簡易檢索 / 詳目顯示

研究生: 郭建麟
Kuo, Chien-Lin
論文名稱: 功能性氧化鋅奈米材料的成長與光電性質
Growth and Optoelectrical Properties of functional ZnO-based Nanomaterials
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 124
中文關鍵詞: 熱化學氣相沉積氧化鋅長方體奈米柱陣列合金氣相沉積製程
外文關鍵詞: Thermal CVD, Alloy Evaporating Deposition, Array of Al:ZnO rectangular nanorods
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料獨特的物性與化性使其合成與其應用為近幾年重要之研究領域,於本論文中,我們加入新的製程理念深入探討所合成出的奈米結構之孕核與成長,利用穿透式電子顯微鏡(TEM)研究材料之微結構,並利用發光光譜儀與電流-電壓量測系統分析其光性與電性。本論文依所合成的材料結構外觀與實驗設計分成四部份。

    第一部份為我們所提出的一個簡單的熱化學氣相沉積方法製備兩段發光的氧化鋅奈米棒,其奈米線的一端主要的發光波長為紫外光,而另一端主要發光波長為綠光激光。此現象的原因是因為單根氧化鋅奈米棒有著氧含量的變化而導致了奈米棒的不同端有不同的氧空缺濃度,以致單根奈米棒有不同的發光性質,此簡單的製程方法展現了極大的潛力應用於奈米元件的製備上。

    第二部份主要為我們所提出的一個有趣的方法來製作摻雜鋁元素的氧化鋅長方體奈米柱陣列(Array of Al:ZnO rectangular nanorods),此新穎結構的誘發生成主要是因為鋁元素的摻雜導致於結構中產生的週期性成分變化,氧化鋅長方體奈米柱陣列結構的形成主要是由具有週期性厚度變化的奈米片孕核與成長所形成,而摻雜所造成的奈米片週期性成分變化即是造成奈米片週期性厚度變化的主因。穿透式電子顯微鏡(TEM)的分析清楚指出了氧化鋅長方體奈米柱陣列的薄片部份(sheet) 與長方體奈米柱 (rectangular nanorod)之間存在著晶格不匹配與成分差異。

    第三部分為利用合金氣相沉積製程(Alloy Evaporating Deposition, AED),藉由改變種子層的外觀於不加催化劑的情況下合成出具有不同奈米線密度的單晶摻雜鋁的氧化鋅奈米線陣列。實驗中發現奈米線會由預先用濺鍍機成長的氧化鋅種子層的尖端部份優先長出,所以可藉由調整種子層形貌、結晶大小與粗糙度的變化來控制氧化鋅奈米線的密度。 此外,奈米線陣列的長度則可以藉由改變基板的位置與成長時間來控制。所合成出Al:ZnO 奈米線之室溫陰極發光光譜顯示有著明顯的UV發光峰於373 nm左右,並有較為寬廣的綠帶激光於500 nm。

    第四部份為結合合金氣相沉積製程(Alloy Evaporating Deposition, AED)與電子束蒸鍍製程合成出奈米級的一維P-N型氧化亞銅/氧化鋅異質接面奈米線陣列結構,掃描式電子顯微鏡與穿透鏡電子顯微鏡的分析結果證明預先成長的摻雜鋁氧化鋅奈米線為沿著C軸成長的單晶纖鋅礦結構,氧化亞銅薄膜為多晶立方晶結構,其厚度約10 nm; 室溫陰極發光光譜顯示於摻雜鋁氧化鋅奈米線表面鍍上一層氧化亞銅薄膜有助於降低氧化鋅之綠光激光,而電流-電壓電性質量測結果顯示本實驗所合成之異質接面奈米線陣列結構有著優良的整合電流效果,本實驗提供了一個簡單方法合成一維P-N型異質接面奈米線陣列結構,未來有機會應用於發展二極體與太陽能電池元件。

    就奈米線改質製程而言,本研究提供一個於單晶奈米線改變光性質的方法;就氧化鋅新穎結構的合成而言,本研究提出一個誘發氧化鋅奈米新穎結構成長的新機制; 吾人並於不加金屬催化劑的情況下,利用改變種子層的形貌去調整奈米線的密度,並開發一個新方法成長奈米級光電與太陽能元件。

    Low-dimensional nanomaterials are a new class of advanced materials that have been receiving a lot of research interest in the last decade due to their superior physical and chemical properties. In this dissertation, we propose new concepts to further discuss the nucleation and growth of nanomaterials. Macrostructure of the samples was characterized by high resolution transmission electron microscopy (HRTEM). The optical and electrical properties were investigated by photoluminescence(PL) and current–voltage (I –V ) characterization. The main focus of this dissertation can be divided into four parts.

