米棒有不同的發光性質,此簡單的製程方法展現了極大的潛力應用於奈米元件的製備上。
第二部份主要為我們所提出的一個有趣的方法來製作摻雜鋁元素的氧化鋅長方體奈米柱陣列(Array of Al:ZnO rectangular nanorods),此新穎結構的誘發生成主要是因為鋁元素的摻雜導致於結構中產生的週期性成分變化,氧化鋅長方體奈米柱陣列結構的形成主要是由具有週期性厚度變化的奈米片孕核與成長所形成,而摻雜所造成的奈米片週期性成分變化即是造成奈米片週期性厚度變化的主因。穿透式電子顯微鏡(TEM)的分析清楚指出了氧化鋅長方體奈米柱陣列的薄片部份(sheet) 與長方體奈米柱 (rectangular nanorod)之間存在著晶格不匹配與成分差異。
第三部分為利用合金氣相沉積製程(Alloy Evaporating Deposition, AED),藉由改變種子層的外觀於不加催化劑的情況下合成出具有不同奈米線密度的單晶摻雜鋁的氧化鋅奈米線陣列。實驗中發現奈米線會由預先用濺鍍機成長的氧化鋅種子層的尖端部份優先長出,所以可藉由調整種子層形貌、結晶大小與粗糙度的變化來控制氧化鋅奈米線的密度。 此外,奈米線陣列的長度則可以藉由改變基板的位置與成長時間來控制。所合成出Al:ZnO 奈米線之室溫陰極發光光譜顯示有著明顯的UV發光峰於373 nm左右,並有較為寬廣的綠帶激光於500 nm。
第四部份為結合合金氣相沉積製程(Alloy Evaporating Deposition, AED)與電子束蒸鍍製程合成出奈米級的一維P-N型氧化亞銅/氧化鋅異質接面奈米線陣列結構,掃描式電子顯微鏡與穿透鏡電子顯微鏡的分析結果證明預先成長的摻雜鋁氧化鋅奈米線為沿著C軸成長的單晶纖鋅礦結構,氧化亞銅薄膜為多晶立方晶結構,其厚度約10 nm; 室溫陰極發光光譜顯示於摻雜鋁氧化鋅奈米線表面鍍上一層氧化亞銅薄膜有助於降低氧化鋅之綠光激光,而電流-電壓電性質量測結果顯示本實驗所合成之異質接面奈米線陣列結構有著優良的整合電流效果,本實驗提供了一個簡單方法合成一維P-N型異質接面奈米線陣列結構,未來有機會應用於發展二極體與太陽能電池元件。
就奈米線改質製程而言,本研究提供一個於單晶奈米線改變光性質的方法;就氧化鋅新穎結構的合成而言,本研究提出一個誘發氧化鋅奈米新穎結構成長的新機制; 吾人並於不加金屬催化劑的情況下,利用改變種子層的形貌去調整奈米線的密度,並開發一個新方法成長奈米級光電與太陽能元件。
Low-dimensional nanomaterials are a new class of advanced materials that have been receiving a lot of research interest in the last decade due to their superior physical and chemical properties. In this dissertation, we propose new concepts to further discuss the nucleation and growth of nanomaterials. Macrostructure of the samples was characterized by high resolution transmission electron microscopy (HRTEM). The optical and electrical properties were investigated by photoluminescence(PL) and current–voltage (I –V ) characterization. The main focus of this dissertation can be divided into four parts.
In first part, we demonstrate a simple method to fabricate two-segment ZnO nanorods, which exhibit ultraviolet emission from one segment and green light from the other by thermal chemical vapor deposition. This luminescence is attributed to varied oxygen concentrations in different segments of a single ZnO nanorod, which shows good potential for developing nano-pixel optoelectronic devices.
In the second part, we provide another interesting route of fabricating Al: ZnO rectangular nanorods by doping induced composition fluctuations. The rectangular nanorods are nucleated from a sheet-like nanostructure with periodic thickness fluctuations resulting from doping concentration modulation. Transmission electron microscopy (TEM) characterization shows the difference in Al concentration and lattice constant between the rectangular nanorods and neighboring nanosheets.
