簡易檢索 / 詳目顯示

研究生: 邱詩航
Chiu, Shih-Hang
論文名稱: p-型銅鋁氧化物薄膜及n-型氧化鋅奈米結構特性研究
The studies of microstructure, magnetic and electrical properties in transparent conducting oxides CuAlO2 and ZnO nanostructures
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 162
中文關鍵詞: 氧化銅鋁氧化物薄膜氧化鋅奈米柱
外文關鍵詞: CuAlO2, p-type, ZnO, magnetic circular dichroism
相關次數: 點閱:75下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究,我們分別利用溶膠凝膠法製備過渡金屬摻雜銅鋁氧化物薄膜及利用水熱法製備過渡金屬摻雜氧化鋅奈米柱,並有系統化研究其相關特性變化。
    首先,我們嘗試利用溶膠凝膠法製備銅鋁氧化物薄膜,藉由不同高溫及氣氛熱處理觀察其結構變化,我們得到在氮氬混合氣氛及高溫1000度以上熱處理所調配的溶膠凝膠液可成長出純相銅鋁氧化物薄膜,室溫霍爾效應量測確認所製備銅鋁氧化物薄膜具有電洞傳導之半導體特性,利用溶膠凝膠法製備得到的銅鋁氧化物薄膜具有與文獻上雷射濺鍍同數量級之電洞載子數,光學特性的量測上證實此銅鋁氧化物薄膜為直接能隙之寬能隙半導體在可見光區段具有百分之七十的光穿透率,我們證實了利用溶膠凝膠法成長技術可成功製備電洞傳輸型銅鋁氧化物透明導電薄膜。
    後續我們更利用溶膠凝膠法調配化學劑量比優勢進行過渡金屬摻雜銅鋁氧化物薄膜的製備。我們研究不同濃度過渡金屬摻雜銅鋁氧化物薄膜其磁電特性與結構的關聯性,銅鋁氧化物薄膜在過渡金屬摻雜的溶解度較小,我們觀察到隨著鎳金屬摻雜量的增加,樣品由良好的稀磁性半導體相轉變為氧化銅及稀磁性半導體的混相,其電傳輸特性也隨著鎳金屬摻雜量的增加而變差,利用吸收光譜量測及理論擬合下,我們可得到銅鋁氧化物薄膜本質具有銅空缺存在,銅空缺被認為與電洞傳導特性有重要關聯性,在鎳金屬摻雜後對銅空缺的數量影響並不大,但是在銅鋁氧化物的結構中引致了一定數量的氧空缺,此氧空缺導致此系列樣品的導電特性隨著鎳金屬摻雜而下降,同時解釋在室溫霍爾效應量測所得到的結果,透過進一步退火製造薄膜中氧空缺數量,我們發現磁性由鐵磁至順磁及導電至絕緣性的現象發生,此轉變排除了氧空缺為主的磁性機制,我們進而推斷室溫鐵磁性與樣品中的載子數量及過渡金屬的自旋高度相關。
    此外,我們嘗試利用水熱法製備氧化鋅及過渡金屬摻雜氧化鋅奈米柱,並觀察其相關特性變化,透過水熱法我們可製備出c軸取向垂直排列的氧化鋅和鎳摻雜氧化鋅奈米柱陣列於氧化鋁基板上。氧化鋅和鎳摻雜氧化鋅奈米柱陣列具有極大長寬比及結構差異,透過X光繞射分析我們發現在鎳摻雜氧化鋅奈米柱陣列中具有較大的應力且離子半徑差異影響造成晶格縮,利用吸收光譜分析我們證實成功摻雜鎳至氧化鋅奈米柱中,氧化奈米柱陣列與p型Si異質結構顯示具有整流特性的pn結,在外加正向偏壓下我們可觀察到光激發的現像,我們成功結合氧化鋅奈米柱陣列與矽基板,未來可應用至現有以矽為主的的電子元件。
    我們亦利用後續氫化熱退火鎳:ZnO氧化鋅奈米柱陣列來研究結構其磁、電及磁光特性。吸收光譜顯示,大部分的鎳摻雜在ZnO晶格中是取代鋅原子的位置,我們更利用光學磁圓二相性量測儀於室溫中量測鎳:ZnO氧化鋅奈米柱陣列的磁光特性,鎳:ZnO氧化鋅奈米柱具有明顯的磁光效應及室溫鐵磁性,透過氫化熱退火可更提升其磁光效應及室溫鐵磁性,此磁光現像在鐵磁性金屬薄膜與未摻雜氧化鋅奈米柱並未被觀察到,所以鎳:ZnO氧化鋅奈米柱陣列為本質性室溫鐵磁具在增強的磁特性與氫化退火產生的氧空缺高度相關。

    Single phase p-type CuAlO2 thin films were synthesized through the chemical solution deposition method. The effects of post annealing temperature on the micro-structural, morphological and electrical properties have been studied. Via the optimized annealing treatment, the Hall effect measurements indicate that the CuAlO2 film belongs to the p-type semiconductor with intrinsic hole carriers of 6.71×1016 cm-3. The optical direct bandgap of the CuAlO2 film was estimated to be 3.48 eV by room temperature photoluminescence measurement, while the transmittance in the visible region was as high as 70%.
