| 研究生: |
彭威愷 Peng, Wei-Kai |
|---|---|
| 論文名稱: |
發展功能性紡織產業之動態生產規劃以因應軟訂單 Development of a Dynamic Production Planning considering Soft Order Commitment for the Functional Textile Industry |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 軟訂單 、偏好順序技術法 、最小最大遺憾值演算法 |
| 外文關鍵詞: | Soft order, Technique for Order Preference by Similarity to Ideal Solution, Minimax regret |
| 相關次數: | 點閱:118 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2020 年的 COVID-19 疫情影響了全世界的供應鏈,加上中美貿易戰,許多產業面臨供應鏈中斷的問題,而由於大多數與醫療無關的市場緊縮,與醫療相關的市場又需緊急訂單,企業面臨客戶大量的棄單與追單。在我國扮演重要角色之功能性紡織業是受到影響很大的製造業之一,根據國際紡聯發布的調查報告中顯示:由於 COVID-19 疫情的影響,2020 年 3 月份到 6 月份,全球取消和推遲的訂單數量從 8%升至 42%,而營業額與 2019 年相比從下降 10.5%到下降32%。由於市場需求驟變,進而使品牌客戶經常更改或取消訂單,導致大量的存貨及呆料。
針對紡織產業中附加價值最高的功能性紡織業,本研究提出一套軟訂單之動態生產規劃模式以因應瞬息萬變的市場環境,期望能夠解決客戶時常下達不切實際之軟訂單以保證其產品充足供應的不良行為,此模式包括二模組,分別是軟訂單模組與動態訂單生產決策模組。軟訂單模組結合偏好順序技術法(TOPSIS)與合約設計,主要考量客戶的過去信用及未來可能受到的影響等,目的是為客戶做分類排名,來決定其所下訂單中有多少數量屬於基本量要優先生產,有多少數量屬於彈性量並視情況給予緊急追加。動態訂單生產決策模組則以最小最大遺憾值演算法(Minimax)為基礎,當面對內外在環境變動之下,即時進行動態決策,以決定對該客戶訂單要繼續生產/減少生產量/停止生產,避免更多的損失。最後,本研究將透過國內一紡織集團蒐集實證資料,並以 Microsoft Excel 與 Microsoft Visual Basic Application 軟體進行模擬,並與紡織業常用之最早到期日法進行產品庫存量比較,結果顯示,本研究所提出之軟訂單模組與動態決策模組皆能夠有效降低庫存量,而本研究之成果亦可協助紡織業者在疫情肆虐之下,以系統化方法達到提高客戶滿意度與降低庫存成本之平衡。
The COVID-19 epidemic has been affecting the supply chains all over the world since the beginning of 2020. Many industries are facing supply chain interruptions. The functional textile industry has the highest added value in the textile industry, however, it is also a manufacturing industry that has been severely affected by the COVID-19 pandemic. Due to the sudden change in market demand, brand customers have changed or cancelled orders, and enterprises are facing large number of cancellations and are chasing after orders, resulting in excess inventory and un-used raw materials. Based on this dilemma, in this study, a production planning system is proposed to cope with the rapidly changing market environment. Taking a functional textile company in Taiwan as an example, an attempt is made to resolve the excess inventory due to the practices of the customers, which frequently placing unrealistically large soft orders, and to ensure a sufficient product supply. The system includes two modules: a soft order module and a dynamic decision module. After collecting relevant production information, the total inventory is compared with the earliest due date method through a simulation system. The results show that the proposed system in this study can effectively reduce the inventory for the company. Furthermore, the proposed system in this study could also provide other textile manufacturers to achieve a balance between improving customer satisfaction and reducing inventory using a systematic method.
Abedi, A., & Zhu, W. (2020). An advanced order acceptance model for hybrid production strategy. Journal of Manufacturing Systems, 55, 82-93.
Ait-Alla, A., Teucke, M., Lütjen, M., Beheshti-Kashi, S., & Karimi, H. R. (2014). Robust production planning in fashion apparel industry under demand uncertainty via conditional value at risk. Mathematical Problems in Engineering, 2014, 901861.
Alemany, M., Alarcón, F., Ortiz, A., & Lario, F.-C. (2008). Order promising process for extended collaborative selling chain. Production Planning and Control, 19(2), 105-131.