    In first part, we demonstrate a simple method to fabricate two-segment ZnO nanorods, which exhibit ultraviolet emission from one segment and green light from the other by thermal chemical vapor deposition. This luminescence is attributed to varied oxygen concentrations in different segments of a single ZnO nanorod, which shows good potential for developing nano-pixel optoelectronic devices.

    In the second part, we provide another interesting route of fabricating Al: ZnO rectangular nanorods by doping induced composition fluctuations. The rectangular nanorods are nucleated from a sheet-like nanostructure with periodic thickness fluctuations resulting from doping concentration modulation. Transmission electron microscopy (TEM) characterization shows the difference in Al concentration and lattice constant between the rectangular nanorods and neighboring nanosheets.

    In the third part, Al doped ZnO nanowire arrays with controlled growth densities were fabricated on silicon without using catalysts via sputtering followed by thermal chemical vapor deposition (CVD). Scanning electron microscopy and high-resolution transmission electron microscopy results show that the Al:ZnO single-crystalline nanowires synthesized by CVD prefer growing epitaxially on the tips of the ZnO pyramids pre-synthesized by sputtering with the c-axis perpendicular to the substrate. Consequently, the densities of the as-grown Al: ZnO nanowires were controllable by changing the particle densities of the pre-grown ZnO seed layers. The Al concentration of the Al: ZnO nanowires were measured to be around 2.63 at.% by electron energy loss spectrum. Field-emission measurements show the turn-on fields of the Al:ZnO nanowire arrays with controllable area densities are tunable. Room-temperature cathodoluminescence spectra of the Al:ZnO nanowires show relatively strong and sharp ultraviolet emissions centered at 383 nm and broad green emissions at around 497 nm. This work provides a simple method to control the field emission and luminescence densities of Al doped ZnO nanowire arrays, which also shows good potential for developing nano-pixel optical devices.

    In the fourth part, Vertically-aligned large-area P-Cu2O/n-AZO(Al-doped ZnO) radial heterojunction nanowire arrays were synthesized on silicon without using catalysts in thermal chemical vapor deposition followed by e-beam evaporation. Scanning electron microscopy and high-resolution transmission electron microscopy results show that poly-crystalline Cu2O nano-shells with thicknesses around 10 nm conformably formed on the entire periphery of pre-grown Al:ZnO single-crystalline nanowires. The Al doping concentration in the Al: ZnO nanowires with diameters around 50 nm were determined to be around 1.19 at.% by electron energy loss spectroscopy. Room-temperature photoluminescence spectra show that the broad green bands of pristine ZnO nanowires were eliminated by capping with Cu2O nanoshells. The current-voltage (I-V) measurements show that the p-Cu2O/n-AZO nanodiodes have well-defined current rectifying behavior. This work provides a simple method to fabricate superior p-n radial nanowire arrays for developing nano-pixel optoelectronic devices and solar cells.

    In the subject of the modulation of the optical properties in different regions of a single nanorod, this work provides a simple method to adjust the optical properties of different segments of single nanorods. In the subject of the synthesis of ZnO novbel structures, this work provides a new mechanism to induce the growth of ZnO novbel structures. Furthermore, nanowire arrays with controlled growth sites and densities were grown on the sputter-deposited ZnO seed layers without using catalysts by thermal CVD. This work also provides a simple method to fabricate radial nanowire arrays, which have great potential for developing nano-pixel optoelectronic devices and solar cells.