In the third part, Al doped ZnO nanowire arrays with controlled growth densities were fabricated on silicon without using catalysts via sputtering followed by thermal chemical vapor deposition (CVD). Scanning electron microscopy and high-resolution transmission electron microscopy results show that the Al:ZnO single-crystalline nanowires synthesized by CVD prefer growing epitaxially on the tips of the ZnO pyramids pre-synthesized by sputtering with the c-axis perpendicular to the substrate. Consequently, the densities of the as-grown Al: ZnO nanowires were controllable by changing the particle densities of the pre-grown ZnO seed layers. The Al concentration of the Al: ZnO nanowires were measured to be around 2.63 at.% by electron energy loss spectrum. Field-emission measurements show the turn-on fields of the Al:ZnO nanowire arrays with controllable area densities are tunable. Room-temperature cathodoluminescence spectra of the Al:ZnO nanowires show relatively strong and sharp ultraviolet emissions centered at 383 nm and broad green emissions at around 497 nm. This work provides a simple method to control the field emission and luminescence densities of Al doped ZnO nanowire arrays, which also shows good potential for developing nano-pixel optical devices.
In the fourth part, Vertically-aligned large-area P-Cu2O/n-AZO(Al-doped ZnO) radial heterojunction nanowire arrays were synthesized on silicon without using catalysts in thermal chemical vapor deposition followed by e-beam evaporation. Scanning electron microscopy and high-resolution transmission electron microscopy results show that poly-crystalline Cu2O nano-shells with thicknesses around 10 nm conformably formed on the entire periphery of pre-grown Al:ZnO single-crystalline nanowires. The Al doping concentration in the Al: ZnO nanowires with diameters around 50 nm were determined to be around 1.19 at.% by electron energy loss spectroscopy. Room-temperature photoluminescence spectra show that the broad green bands of pristine ZnO nanowires were eliminated by capping with Cu2O nanoshells. The current-voltage (I-V) measurements show that the p-Cu2O/n-AZO nanodiodes have well-defined current rectifying behavior. This work provides a simple method to fabricate superior p-n radial nanowire arrays for developing nano-pixel optoelectronic devices and solar cells.
     In the subject of the modulation of the optical properties in different regions of a single nanorod, this work provides a simple method to adjust the optical properties of different segments of single nanorods.  In the subject of the synthesis of ZnO novbel structures, this work provides a new mechanism to induce the growth of ZnO novbel structures. Furthermore, nanowire arrays with controlled growth sites and densities were grown on the sputter-deposited ZnO seed layers without using catalysts by thermal CVD. This work also provides a simple method to fabricate radial nanowire arrays, which have great potential for developing nano-pixel optoelectronic devices and solar cells.
[1]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32 435 (1999).
[2]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8 1260 (2002).
[3]H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, Appl. Phys. Lett. 85 4142 (2004).
[4]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95 3141 (2004).
[5] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
[6] W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett. 71, 548 (1997).
[7] M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001).
[8] S. Bloom and J. Ortenburger, J. Phys. Status Solidi (b) 58, 561 (1973) 
[9] 施敏,張俊彥, “半導體元件物理與製作技術“,高立圖書有限公司, 2001年三版。
[10] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
[11] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
[12] R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64(5), 688 (1960). 
[13] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Crystal Growth. 203, 186 (1999)
[14] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[15] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science. 270, 1791 (1995).
[16] P. Yang and C. M. Lieber, Science. 173, 1836 (1996).
[17] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science. 270, 1791 (1995).
[18] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang Science. 292 1897 (2001).
[19] Y. B. Li, Y. Bando, and D. Golberg Appl. Phys. Lett. 84 3603 (2004). 
[20] C. X. Xu, X. W. Sun, Clement Yuen, B. J. Chen, and S. F. Yu Appl. Phys. Lett. 86 011118 (2005).
[21] K. Zou, X. Y. Qi , X. F. Duan, S. M. Zhou, and X. H. Zhang Appl. Phys. Lett. 86 013103 (2005).
[22] W. L. Hughes and Z. L. Wang Appl. Phys. Lett. 86 043106 (2005).
[23] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song Appl. Phys.Lett. 86 083106 (2005).
[24] R. C. Wang, C. P. Liu, and J. L. Huang Appl. Phys. Lett. 87 053103 (2005).
[25] X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, and D. Yu. Appl. Phys. Lett. 87 123111 (2005).
[26] X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang* J. Am. Chem. Soc. 127 2378 (2005).
[27] J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1 3351 (1970)
[28] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83 3401 (2003)
[29] C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84 1540 (2004).
[30] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B 109 2526 (2005).
[31] J. Jie, G. Wang, X. Han, and J. G. Hou, J. Phys. Chem. B 108, 17027 (2004).
[32] C. L. Hsu, S. J. Chang, H. C. Hang, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, J. Electrochem. Soc. 152 G378 (2005).