Alemany, M., Ortiz, A., Boza, A., & Fuertes-Miquel, V. S. (2015). A model-driven decision support system for reallocation of supply to orders under uncertainty in ceramic companies. Technological and Economic Development of Economy, 21(4), 596-625.
Baruah, P., Chinnam, R. B., Korostelev, A., & Dalkiran, E. (2016). Optimal soft-order revisions under demand and supply uncertainty and upstream information. International Journal of Production Economics, 182, 14-25.
Brint, A., Genovese, A., Piccolo, C., & Taboada-Perez, G. J. (2021). Reducing data requirements when selecting key performance indicators for supply chain management: The case of a multinational automotive component manufacturer. International Journal of Production Economics, 233, 107967.
Cachon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management science, 47(5), 629-646.
Cai, J., Hu, X., Jiang, F., Zhou, Q., Zhang, X., & Xuan, L. (2019). Optimal input quantity decisions considering commitment order contracts under yield uncertainty. International Journal of Production Economics, 216, 398-412.
Camargo, V. C., Toledo, F. M., & Almada-Lobo, B. (2014). HOPS–Hamming-Oriented Partition Search for production planning in the spinning industry. European Journal of Operational Research, 234(1), 266-277.
Chen, J. C., Chen, C.-W., Lin, C. J., & Rau, H. (2005). Capacity planning with capability for multiple semiconductor manufacturing fabs. Computers & Industrial Engineering, 48(4), 709-732.
Chen, J. C., Chen, T.-L., & Harianto, H. (2017). Capacity planning for packaging industry. Journal of Manufacturing Systems, 42, 153-169.
Chen, J. C., Su, L.-H., Sun, C.-J., & Hsu, M.-F. (2010). Infinite capacity planning for IC packaging plants. International Journal of Production Research, 48(19), 5729-5748.
Chen, J. C., Sun, C.-J., & Chen, T.-L. (2015). Capacity planning for integrated circuit final test plants. International Journal of Computer Integrated Manufacturing, 28(12), 1262-1274.
Chien, C.-F., Dou, R., & Fu, W. (2018). Strategic capacity planning for smart production: Decision modeling under demand uncertainty. Applied Soft Computing, 68, 900-909.
Chien, C.-F., & Zheng, J.-N. (2012). Mini–max regret strategy for robust capacity expansion decisions in semiconductor manufacturing. Journal of Intelligent Manufacturing, 23(6), 2151-2159.
Chiu, C.-H., & Choi, T.-M. (2016). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research, 240(2), 489-507.
Christopher, M., Lowson, R., & Peck, H. (2004). Creating agile supply chains in the fashion industry. International Journal of Retail & Distribution Management, 32(8), 367-376.
Durango-Cohen, E. J., & Yano, C. A. (2006). Supplier commitment and production decisions under a forecast-commitment contract. Management science, 52(1), 54-67.
Durango‐Cohen, E. J., & Yano, C. A. (2011). Optimizing customer forecasts for forecast‐commitment contracts. Production and Operations Management, 20(5), 681-698.
Felfel, H., Yahia, W. B., Ayadi, O., & Masmoudi, F. (2018). Stochastic multi-site supply chain planning in textile and apparel industry under demand and price uncertainties with risk aversion. Annals of Operations Research, 271(2), 551-574.
Ferrándiz, M., Fages, E., Rojas-Lema, S., Ivorra-Martinez, J., Gomez-Caturla, J., & Torres-Giner, S. (2021). Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles. Polymers, 13(4), 665.
Framinan, J. M., & Leisten, R. (2010). Available-to-promise (ATP) systems: a classification and framework for analysis. International Journal of Production Research, 48(11), 3079-3103.
Gössinger, R., & Kalkowski, S. (2015). Robust order promising with anticipated customer response. International Journal of Production Economics, 170, 529-542.
Gan, X., Sethi, S. P., & Zhou, J. (2010). Commitment-penalty contracts in drop-shipping supply chains with asymmetric demand information. European Journal of Operational Research, 204(3), 449-462.
Guo, S., Choi, T.-M., Shen, B., & Jung, S. (2018). Inventory management in mass customization operations: A review. IEEE Transactions on Engineering Management, 66(3), 412-428.
Hausman, W. H. (1969). Sequential decision problems: A model to exploit existing forecasters. Management science, 16(2), B-93-B-111.