    Furthermore, the Ni doped CuAlO2 (00l) films with pure delafossite phase were established on α-Al2O3 (0001) substrate via chemical solution deposition. The p-type ferromagnetic Ni:CuAlO2 thin films were verified by structure analyses and room temperature Hall effect measurement. The X-ray absorption spectrums are observed for Cu, Ni K edges, and valence states of Cu and Ni ions are nearly monovalent (Cu+), and divalent (Ni2+), respectively, for Ni doped thin film. As evidenced by the quantitative local structure information at Cu K-edge, Ni doping causes local structure evolution include Cu and oxygen vacancies. The ferromagnetism in Ni: CuAlO2 is strongly correlated with the hole carrier concentration and localized spins of Ni.
    Via chemical bath deposition we succeed in preparing the ZnO and Ni:ZnO nanords. The structural, electric and magnetic characteristics of ZnO and Ni :ZnO nanorods were explored systematically. Vertically aligned ZnO and Ni :ZnO nanorods arrays were grown on sapphire substrate. Interestingly, SEM results reveal a variation of aspect ratio between ZnO and Ni :ZnO nanorods. XRD, XPS and XAS analyses demostrate a good incorporation of Ni dopants in ZnO nanorods. Furthermore, the ZnO nanorod/ p-type Si heterojunction displayed rectifying current-voltage characteristic of a pristine p-n junction diode and light emission under forward bias.
    The structure, electrical, and magneto-optical properties of as-grown and hydrogenated annealed Ni:ZnO nanorods (NRs) have been systematically investigated. X-ray absorption spectroscopy shows that most of the Ni dopants were incoporated in the ZnO matrix. Noticeable magneto-optical effect together with room temperature ferromagnetism were observed in Ni :ZnO NRs. A broad optical magnetic circular dichroism (OMCD) spectra with larger amplitude is observed for the hydrogenated annealed Ni:ZnO NRs, while non-magnetic state and no OMCD feature was observed in ZnO NRs. The enhancement in magnetization and OMCD singal are highly related to the oxygen vacancies due to hydrogenated annealing.