    中文摘要.........................................................................................................Ⅰ 英文摘要.........................................................................................................Ⅳ 誌謝.................................................................................................................Ⅶ 總目錄.............................................................................................................Ⅸ 圖目錄.............................................................................................................IX 表目錄.............................................................................................................IX 第一章 緒論.................................................................................................1 1-1前言.....................................................................................................1 1-2 研究動機與目的................................................................................2 1-3 論文架構............................................................................................3 第二章 理論基礎........................................................................................5 2-1氧化鋅的晶體結構與特性.................................................................5 2-1-1晶體結構..................................................................................5 2-1-2極性表面與壓電特性..............................................................5 2-1-3熱穩定性..................................................................................6 2-1-4能帶結構...................................................................................8 2-2氧化鋅的理想晶體............................................................................11 2-3 ZnO奈米材料的成長機制...............................................................13 2-3-1 氣-液-固(Vapor-Liquid-Solid, VLS) 機制............................13 2-3-2溶液-液-固和氣-固機制.........................................................14 2-4 氧化鋅奈米材料合成方法..............................................................14 2-4-1 熱化學氣相沉積法(thermal CVD) .......................................14 2-4-2 模板(template)輔助成長法....................................................15 2-4-3 溶液法....................................................................................15 2-5摻混雜質元素的氧化鋅奈米材料之合成.......................................16 2-5-1能隙改變工程 (Band gap engineering) ..............................16 2-5-2 n-type 摻雜.........................................................................16 2-6各種動力學因素所造成的新穎氧化鋅奈米結構...........................20 2-6-1極性面所引發的新穎結構.....................................................20 2-6-2 模版引導(template-directed) 的新穎結構...........................24 2-6-3晶格不匹配形成的新穎結構.................................................28 2-6-4 階段性催化引發的新穎結構................................................32 2-6-5 其他因素引發的新穎結構....................................................34 2-7 一維奈米元件..................................................................................36 2-7-1 奈米線太陽能電池................................................................36 2-7-2 奈米線發光元件....................................................................36 2-7-3 奈米線偵測器........................................................................37 2-7-4 氧化鋅奈米發電機................................................................37 第三章實驗方法與步驟...........................................................................41 3-1氧化鋅奈米結構的合成...................................................................41 3-2 氧化鋅種子層製備..........................................................................43 3-3 微結構、成份、表面分析及性質分析..........................................43 3.3-1 掃描式電子顯微鏡................................................................43 3-3-2 高解析穿透式電子顯微鏡....................................................44 3-2-3 X光繞射圖(XRD) .................................................................48 3-2-4 光致螢光發光量測系統(PL) ................................................48 3-3-5 電流-電壓量測 (Current-Voltage, I-V) ................................51 3-3-6 場發射量測............................................................................51 第四章 結果與討論..................................................................................53 4-1 藉由改變鋅源的組成改變單根氧化鋅奈米線的光電性質..........53 4-1-1前言........................................................................................53 4-1-2 實驗方法...............................................................................54 4-1-3 表面型態分析.......................................................................54 4-1-4 發光性質分析.......................................................................56 4-1-5 微結構分析...........................................................................60 4-1-6 成長機制探討.......................................................................62 4-1-7結論........................................................................................67 4-2摻雜異質元素所產生晶格不匹配誘發奈米氧化鋅新穎結構.......68 4-2-1 前言........................................................................................68 4-2-2 實驗方法................................................................................69 4-2-3 表面型態分析........................................................................69 4-2.4 微結構分析............................................................................72 4-2-5陰極發光光譜分析..................................................................76 4-2-6 結論........................................................................................78 4-3 改變種子層的外觀控制摻雜鋁的氧化鋅奈米線陣列的密度.