Hood, S. J., Bermon, S., & Barahona, F. (2003). Capacity planning under demand uncertainty for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 16(2), 273-280.
Hotaling, J. M., Fakhari, P., & Busemeyer, J. R. (2015). Dynamic decision making. International encyclopedia of the social & behavioral sciences, 709-714.
Hsu, H.-M., Hsiung, Y., Chen, Y.-Z., & Wu, M.-C. (2009). A GA methodology for the scheduling of yarn-dyed textile production. Expert Systems with Applications, 36(10), 12095-12103.
Huynh, N.-T., & Chien, C.-F. (2018). A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an empirical study. Computers & Industrial Engineering, 125, 615-627.
ITMF. (2020). 4th ITMF-Survey about the Impact of the Corona-Pandemic on the Global Textile Industry [Press release]
Jansen, K. (2020). Performance evaluation of knitted and stitched textile strain sensors. Sensors, 20(24), 7236.
Johnsen, L. C., Voigt, G., & Corbett, C. J. (2019). Behavioral contract design under asymmetric forecast information. Decision Sciences, 50(4), 786-815.
Karacapilidis, N. I., & Pappis, C. P. (1996). Production planning and control in textile industry: A case study. Computers in industry, 30(2), 127-144.
Karakaya, S., & Bakal, I. S. (2013). Joint quantity flexibility for multiple products in a decentralized supply chain. Computers & Industrial Engineering, 64(2), 696-707.
Kaur, H., & Singh, S. P. (2021). Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. International Journal of Production Economics, 231, 107830.
Khan, M. R., Harlock, S., & Leaf, G. (1999). Computer simulation of production systems for woven fabric manufacture. Computers & Industrial Engineering, 37(4), 745-756.
Knoblich, K., Heavey, C., & Williams, P. (2015). Quantitative analysis of semiconductor supply chain contracts with order flexibility under demand uncertainty: A case study. Computers & Industrial Engineering, 87, 394-406.
Korkmaz Memiş, N., Kayabaşı, G., & Yılmaz, D. (2019). Development of a novel hybrid yarn production process for functional textile products. Journal of Industrial Textiles, 48(9), 1462-1488.
Kunovjanek, M., & Wankmüller, C. (2021). An analysis of the global additive manufacturing response to the COVID-19 pandemic. Journal of Manufacturing Technology Management, 32(9), 75-100. doi:10.1108/JMTM-07-2020-0263
Kuthambalayan, T. S., & Bera, S. (2020). Managing product variety with mixed make-to-stock/make-to-order production strategy and guaranteed delivery time under stochastic demand. Computers & Industrial Engineering, 147, 106603.
Lam, J. K. C., & Postle, R. (2006). Textile and apparel supply chain management in Hong Kong. International Journal of Clothing Science and Technology, 18(4), 265-277. doi:10.1108/09556220610668491
Lee, C.-Y., & Chiang, M.-C. (2016). Aggregate demand forecast with small data and robust capacity decision in TFT-LCD manufacturing. Computers & Industrial Engineering, 99, 415-422.
Lee, C.-Y., & Liang, C.-L. (2018). Manufacturer’s printing forecast, reprinting decision, and contract design in the educational publishing industry. Computers & Industrial Engineering, 125, 678-687.
Lian, Z., & Deshmukh, A. (2009). Analysis of supply contracts with quantity flexibility. European Journal of Operational Research, 196(2), 526-533.
Lima-Junior, F. R., & Carpinetti, L. C. R. (2016). Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management. International Journal of Production Economics, 174, 128-141.
McNamara, K. (2008). The global textile and garments industry: The role of information and communication technologies (ICTs) in exploiting the value chain. Retrieved from
Mishra, B. K., Raghunathan, S., & Yue, X. (2007). Information sharing in supply chains: Incentives for information distortion. IIE Transactions, 39(9), 863-877.
Nakandala, D., Samaranayake, P., & Lau, H. C. (2013). A fuzzy-based decision support model for monitoring on-time delivery performance: A textile industry case study. European Journal of Operational Research, 225(3), 507-517.
Ngai, E., Peng, S., Alexander, P., & Moon, K. K. (2014). Decision support and intelligent systems in the textile and apparel supply chain: An academic review of research articles. Expert Systems with Applications, 41(1), 81-91.