    摘要 I Abstract III Acknowledgement V List of Tables X List of Figures XI Chapter 1. Introduction 1 1.1 Introduction 1 1.2 Paper reviews of CuAlO2 and p-type diluted semiconductor 6 1.2-1 (a)Preparation of CuAlO2 thin film 6 1.2-2 (b)Magnetic property of TM: CuAlO2 13 1.3 Paper reviews of ZnO nanostructure 18 1.3-1 Preparation of ZnO Nanaords 18 1.3-2 Devices fabrication 22 1.3-3 Transition Metal doped ZnO nanorods 26 1.4 Motivation 31 1.5 Reference 32 Chapter 2 Theories and principles 35 2.1 Spin interactions in diluted magnetic semiconductor 35 2.1-1 Direct exchange 35 2.1-2 Superexchange 36 2.1-3 Double exchange 37 2.1-4 RKKY interaction 38 2.1-5 Bound magnetic polarons 39 2.2 Thermodynamics in Cu2O-Al2O3 system 45 2.3 X-ray absorption spectroscopy 46 2.3-1 XAS data interpretation 51 2.4 Reference 53 Chapter 3 Experimental equipment 55 3.1 Deposition 55 3.1-1Sol-gel coating 55 3.1-2 Pulse Laser Deposition (PLD) 58 3.2 Characterization 62 3.2-1 X-ray diffraction 62 3.2-2 X-ray absorption spectrum (XAS) 68 3.2-3 Scanning electron microscopy (SEM) 68 3.2-4 Transmission electrons microscopy (TEM) 70 3.2-5 Superconducting Quantum Interference Device (SQUID) 73 3.2-6 Electrical Characterization 77 3.3 Reference 82 Chapter 4 Characterization of CuAlO2 thin films 83 4.1 Characterization of p-type CuAlO2 thin films grown by chemical solution deposition 83 4.1-1 Introduction 83 4.1-2 Experiment 84 4.1-3 Crystalline of CuAlO2 thin films 86 4.1-4 Microstructure analysis 89 4.1-5 Transport property 93 4.1-6 Optical property 95 4.1-7 Summary 97 4.1-8 Reference 98 4.2 Room temperature Ferromagnetism in Ni:CuAlO2 thin films 101 4.2-1 Introduction 101 4.2-2 Experiment 103 4.2-3 Crystalline of Ni:CuAlO2 thin films 104 4.2-4 Magnetic property 105 4.2-5 Electrical property 106 4.2-6 Local structure 108 4.2-7 Summary 113 4.2-8 Reference 115 Chapter 5 ZnO and Ni doped ZnO nanorods 117 5.1 Chemical deposition of ZnO and Ni doped ZnO nanorods 117 5.1-1 Introduction 117 5.1-2 Experiment 118 5.1-3 Crystalline of Ni:ZnO nanorods 120 5.1-4 Morphology 121 5.1-5 Magnetic property 123 5.1-6 Electrical property 124 5.1-7 Discussion 124 5.1-8 Conclusion 132 5.1-9 Reference 133 5.2 Magneto-optical properties of Ni:ZnO nanords 135 5.2-1 Introduction 135 5.2-2 Experiment 136 5.2-3 Analysis of Ni:ZnO nanorods 137 5.2-4 Local structure 140 5.2-5 Magnetic property 141 5.2-6 Magneto-optical property 142 5.2-7 Conclusion 144 5.2-8 Reference 145 Chapter 6 Conclusion 147 Appendix 149 List of publication 161

    Chapter 1
    [1] S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner
    J.D. Budai Mater. Sci. Eng., R 40, 137 (2003).
    [2] H. Munekata, in: Proceedings of the Papers Presented at ICCG-13, August 2001.
    [3] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000).
    [4] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Konimura, Science 291, 854 (2001).
    [5] Y. Yamada, K. Ueno, T. Fukumura, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu,
    S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Science 332, 1065 (2010).
    [6] http://www.cmg.org/measureit/issues/mit41/m_41_2.html
    [7] H. Kawazoe, M.Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389, 939 (1997).
    [8] H. Luo, M. Jain, T. M. McCleskey, E. Bauer, A. K. Burrell, and Q. Jia, Adv. Mater. 19, 3604 (2007).
    [9] R. E. Stauber, J. D. Perkins, P. A. Parilla, D. S. Ginley, Electrochem. Solid-State Lett. 2, 654 (1999).