[33] T. S. Moss, Proc. Phys. Soc. London, Ser. B 67 775 (1954).
[34] E. Burstein, Phys. Rev. 93 632 (1954).
[35] B. E. Sernelius, K. -F. Berggren, Z. -C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B 37 10244 (1988).
[36] R. A. Abram, G. J. Rees , and B. L. H. Wilson, Adv. Phys. 27 799 (1978).
[37] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 209 1947 (2001). 
[38] X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, Science 303, 1348 (2004).
[39] X. Y. Kong and Z. L. Wang, Appl. Phys. Lett. 84 975 (2004).
[40] W. Hughes and Z. L. Wang, J. Am. Chem. Soc. 126 6703 (2004). 
[41] Z. L. Wang, Materials Today , June, 26-33 (2004).
[42] Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91 502 (2003).
[43] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science 300 1249 (2003).
[44] J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 81 7 (2002).
[45] X. Wang, C. J. Summer, and Z. L. Wang, Adv. Mater. 16 1215 (2004)
[46] R. C. Wang, C. P. Liu, J. L. Huang, and S. J.  Chen, Appl. Phys. Lett. 87 053103 (2005).
[47] P. X. Gao and Z. L. Wang, Appl. Phys. Lett. 84 15, 2883 (2002).
[48] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, W. Z. Song, and Q. Fu, Appl. Phys. Lett. 86 083106 (2005).
[49] X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, D. Yu, P. Zhang, H. Qi, and Y. Tian, Appl. Phys. Lett. 87 123111 (2005).
[50] J. Y. Lao, J. G. Wen, and Z. F. Ren, Nano. Lett. 2, 1287 (2002).
[51] R.C.Wang, C.P.Liu, J.L.Huang, and S.-J.Chen, Appl. Phys. Lett. 86 251104 (2005).
[52] C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu, Appl. Phys. Lett. 85 3878 (2004).
[53] F. Li, Y. Ding, P. Gao, X. Xin, and Z. L. Wang, Angew. Chem. Int. Ed. 43 5238 (2004).
[54] http://cmliris.harvard.edu/.
[55] B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Reviews 38 16 (2009).
[56] E. C. Garnett, and P. Yang, J. Am. Chem. Soc. 130 9224 (2008).
[57] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Nano Letters 8 4191 (2008).
[58] Y. H. a. C. M. Lieber, Pure and Applied Chemistry 76 (2004).
[59] F. Qian et al., Nat. Mater. 7 701 (2008).
[60] R. S. Chen et al., Applied Physics Letters 91 223106 (2007).
[61] C. Soci et al., Nano Letters 7 1003 (2007).
[62] J. H. He et al., J. Phys. Chem. C 111 12152 (2007).
[63] Z. Z. L Liao, B Yan, Z Zheng, Q L Bao, T Wu, C M Li, Z X Shen, J X Zhang, H Gong, J C Li, and T. Yu, Nanotechnology 20 085203 (2009).
[64] Z. L. Wang and J. Song, Science 312 14 (2006).
[65]D. B. Williams and C. B. Carter, “Transmisison Electron Microscopy”, Plenum, New York (1996).
[66]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999). 
[67]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8, 1260 (2002). 
[68]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrution, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). 
[69]A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, Rao T. K. Gundu, W. K. Chan, H. F. Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004). 
[70]A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000). 
[71]W. M. Kwok, Y. H. Leung, A. B. Djurišić, W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 87, 093108 (2005). 
[72]D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).
[73]R. C. Wang, C. P. Liu, and J. L. Huang, Appl. Phys. Lett. 86, 251104 (2005).
[74]R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Appl. Phys. Lett. 87, 053103 (2005).
[75]R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Appl Phys. Lett. 88, 023111 (2006).
[76]H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
[77]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
[78]K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996). 
[79]Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
[80]N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G.Cantwell, Appl. Phys. Lett. 81, 622 (2002).
[81]M. Iqbal, M. A. Shaikh, J. Akhter, M. Ahmad, M. Akhtar, and M. J. Moughal, J. Mater. Science. 39, 4255 (2004). 
[82]E. Burstein, Phys. Rev. 25, 7826 (1982).
[83]C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. J. Wen, and W. F. Pong, Appl. Phys. Lett. 88, 241905 (2006).
[84]Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003).
[85]X. Y. Kong , D. Yong, R. Yang, and Z. L. Wang, Science 303, 1348 (2004).