….79 4-3-1 前言........................................................................................79 4-3-2 實驗步驟................................................................................80 4-3-3表面形態分析.........................................................................81 4-3-4結構分析.................................................................................83 4-3-5成長機制探討.........................................................................87 4-3-6電性質分析.............................................................................90 4-3-7發光光譜分析.........................................................................92 4-3-8結論.........................................................................................94 4-4 p-n型氧化亞銅/氧化鋅異質接面奈米線陣列的合成與光電性質分析....................................................................................................................95 4-4-1前言........................................................................................95 4-4-2 實驗步驟...............................................................................96 4-4-3表面形態................................................................................97 4-4-4微結構分析..........................................................................100 4-4-5成長機制探討......................................................................103 4-4-6螢光發光光譜分析..............................................................103 4-4-7 電性質分析.........................................................................106 4-4-8 結論.....................................................................................108 第五章 總結.............................................................................................110 第六章 未來展望....................................................................................111 參考文獻......................................................................................................112 作者簡歷......................................................................................................121 圖目錄 圖2- 1 Wurtzite structure of ZnO with the polar zinc-terminated (0001)-Zn. [5] 7 圖2- 2 Band structure of wurtzite ZnO. [8] 9 圖2- 3 (a) Crystals of zinc oxide synthesized by Hydrothermal method. (b) Idealized growth habit of the ZnO crystal described by Laudise. [12, 13] 12 圖2- 4 (a)Schematic band structure with parabolic conduction and valence bands separated ; (b)after heavy doping assumed to have the sole effet of blocking the lowest state in the conduction band so that the optical gap is wisened by a Burstein-Moss shift; (c)representation of a pertured band structure and ensuing optical band gap Eg in the case of many-body interactions. [35] 19 圖2- 5. (a) Dark-field TEM images recorded from the comb structure and a structural model of ZnO and schematic models of nanotips and nanofingers (b) High-resolution TEM image recorded from a nanofinger growing along [0001] and an enlargement of the growth front to display the fine structures. [42] 23 圖2- 6 ZnO nanowalls and nanowires. (A) SEM image of quasi-3D ZnO nanostructures grown on a sapphire. The inset shows a SEM perspective view. (B) 2D ZnO nanowalls on a sapphire. (C) An array of free-standing 1D ZnO nanowires on a HOPG substrate using 15 A Au ultrathin film as the catalyst. (D) Schematic illustration showing the growth mechanism of ZnO nanowalls and nanowires. [43] 26 圖2- 7 TEM image of the heterostructures of the coaxial nanocables and the nanotubes. (b)High-resolution TEM image of the heterostructure of the coaxial nanocable and the nanotube. [44] 27 圖2- 8 (a) Low-magnification TEM image of a porous ZnO nanowire; (b) corresponding diffraction pattern. (c) hign- magnification TEM image taken on the edge of the porous ZnO nnaowire. (d) hign- magnification TEM image recorded from the areas indicated in Zn2SiO4/ZnO interface. (e) schematic of the proposed mechanism for growth of high porosity ZnO nanowires. [45] 29 圖2- 9 SEM images of a ZnO hexagonal microbox: (a) Low magnification; (b) medium magnification in tilted view. (c) medium magnification in side view, and (d) high magnification of nanowalls. [46] 31 圖2- 10 (a) SEM image of bunches of ZnO nanopropeller arrays rooted at Al2O3 substrate. (b) magnified image of the sixfold symmetrical ZnO nanopropeller arrays with flat top surfaces. (c)Schematic growth process of the nanoblade arrays. [47] 33 圖2- 11 SEM images of ZnO nanodisks. [52] 35 圖2- 12 Schematic of carrier generation and separation in (a) axial and (b) radial p-i-n nanowires. [55] 39 圖2- 13 (a) SEM of aligned ZnO NWs grown on a-Al2O3 substrate. (b) TEM of ZnO NWs, showing the typical structure of the NW without an Au particle or with a small Au particle at the top. Inset at center: an electron diffraction pattern from a NW. (c) Experimental setup and procedures for generating electricity by deforming a PZ NW with a conductive AFM tip. [64] 40 圖3- 1 Schematic diagram of our experimental instrument. 42 圖3- 2 (a) Schematic diagram of TEM. (b)Bright-field and dark-field image formation by selecting the direct beam or diffraction beam with the objective aperture. [65] 47 圖3- 3 Schematic diagram of Photoluminescence. 