    [10] K. Tonooka, K. Shimokawa, O. Nishimura, Thin Solid Films 411, 129 (2002).
    [11] C. Bouzidi, H. Bouzouita, A. Timoumi, B. Rezig, Mater. Sci. Eng. B 118, 259 (2005).
    [12] B. J. Ingram, G. B. González, T. O. Mason, D. Y. Shahriari, A. Barnabè, D. Ko, K. R. Poeppelmeier, Chem. Mater. 16, 5616 (2004).
    [13] H.Kizaki, K. Sato, A. Yanase and H. K. Yoshida, Jpn. J. Appl. Phys. 44, L1187 (2005).
    [14] K. Sato, P. H. Dederichs and H. K. Yoshida: Europhys. Lett. 61, 403 (2003).
    [15] K. Sato and H. Katayama-Yoshida: Semicond. Sci. Technol. 17, 367 (2002).
    [16] H. Kizaki, K. Sato, A. Yanase, H. K. Yoshida, Physica B 376, 812 (2006).
    [17] N. Khare, M. J. Kappers, M. Wei, M. G. Blamire, and J. L. MacManus
    Driscoll, Adv. Mater. 18, 1449(2006).
    [18] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X.-H. Xu, J. R. Neal, A.
    M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206(2008).
    [19] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294,1488 (2001).
    [20] L.E. Greene, Matt Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 5, 1231 (2005).
    [21] B. Ling, J.L. Zhao, X. W. Sun, S. T. Tan, A. K. Kyaw, Y. Divayana, and Z. L. Dong, Appl. Phys. Lett. 97, 013101 (2010).
    [22] K. N. Hui, P. T. Lai, and H. W. Choi, Phys. Status Solidi C 6, S902 (2009).
    [23] B. Ling, X. W. Sun, J. L. Zhao, S. T. Tan, Z. L. Dong, Y. Yang, H. Y. Yu,
    and K. C. Qi, Physica E 41, 635 (2009).
    [24] S. T. Tan, X. W. Sun, J. L. Zhao, S. Iwan, Z. H. Cen, T. P. Chen, J. D. Ye, G. Q. Lo, D. L. Kwong, and K. L. Teo, Appl. Phys. Lett. 93, 013506 (2008).
    [25] J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, Jr., and J. Kim, Appl. Phys. Lett. 97, 082111 (2010).
    [26] A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer, and V. I. Klimov, Nano Lett. 5, 1039 (2005).
    [27] B. H. Chu, C. Y. Chang, K. Kroll, N. Denslow, Y.-L. Wang, S. J. Pearton, A. M. Dabiran, A. M. Wowchak, B. Cui, P. P. Chow, and F. Ren, Appl. Phys. Lett. 96, 013701 (2010).
    [28]S.Kumar, S. Rajaraman, R. A. Gerhardt, Z. L. Wang, and P. Hesketh, Electrochim. Acta 51, 943 (2005).
    [29] H. Morgan and N. G. Green, J. Electrost. 42, 279 (1997).
    [30] J. Iqbal., B. Wang, X. Liu, D. Yu,B. He and R. Yu, New J. Phys. 11, 063009 (2009).
    [31] J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M .Ziese, A.M. Fox and G. A. Gehring, Phys. Rev. Lett. 96, 197208 (2006).
    [32] K. R. Kittilstved, W. K. Liu, and D. R. Gamelin, Nat. Mater. 5, 291 (2006).
    [33] J. Joo, B. Y. Chow, M. Prakash , E. S. Boyden and J. M. Jacobson, Nature Mater. 10, 596 (2011).
    Chapter 2
    [1] P. Kacman, Semicond. Sci. Technol., 16, R25 (2001)
    [2] Rebecca Janisch, PriyaGopal, and Nicola A Spaldin, J. Phys.:Condens. Matter 17, R657 (2005).