[86]R. C. Wang, C. P. Liu, and J. L. Huang, Appl Phys. Lett. 87, 053103 (2005).
[87]R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng, and S. C. Kung, Appl. Phys. Lett. 87, 013110 (2005).
[88]R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Nanotechnology 17 753 (2006). 
[89]Pan Z. Wei, Shannon M. Mahurin, Sheng Dai, and Douglas H. Lowndes, Nano letters 5 723 (2005).
[90]Z. G. Yin, N. F. Chen, R. X. Dai, L. Liu, X. G. Zhang, X. . Wang, J. L. Wu, and C. L. Chai, J. Cryst. Growth 305, 296 (2007).
[91]R. C. Wang, C. P. Liu, and J, L, Huang, Appl. Phys. Lett. 88, 023111 (2006).
[92]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science 300, 1249 (2003).
[93]H. Huang, S. Yang, J. Gong, H. Liu, J. Duan, X. Zhao, R. Zhang, Y. Liu, and Y. Liu, J. Phy. Chem. B 109, 20746 (2005). 
[94]K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
[95]X. Q. Meng, D. Z. Shen, J. Y. Zhang, D. X. Zhao, Y. M. Lu, L. Dong, Z. Z. Zhang, Y. C. Liu, and X. W. Fan, Solid State Commun. 135, 179 (2005).
[96]Y. Q. Chen, J. Jiang, Z. Y. He, Y. Su, D. Cai, and L. Chen, Mater. Lett. 59, 3280 (2005).
[97]H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Appl. Phys. Lett. 82, 2023 (2003).
[98]Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C. B. Jiang, M. K. Chyu, and S. X. Mao, Scr. Mater. 52, 63 (2005). 
[99]H. W. Lee, S. P. Lau, Y. G.Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, J. Cryst. Growth 268, 596 (2004).
[100]E. Burstein, Phys. Rev. 25, 7826 (1982). 
[101]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
[102]S. Y. Li, P. Lin, C. Y. Lee, and T. Y. Tseng, J. Appl. Phys. 95, 3711 (2004).
[103]M. Sano, K. Miyamoto, H. Kato, and T. Yao, J. Appl. Phys. 95 5527 (2004).
[104]R. .A Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).
[105]X. D. Bai, E. G. Wang, P. X. Gao, and Z. Wang, Nano Lett. 3, 1147 (2003).
[106]I. C. Yao, P. Lin, and T. Y. Tseng, Nanotechnology 20, 125202 (2009).
[107]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
[108]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8, 1260 (2002).
[109]S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen, and B. R. Huang, Nanotechnology 19, 095505 (2008).
[110]T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh, and I. C. Chend, Scripta Materialia 57, 53 (2007).
[111]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
[112]G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, T. P. Yang, and A. M. Liu, Appl. Phys. Lett. 89, 052113 (2006). 
[113]J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, J. W. Wang, Z. W. Zhao, and G. T. Du, Chin. Phys. Lett. 25, 4345 (2008).
[114]S. K. Hazra and S. Basu, Sensors and Actuators B 117, 177 (2006).
[115]A. E. Rakhshani, Solid-State Electron. 29, 7 (1986).
[116]D. K. Zhang, Y. C. Liu, Y. L. Liu, and H. Yang, Physica B 351, 178 (2004)
[117]J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Mater. 14, 1216 (2002).
[118]A. B. Djurišic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004).
[119]Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
[120]K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).  
[121]Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C. B. Jiang, M. K. Chyu, and S. X. Mao, Scr. Mater. 52, 63 (2005).
[122]H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Appl. Phys. Lett. 82, 2023 (2003).
[123]Y. Q. Chen, J. Jiang, Z. Y. He, Y. Su, D. Cai, and L. Chen, Mater. Lett. 59, 3280 (2005).
[124]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
[125]N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and   G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
[126]Z. Zhang, J. B. Yi, J. Ding, L. M. Wong, H. L. Seng, S. J. Wang, J. G. Tao, G. P. Li, G. Z. Xing, T. C. Sum, C. H. A. Huan, and T.Wu, J. Phys. Chem. C, 112, 9579 (2008).
[127]C. X. Wang, G. W. Yang, H. W. Liu, Y. H. Han, J. F. Luo, C. X. Gao, and G. T. Zou, Appl. Phys. Lett. 84, 13 (2004).
[128]K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, Appl. Phys. Lett. 84, 7 (2004).
[129]P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sortori, Appl. Phys. Lett. 69, 1680 (1996).
[130]H. C. Casey, J. J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).