50 圖3- 4 The diagram of electrical measurement system. 52 圖 4- 1(a) Low magnification SEM image of the as-synthesized ZnO nanorods. (b) Higher magnification SEM image of the as-synthesized nanorods. 55 圖 4- 2 (a) Room-temperature cathodoluminescence spectrum of ZnO nanorods; CL spectroscopic image taken at (b) 377 nm and (c) 500 nm. 57 圖 4- 3 (a) SEM image of a single ZnO nanorod; CL spectroscopic images and (b, c) the corresponding intensity profiles taken at 377 nm and 500 nm, respectively. (d) The color-coded image of luminescence in ZnO nanorods. (e) Room-temperature CL spectrum of the ZnO nanorods after annealing at 400 oC in air for one hour. 59 圖 4- 4 (a) TEM bright-field image of a ZnO nanorod; (b) EDS spectrum of the whole ZnO nanorod; (c) TEM EDS line scan of a single nanorod; (d) High-resolution TEM image of the square region marked in fig. 4(a) with the inset for a corresponding selected-area electron diffraction pattern. 61 圖 4- 5 Schematic illustration of the alloying process of the sources at different stages during the growth of ZnO nanorods. 63 圖 4- 6 (a) TEM bright-field image and corresponding electron diffraction pattern of a single Al doped ZnO nanowire (b) HRTEM image from the outlined region indicated in Figure 6(a). (c) Al map of Al:ZnO nanowires with the doping concentration around 0.91 at.% derieved form EELS (d) Room-temperature CL spectrum of Al doped ZnO nanowires. (e) CL microscopic image of the Al:ZnO nanowires taken under the stimulation of 373 nm. (f) CL microscopic image of the nanowires taken under the stimulation of 500 nm. 66 圖 4- 7 SEM images of (a) the as-synthesized Al: ZnO rectangular nanorods grown on a Si substrate. (b) the upper regions of the rods with the inset for an entire view of the rectangular nanorod array. (c) the root of the rectangular nanorod arrays. 71 圖 4- 8 (a) A low-magnification bright-field TEM image of an array of Al: ZnO rectangular nanorods with (b) the corresponding electron diffraction pattern. (c) high- resolution TEM image, after Fourier filter, showing the dislocations at the interface of the sheet and rectangular nanorod. (d) TEM bright-field image of the Al doped ZnO rectangular nanorod array from another region. with (e) the corresponding Al elemental map of the nanorod array in (d) derived by EELS (L edge at 73 eV). 73 圖 4- 9 (a) TEM bright-field image of a Al doped ZnO rectangular nanorod array with (b) the corresponding thickness map of the rectangular nanorod array in (a) derived by EELS. (c) SEM image of an embryo of a rectangular nanorod array with partially developed nanorods at an earlier growth stage; (d) Schematic illustration of the proposed growth mechanisms. (e) Selective SEM images corresponding to the growth stages in Fig.(d). 75 圖 4- 10 (a) Room-temperature CL spectrum of the Al: ZnO rectangular nanorods; CL microscopic images taken with the emissions of (b) 368 nm and (c) 483 nm. 77 圖 4- 11 SEM images of the ZnO seed layers with different morphologies synthesized in (a) 20 % H2/Ar and (b) 7 % H2/Ar reducing atmosphere, respectively. (c) and (d) the resulting ZnO nanowires grown on the pre-grown ZnO particles in (a), and (b), respectively, with the insets showing higher-magnification images. 82 圖 4- 12 XRD of Al:ZnO nanowire array. 84 圖 4- 13 (a) A low-magnification bright-field TEM image of an as-synthesized Al:ZnO nanowire. (b) the corresponding electron diffraction pattern and (c) HRTEM image of the nanowire in (a). (d) Al map of an Al:ZnO nanowire with the Al concentration around 2.63 at.% derived from EELS (L edge at 73 eV). (e) TEM bright-field cross-sectional image of a pre-grown ZnO pyramid with the corresponding electron diffraction patterns of the ZnO hexagonal pyramid in (f) and the Si (111) substrate in (g). 86 圖 4- 14 Schematic illustration and selective SEM images of the growth stages. 89 圖 4- 15 (a) J-E curves and (b) the corresponding F–N plots of the Al doped ZnO nanowires with different area densities. 91 圖 4- 16 (a) Room-temperature CL spectrum of the as-synthesized Al doped ZnO nanowires; (b) the SEM image of the sample patterned by FIB; (c) the corresponding monochromatic CL images at 383 nm. 93 圖 4- 17(a) SEM plan-view image and (b) tilt-view image of the AZO nanowire arrays, with the inset showing a cross-sectional image. (c) SEM plan-view image and (d) tilt-view image of the AZO nanowire arrays upon capping with a copper oxide layer. 99 圖 4- 18 (a) A low-magnification TEM image of an Al:ZnO nanowire. (b) A corresponding diffraction pattern of an Al:ZnO nanowire. (c) A HRTEM image of and AZO nanowire. (d) A low-magnification TEM image of the p-Cu2O/n-AZO radial heterostructure. (e) A corresponding diffraction pattern of the Cu2O thin shell with the inset showing the HRTEM image of the shell layer. 102 圖 4- 19 Room-temperature PL spectra of the AZO nanowires and the p-Cu2O/n-AZO radial heterostructures. 105 圖 4- 20 (a) Schematic illustration of p-n junction device. (b) The SEM cross-sectional image of the p-Cu2O/n-AZO radial nanowires heterostructures devices. (c) The I-V characteristics of the p-Cu2O/n-AZO radial nanowires heterostructures. (d) The C–V characteristic of the p-Cu2O/n-AZO junction diode. 108 表目錄 表1-1 Properties of some semiconductor compounds.