    [3] Goodenough J B 1963 Magnetism and Chemical Bond (New York: Interscience Publishers)
    [4] M. Opel, J. Phys. D: Appl. Phys. 45, 033001 (2012).
    [5] C. Zener, Phys. Rev. 82, 403 (1951).
    [6] C. Zener, Phys. Rev. 81, 440 (1951).
    [7] C. Zener, Phys. Rev. 83, 299 (1951).
    [8] J. Torrance, M. Shafer and T. McGuire, Phys. Rev. Lett. 29, 1168 (1972).
    [9] A. Durst, R. Bhatt and P. Wolff , Phys. Rev. B 65, 235205 (2002).
    [10] D. Angelescu and R. Bhatt, Phys. Rev. B 65, 075221 (2002).
    [11] J. K¨ubler and D. Vigren, Phys. Rev. B 11, 4440 (1975).
    [12] A. Kaminski and S. Das Sarma, Phys. Rev. B 88, 247202 (2002).
    [13] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).
    [14] Stern, E. A., Theory of EXAFS. In X-ray Absorption Principles, Applications,
    Techniques of EXAFS, SEXAFS and XANES, Koningsberger, D. C.; Prins, R., Eds.
    John Wiley & Sons Inc.: 1998; pp 3-51.
    [15] Sayers, D. E.; Stern, E. A.; Lytle, F., Phys. Rev. Lett. 1971, 27, 1204.
    [16] Enderby, J. E.; North, D. M.; Egelstaff, P. A., Philos. Mag. 1966, 14, 961.
    [17] Durham, P. J., XANES theroy. In X-ray Absorption: Principles, Applications,
    Techniques of EXAFS, SEXAFS, and XANES. John Wiley & Sons: New York, 1988.
    [18] Teo, B.-K.; Lee, P. A., J. Am. Chem. Soc. 1979, 101, 2815-2832.
    [19] Ravel, B. EXAFS Analysis Using FEFF and FEFFIT.
    http://cars9.uchicago.edu/~ravel/talks/course/.
    [20] . Ravel, B. EXAFS Analysis with FEFF and FEFFIT Part 2: Commentary Version 0.05; April 12, 2001; pp 58-62.
    [21] Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D., Phys. Rev. B 1998, 58, 7565-7576
    Chapter 3
    [1] Alain C.Pierre, Introduction to Sol-gel Processing, Kluwer academic publishers, London, (1998).
    [2] R. C. Mehrotra: in Chemistry, Spectroscopy and Aplication of Sol-Gel Galsses, ed. R.Reisfeld, Springer-Verlag, Berlin, p1, (1992).
    [3]S. M. Attia, Jue Wang, Guangming Wu, Jun Shen and Jianhua Ma, J. Mater. Sci. Technol. 18, 211 (2002).
    [4] Smith H. M. and Turner A. F.,Appl. Opt. 4, 147 (1965).
    [5] Schwarz H. and Tourtellotte H. A. , J. Vac. Sci. Technol.6, 373 (1969).
    [6] Dijkkamp D., Venkatesan T., Wu X. D., Shaheen S. A., Jisrawi N, Min-Lee Y. H., McLean W. L. and Croft M., Appl. Phys. Lett. 51, 619 (1987).
    [7] Christen H. M., Ohkubo I, Rouleau C. M., Jellison G. E. Jr, Puretzky, Geohegan D. B. and Lowndes D. H., Meas. Sci. Technol. 16, 21 (2005).
    [8]Kelly R and Miotello A 1994 Pulsed Laser Deposition of Thin Films ed D H Chrisey and G K Hubler (New York: Wiley) p 55, (1994)
    [9] Miotello A and Kelly R, Appl. Phys. A 69, S67 (1999).
    [10] D. B. Geohegan, Diagnostics and characteristics oflaser-produced plasmas Pulsed Laser Deposition of Thin Films ed D. H. Chrisey and G. K. Hubler (New York: Wiley) (1994).