Oh, S., & Özer, Ö. (2013). Mechanism design for capacity planning under dynamic evolutions of asymmetric demand forecasts. Management science, 59(4), 987-1007.
Özer, Ö., Uncu, O., & Wei, W. (2007). Selling to the “newsvendor” with a forecast update: Analysis of a dual purchase contract. European Journal of Operational Research, 182(3), 1150-1176.
Özer, Ö., & Wei, W. (2006). Strategic commitments for an optimal capacity decision under asymmetric forecast information. Management science, 52(8), 1238-1257.
Peng, C., Erhun, F., Hertzler, E. F., & Kempf, K. G. (2012). Capacity planning in the semiconductor industry: Dual-mode procurement with options. Manufacturing & Service Operations Management, 14(2), 170-185.
Puzovic, S., Radojicic, M., Vasovic, J. V., Paunovic, V., & Nesic, Z. (2018). An approach to economic optimization of the batch size in the textile industry. Tekstil ve Konfeksiyon, 28(4), 250-257.
Rasheed, A. (2020). Classification of Technical Textiles. In Fibers for Technical Textiles (pp. 49-64): Springer.
Reinmuth, J. E., & Geurts, M. D. (1976). A Bayesian approach to forecasting the effects of atypical situations. In Readings in Managerial Economics (pp. 137-147): Elsevier.
Samaranayake, P., Laosirihongthong, T., & Chan, F. T. (2011). Integration of manufacturing and distribution networks in a global car company–network models and numerical simulation. International Journal of Production Research, 49(11), 3127-3149.
Sezer Hicyilmaz, A., Altin, Y., & Bedeloglu, A. (2019). Polyimide‐coated fabrics with multifunctional properties: Flame retardant, UV protective, and water proof. Journal of Applied Polymer Science, 136(23), 47616.
Swaminathan, J. M. (2002). Tool procurement planning for wafer fabrication facilities: a scenario-based approach. Iie Transactions, 34(2), 145-155.
Taylor, T. A., & Plambeck, E. L. (2007). Supply chain relationships and contracts: The impact of repeated interaction on capacity investment and procurement. Management science, 53(10), 1577-1593.
Terwiesch, C., Ren, Z. J., Ho, T. H., & Cohen, M. A. (2005). An empirical analysis of forecast sharing in the semiconductor equipment supply chain. Management science, 51(2), 208-220.
Thomassey, S. (2014). A simulation based comparison: Manual and automatic distribution setup in a textile yarn rewinding unit of a yarn dyeing factory. Simulation modelling practice and theory, 45, 80-90.
Tian, Z., Tang, S. Y., & Kouvelis, P. (2019). Soft Order Commitment in Supply Chains: Role of Penalties and Rationing Rules. Decision Sciences, 50(2), 340-373.
Tsai, K.-m., & Wang, S.-c. (2009). Multi-site available-to-promise modeling for assemble-to-order manufacturing: An illustration on TFT-LCD manufacturing. International Journal of Production Economics, 117(1), 174-184.
Ülgen, V. S., & Forslund, H. (2015). Logistics performance management in textiles supply chains: best-practice and barriers. International Journal of Productivity and Performance Management.
Wang, X., Guo, H., & Wang, X. (2017). Supply chain contract mechanism under bilateral information asymmetry. Computers & Industrial Engineering, 113, 356-368.
Wanke, P., Barros, C. P., & Chen, Z. (2015). An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models. International Journal of Production Economics, 169, 110-126.
Wen, X., Choi, T.-M., & Chung, S.-H. (2019). Fashion retail supply chain management: A review of operational models. International Journal of Production Economics, 207, 34-55.
Wu, J. (2005). Quantity flexibility contracts under Bayesian updating. Computers & Operations Research, 32(5), 1267-1288.
Xie, J., Zhou, D., Wei, J. C., & Zhao, X. (2010). Price discount based on early order commitment in a single manufacturer–multiple retailer supply chain. European Journal of Operational Research, 200(2), 368-376.
Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., . . . Yun, S. H. (2016). Nanotechnology in textiles. ACS nano, 10(3), 3042-3068.
Yilmaz, E., & Atilgan, T. (2016). Analysis of added value creation process in ready-made clothing sector:“turkish case”. Textile and Apparel, 26(4), 337-344.