    [1]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32 435 (1999).
    [2]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8 1260 (2002).
    [3]H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, Appl. Phys. Lett. 85 4142 (2004).
    [4]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95 3141 (2004).
    [5] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
    [6] W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett. 71, 548 (1997).
    [7] M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001).
    [8] S. Bloom and J. Ortenburger, J. Phys. Status Solidi (b) 58, 561 (1973)
    [9] 施敏,張俊彥, “半導體元件物理與製作技術“,高立圖書有限公司, 2001年三版。
    [10] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    [11] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
    [12] R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64(5), 688 (1960).
    [13] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Crystal Growth. 203, 186 (1999)
    [14] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
    [15] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science. 270, 1791 (1995).
    [16] P. Yang and C. M. Lieber, Science. 173, 1836 (1996).
    [17] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science. 270, 1791 (1995).
    [18] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang Science. 292 1897 (2001).
    [19] Y. B. Li, Y. Bando, and D. Golberg Appl. Phys. Lett. 84 3603 (2004).
    [20] C. X. Xu, X. W. Sun, Clement Yuen, B. J. Chen, and S. F. Yu Appl. Phys. Lett. 86 011118 (2005).
    [21] K. Zou, X. Y. Qi , X. F. Duan, S. M. Zhou, and X. H. Zhang Appl. Phys. Lett. 86 013103 (2005).
    [22] W. L. Hughes and Z. L. Wang Appl. Phys. Lett. 86 043106 (2005).
    [23] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song Appl. Phys.Lett. 86 083106 (2005).
    [24] R. C. Wang, C. P. Liu, and J. L. Huang Appl. Phys. Lett. 87 053103 (2005).
    [25] X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, and D. Yu. Appl. Phys. Lett. 87 123111 (2005).
    [26] X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang* J. Am. Chem. Soc. 127 2378 (2005).
    [27] J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1 3351 (1970)
    [28] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83 3401 (2003)
    [29] C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84 1540 (2004).
    [30] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B 109 2526 (2005).
    [31] J. Jie, G. Wang, X. Han, and J. G. Hou, J. Phys. Chem. B 108, 17027 (2004).
    [32] C. L. Hsu, S. J. Chang, H. C. Hang, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, J. Electrochem. Soc. 152 G378 (2005).
    [33] T. S. Moss, Proc. Phys. Soc. London, Ser. B 67 775 (1954).
    [34] E. Burstein, Phys. Rev. 93 632 (1954).
    [35] B. E. Sernelius, K. -F. Berggren, Z. -C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B 37 10244 (1988).
    [36] R. A. Abram, G. J. Rees , and B. L. H. Wilson, Adv. Phys. 27 799 (1978).
    [37] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 209 1947 (2001).
    [38] X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, Science 303, 1348 (2004).
    [39] X. Y. Kong and Z. L. Wang, Appl. Phys. Lett. 84 975 (2004).
    [40] W. Hughes and Z. L. Wang, J. Am. Chem. Soc. 126 6703 (2004).
    [41] Z. L. Wang, Materials Today , June, 26-33 (2004).
    [42] Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91 502 (2003).
    [43] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science 300 1249 (2003).
    [44] J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 81 7 (2002).
    [45] X. Wang, C. J. Summer, and Z. L. Wang, Adv. Mater. 16 1215 (2004)
    [46] R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Appl. Phys. Lett. 87 053103 (2005).
    [47] P. X. Gao and Z. L. Wang, Appl. Phys. Lett. 84 15, 2883 (2002).