    [11] David C. Paine, Burag Yaglioglu, and Joseph Berry “Characterization of TCO Materials” , Handbook of Transparent Conductors, (2010)
    Chpater 4
    [1]H. Hosono, Int. J. Appl. Ceram. Technol. 1 (2004) 106 .
    [2]D. C. Look, J. W. Hemsky, T. K.wawai, Appl. Phys. Lett. 79 (2001) 988.
    [3]C. G. Van de Walle, Phys. Rev. Lett. 85 (2000)1012.
    [4] F. X. Xiu , Z. Yang , L. J. Mandalapu , D. T. Zhao,J. L. Liu ,W. Beyermann , Appl. Phys. Lett. 87 (2005) 152101.
    [5] Z. G. Yu ,H. Gong ,P. Wu, Chem. Mater. 17 (2005) 852.
    [6] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Nat. Mater. 4 (2005) 42.
    [7] C. H. Park ,S. B. Zhang ,S. H. Wei, Phys. Rev. B 63 (2002) L166.
    [8] Guangxia Hu, Hao Gong, Acta Materialia 56 (2008) 5066.
    [9]H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono,
    Nature 389 (1997) 939.
    [10]Hiroshi Yanagi, Tomomi Hase, Shuntaro Ibuki, Kazushige Ueda, Hideo Hosono, Appl. Phys. Lett. 78 (2001)1583.
    [11] H. Kizaki, K. Sato, A. Yanase, H. Katayama-Yoshida. J. J. Appl. Phys. 44 (2005) L 1187.
    [12] A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhysy, Thin Solid
    Films 474 (2005) 261.
    [13]N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, F. Kaneko, J. Phys. Chem. Solids 64 (2003) 1671.
    [14]H. Gong, Y. Wang, Y. Luo, Appl. Phys. Lett. 76 (2000)3959.
    [15] H. M. Luo, M. Jain ,T. M. McCleskey, E. Bauer E,A. K. Burrell, Q. X. Jia
    Adv. Mater. 19 (2007) 3604.
    [16 ] G. Li, X. Zhu, H. Lei, H. Jiang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan and S. Dai, J Sol-Gel Sci Technol 53 (2010) 641.
    [17 ] H. F. Jiang, X. B. Zhu, H. C. Lei, G. Li, Z. R. Yang, W. H. Song, J. M. Dai,Y. P. Sun and Y. K. Fu, J Sol-Gel Sci Technol 58 (2011) 12.
    [18] M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, Appl. Phys. Lett. 67 (1995) 2615.
    [19] K.T. Jacob, C. B. Alock, J. Am. Cream. Soc. 58(1975) 192.
    [20] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, and H. Hosono , J. Appl. Phys.
    88, 4159 (2000).
    [21] D.P. Cann, J.E. Clayton, N.A. Ashmore, Thin Solid Films 411(2002)140.
    [22] M. S. Lee, T. Y. Kim, D. Kim, Appl. Phys. Lett. 79 (2001) 2028.
    [23] N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, F. Kaneko, J. Phys. Chem. Solids 64 (2003) 1671.
    [24]W. Lan, W. L. Cao, M. Zhang, X. Q. Liu,Y. Y. Wang,E. Q. Xie, H. Yan, J. Mater. Sci. 44 (2009)1594.
    [25] A. S. Reddy,P. S. Reddy, S. Uthanna , G. M. Rao J. Mater. Sci. Mater. Electron. 17(2006) 615.
    [26] X. Nie ,S. H. Wei , S. B. Zhanger, Phys. Rev. Lett. 88 (2002) 066405.

    [1]H. Hosono, Int. J. Appl. Ceram. Technol. 1, 106 (2004)
    [2]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science
    300, 1269 (2003).
    [3] Lin Chen, Xiang Yang, Fuhua Yang, Jianhua Zhao, Jennifer Misuraca, Peng Xiong, and Stephan von Molnar, Nano Lett. 11, 2584 (2011).
    [4] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206 (2008).
    [5] Y. Yamada, K. Ueno, T. Fukumura, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu,
    S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Science 332, 1065 (2011).
    [6] Xiu FX, Yang Z, Mandalapu LJ, Zhao DT, Liu JL, Beyermann W., Appl. Phys. Lett.,87 152101 (2005)
    [7] Yu ZG, Gong H, Wu P. Chem. Mater.,17 852 (2005).
    [8] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Nat. Mater. 4, 42 (2005).
    [9] Park C.H. , Zhang S.B., Wei S.H., Phys. Rev. B, 63, L166 (2002).
    [10] Guangxia Hu, Hao Gong, Acta Materialia, 56, 5066 (2008).
    [11] S. H. Chiu and J. C. A. Huang, Surf. Coat. Technol. available online 8 March 2012 in pressed.
    [12]J. Ghijsen, L. H. Tjeng, J. van Elp,H. Eskes,J. Westerink, and M.T. Czyzyk, Phys. Rev. B 38,11322 (1988).
    [13] M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett., 79, 2028 (2001).
    [14] J. Pellicer-Porres, A. Segura, Ch. Ferrer-Roca, D. Martı´nez-Garcı´a, J. A. Sans,
    and E. Martı´nez , Phys. Rev. B 69, 024109 (2004).
    [15] A. Gaur, B. D. Shrivastava and S. K. Joshi, J. Phys.: Conf. Ser.,
    190, 012084 (2009).
    [16] M. C. Hsiao, H. Paul Wang, and Y. W. Yan, Environ. Sci. Technol. 35, 2532 (2001)
    [17] O. J. Dur´a, R. Boada, A. Rivera-Calzada, C. Le´on, E. Bauer, M. A. L´opez de la Torre, and J. Chaboy, Phys. Rev. B 83, 045202 (2011).
    [18] P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, (Wiley- Interscience, New York), 1972. p. 19.

    Chpater 5
    [1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, Byron Gates, Y. Yin, Franklin Kim, H. Yan, Adv. Mater. 15 (2003) 354.
    [2] S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei,
    Y. Ding, R. L. Snyder, Z. L. Wang, Nano Lett. 9 (2009) 3877.
    [3]T. Dietl , H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 1019.
    [4] Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. S. Shiu, M. Hofmann, M. Y. Chern, Nano Lett. 9 (2009) 1839.
    [5] J.J. Wu, S.C. Liu, Adv. Mater. 14 (2002) 215.
    [6]Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947.
    [7]K. Keis, L. Vayssieres, S. Lindquist, A. Hagfeldt, Nanostruct. Mater. 12 (1999) 487.
    [8]J. Iqbal, B.Wang, X. Liu, D. Yu, B. He, R. Yu , New J. Phys. 11 (2009) 063009.
    [9]T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, Zs. Geretovszky, J. Appl. Phys. 78 (1995) 6211.
    [10] I. Usman, R.S. Rawat, G. Roshan, T.L. Tan, P. Lee, S.V. Springham, S. Zhang, Li. Fengji, R. Chen, H.D. Sun, Appl. Surf. Sci. 258 (2011) 890.
    [11] Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie, T. Jiang, Nano Res. 4 (2011)1144.
    [12]C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, C. L. Hsu, Appl. Phys. Lett. 95 (2009) 223101.
    [13] O. Lupan, T. Pauporte , B. Viana, J. Phys. Chem. C 114 (2010) 14781.
    [14] J. J. Wu,D. K. P. Wong, Adv. Mater. 19 (2007) 2015.
    [15] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, C. L. Hsu, Appl. Phys. Lett. 95 (2009) 223101.
    [16] M. Hiroaki, T. Hitoshi, J. Appl. Phys. 107 (2010) 093523.
    [17]K. Sato, P. H. Dederichs, H. Katayama-Yoshida, J. Kudrnovsky, Physica B. 340 (2003) 863.