    [48] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, W. Z. Song, and Q. Fu, Appl. Phys. Lett. 86 083106 (2005).
    [49] X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, D. Yu, P. Zhang, H. Qi, and Y. Tian, Appl. Phys. Lett. 87 123111 (2005).
    [50] J. Y. Lao, J. G. Wen, and Z. F. Ren, Nano. Lett. 2, 1287 (2002).
    [51] R.C.Wang, C.P.Liu, J.L.Huang, and S.-J.Chen, Appl. Phys. Lett. 86 251104 (2005).
    [52] C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu, Appl. Phys. Lett. 85 3878 (2004).
    [53] F. Li, Y. Ding, P. Gao, X. Xin, and Z. L. Wang, Angew. Chem. Int. Ed. 43 5238 (2004).
    [54] http://cmliris.harvard.edu/.
    [55] B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Reviews 38 16 (2009).
    [56] E. C. Garnett, and P. Yang, J. Am. Chem. Soc. 130 9224 (2008).
    [57] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Nano Letters 8 4191 (2008).
    [58] Y. H. a. C. M. Lieber, Pure and Applied Chemistry 76 (2004).
    [59] F. Qian et al., Nat. Mater. 7 701 (2008).
    [60] R. S. Chen et al., Applied Physics Letters 91 223106 (2007).
    [61] C. Soci et al., Nano Letters 7 1003 (2007).
    [62] J. H. He et al., J. Phys. Chem. C 111 12152 (2007).
    [63] Z. Z. L Liao, B Yan, Z Zheng, Q L Bao, T Wu, C M Li, Z X Shen, J X Zhang, H Gong, J C Li, and T. Yu, Nanotechnology 20 085203 (2009).
    [64] Z. L. Wang and J. Song, Science 312 14 (2006).
    [65]D. B. Williams and C. B. Carter, “Transmisison Electron Microscopy”, Plenum, New York (1996).
    [66]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
    [67]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8, 1260 (2002).
    [68]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrution, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
    [69]A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, Rao T. K. Gundu, W. K. Chan, H. F. Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004).
    [70]A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).
    [71]W. M. Kwok, Y. H. Leung, A. B. Djurišić, W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 87, 093108 (2005).
    [72]D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).
    [73]R. C. Wang, C. P. Liu, and J. L. Huang, Appl. Phys. Lett. 86, 251104 (2005).
    [74]R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Appl. Phys. Lett. 87, 053103 (2005).
    [75]R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Appl Phys. Lett. 88, 023111 (2006).
    [76]H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
    [77]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
    [78]K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    [79]Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
    [80]N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G.Cantwell, Appl. Phys. Lett. 81, 622 (2002).
    [81]M. Iqbal, M. A. Shaikh, J. Akhter, M. Ahmad, M. Akhtar, and M. J. Moughal, J. Mater. Science. 39, 4255 (2004).
    [82]E. Burstein, Phys. Rev. 25, 7826 (1982).
    [83]C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. J. Wen, and W. F. Pong, Appl. Phys. Lett. 88, 241905 (2006).
    [84]Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003).
    [85]X. Y. Kong , D. Yong, R. Yang, and Z. L. Wang, Science 303, 1348 (2004).
    [86]R. C. Wang, C. P. Liu, and J. L. Huang, Appl Phys. Lett. 87, 053103 (2005).
    [87]R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng, and S. C. Kung, Appl. Phys. Lett. 87, 013110 (2005).
    [88]R. C. Wang, C. P. Liu, J. L. Huang, and S. J. Chen, Nanotechnology 17 753 (2006).
    [89]Pan Z. Wei, Shannon M. Mahurin, Sheng Dai, and Douglas H. Lowndes, Nano letters 5 723 (2005).
    [90]Z. G. Yin, N. F. Chen, R. X. Dai, L. Liu, X. G. Zhang, X. . Wang, J. L. Wu, and C. L. Chai, J. Cryst. Growth 305, 296 (2007).