    [18]T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75 (1999) 3366.
    [19]D. Y. Inamdar, A. D. Lad,A. K. Pathak, I. Dubenko, N. Ali, S. Mahamuni, J. Phys. Chem. C 114(2010)1451.
    [20]B. Meyer, Dominik Marx, Phys. Rev. B 67 (2003) 035403.
    [21] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, G. A. Gehring, Phys. Rev. Lett. 100 (2008) 047206.
    [22]H. Sun,Q. F. Zhang, J. L. Wu, Nanotechnology 17 (2006) 2271.
    [23]X. W. Sun, J. Z. Huang, J. X. Wang, Z. Xu, Nano Lett. 8 (2008) 1219.
    [24]R. Ko¨nenkamp, R. C. Word, M. Godinez, Nano Lett. 5 (2005) 2005.
    [25]M. A. Zimmler, C. Ronning, F. Capasso, Appl. Phys. Lett. 94 (2009) 241120.

    [1] J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden and J. M. Jacobson, “Face-selective
    electrostatic control of hydrothermal zinc oxide nanowire synthesis” Nature Mater. 10, pp 596-601, 2011.
    [2] B.harati Panigrahy, M. Aslam, and D. Bahadur, “Aqueous synthesis of Mn- and
    Co-Doped ZnO Nanorods” J. Phys. Chem. C 114, pp 11758-11763, 2010.
    [3] S. H. Liu, H. S. Hsu, C. R. Lin, C. S. Lue, and J. C. A. Huang, “Effects of
    hydrogenated annealing on structural defects, conductivity, and magnetic properties
    of V-doped ZnO powders” Appl. Phys. Lett. 90, pp 222505-222507, 2007.
    [4] H. S. Hsu, J. C. A. Huang, S. F. Chen, and C. P. Liu, “Role of grain boundary and
    grain defects on ferromagnetism in Co:ZnO films” Appl. Phys. Lett. 90, pp 102506-102508, 2007.
    [5] H. S. Hsu, Y. Tung, Y. J. Chen, M. G. Chen, J. S. Lee, and S. J. Sun, “Defect
    engineering of room-temperature ferromagnetism of carbon-doped ZnO” Phys.Status
    Solidi RRL 5, pp 447–449, 2011.
    [6] S.H. Chiu and J.C.A. Huang, “Chemical bath deposition of ZnO and Ni doped ZnO nanorod”, J. Non-Cryst. Solids In Press , 2012.
    [7]H. S. Hsu, J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, and C. P. Liu “Evidence of oxygen vacancy enhanced
    room-temperature ferromagnetism in Co-doped ZnO” Appl. Phys. Lett. 88, pp
    242507-242509, 2006.
    [8] V.O. Pelenovich , Sh.U. Yuldashev, A.S. Zakirov, P.K. Khabibullaev, R.A.
    Nusretov, V.Yu. Sokolov “Optical and magneto-optical properties of thin Zn1-xMnxO films doped by nitrogen,” Physica B 404 pp 5266–5268, 2009
    [9] K. Ando and H. Saito “Magneto-optical properties of ZnO-based diluted
    magnetic semiconductors” J. Appl. Phys. 89 pp 7284-7286, 2001
    [10] B. Beschoten, P. A. Crowell, I. Malajovich, D. D. Awschalom, F. Matsukura,
    A. Shen, and H. Ohno, “Magnetic Circular Dichroism Studies of Carrier-Induced
    Ferromagnetism in(Ga1-xMnx)As” Phys. Rev. Lett. 83, pp 3073-3076, 1999.
    [11] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring “Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator” Phys. Rev. Lett. 100, pp0472061- 0472064, 2008.
    [12] S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping
    asymmetry and the defect physics of ZnO” Phys. Rev. B 63, pp 075204-075211, 2001.

    下載圖示 校內:2013-08-28公開
    校外:2014-08-28公開
    QR CODE