    [91]R. C. Wang, C. P. Liu, and J, L, Huang, Appl. Phys. Lett. 88, 023111 (2006).
    [92]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science 300, 1249 (2003).
    [93]H. Huang, S. Yang, J. Gong, H. Liu, J. Duan, X. Zhao, R. Zhang, Y. Liu, and Y. Liu, J. Phy. Chem. B 109, 20746 (2005).
    [94]K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    [95]X. Q. Meng, D. Z. Shen, J. Y. Zhang, D. X. Zhao, Y. M. Lu, L. Dong, Z. Z. Zhang, Y. C. Liu, and X. W. Fan, Solid State Commun. 135, 179 (2005).
    [96]Y. Q. Chen, J. Jiang, Z. Y. He, Y. Su, D. Cai, and L. Chen, Mater. Lett. 59, 3280 (2005).
    [97]H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Appl. Phys. Lett. 82, 2023 (2003).
    [98]Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C. B. Jiang, M. K. Chyu, and S. X. Mao, Scr. Mater. 52, 63 (2005).
    [99]H. W. Lee, S. P. Lau, Y. G.Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, J. Cryst. Growth 268, 596 (2004).
    [100]E. Burstein, Phys. Rev. 25, 7826 (1982).
    [101]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
    [102]S. Y. Li, P. Lin, C. Y. Lee, and T. Y. Tseng, J. Appl. Phys. 95, 3711 (2004).
    [103]M. Sano, K. Miyamoto, H. Kato, and T. Yao, J. Appl. Phys. 95 5527 (2004).
    [104]R. .A Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).
    [105]X. D. Bai, E. G. Wang, P. X. Gao, and Z. Wang, Nano Lett. 3, 1147 (2003).
    [106]I. C. Yao, P. Lin, and T. Y. Tseng, Nanotechnology 20, 125202 (2009).
    [107]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
    [108]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8, 1260 (2002).
    [109]S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen, and B. R. Huang, Nanotechnology 19, 095505 (2008).
    [110]T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh, and I. C. Chend, Scripta Materialia 57, 53 (2007).
    [111]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).
    [112]G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, T. P. Yang, and A. M. Liu, Appl. Phys. Lett. 89, 052113 (2006).
    [113]J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, J. W. Wang, Z. W. Zhao, and G. T. Du, Chin. Phys. Lett. 25, 4345 (2008).
    [114]S. K. Hazra and S. Basu, Sensors and Actuators B 117, 177 (2006).
    [115]A. E. Rakhshani, Solid-State Electron. 29, 7 (1986).
    [116]D. K. Zhang, Y. C. Liu, Y. L. Liu, and H. Yang, Physica B 351, 178 (2004)
    [117]J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Mater. 14, 1216 (2002).
    [118]A. B. Djurišic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004).
    [119]Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
    [120]K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    [121]Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C. B. Jiang, M. K. Chyu, and S. X. Mao, Scr. Mater. 52, 63 (2005).
    [122]H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Appl. Phys. Lett. 82, 2023 (2003).
    [123]Y. Q. Chen, J. Jiang, Z. Y. He, Y. Su, D. Cai, and L. Chen, Mater. Lett. 59, 3280 (2005).
    [124]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
    [125]N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
    [126]Z. Zhang, J. B. Yi, J. Ding, L. M. Wong, H. L. Seng, S. J. Wang, J. G. Tao, G. P. Li, G. Z. Xing, T. C. Sum, C. H. A. Huan, and T.Wu, J. Phys. Chem. C, 112, 9579 (2008).
    [127]C. X. Wang, G. W. Yang, H. W. Liu, Y. H. Han, J. F. Luo, C. X. Gao, and G. T. Zou, Appl. Phys. Lett. 84, 13 (2004).
    [128]K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, Appl. Phys. Lett. 84, 7 (2004).
    [129]P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sortori, Appl. Phys. Lett. 69, 1680 (1996).
    [130]H. C. Casey, J. J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).

    下載圖示 校內:2012-01-25公開
    校外:2012-01-25公開
    QR CODE