簡易檢索 / 詳目顯示

研究生: 黃冠傑
Huang, Guan-Jie
論文名稱: 單斜氧化鎵紫外光光檢測器
β-Ga2O3 UV photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 65
中文關鍵詞: 單斜氧化鎵紫外光光檢測器
外文關鍵詞: β-Ga2O3, UV photodetectors
相關次數: 點閱:102下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討單斜氧化鎵紫外光光檢測器的製作,藉由改變溫度、氣體流量、氣體種類,成功製作奈米線形式和薄膜形式的單斜氧化鎵紫外光光檢測器。
    起初,我們藉由加熱氮化鎵/氧化鋁基板成長氧化鎵奈米線,奈米線的平均長度、平均直徑皆隨成長溫度增加而增加。此外,在高溫下(例:1050 和1100 ℃)可以達到較好的單斜氧化鎵品質。在入射光波長為255奈米且外加偏壓為5伏特下,光檢測器的響應可達每瓦3.72×10-1毫安培。
    接著,我們藉由化學氣相沉積法,在固定氬氣流量且改變氧氣流量下,成長單斜氧化鎵奈米線。奈米線的平均長度隨氧氣流量增加而減少。然而,奈米線的平均直徑隨氧氣流量增加而增加。在外加偏壓為5伏特下,氧氣流量為1、2、4、6標準狀態每分鐘立方公分的單斜氧化鎵奈米線光檢測器的紫外光對可見光的拒斥比分別為315、11742、12258、12105。因此,藉由調變氧氣流量可以讓紫外光對可見光的拒斥比增加2個數量級。
    最後,我們將氮化鎵磊晶層放置在高溫含氧的環境下,並藉由爐管氧化法成長單斜氧化鎵薄膜,薄膜的粗糙度隨成長溫度增加而增加。在外加偏壓為5伏特下,成長溫度為1000、1025、1050、1100℃的單斜氧化鎵薄膜光檢測器的紫外光對可見光的拒斥比分別為35669、79130、2935、1250。

    This thesis focuses mainly on the fabrication of UV photodetectors based on β-Ga2O3. By varying temperature, gas flow and gas kind, we successfully fabricate nanowire-type or thin-film-type β-Ga2O3 UV photodetectors.
    At first, we report the growth of nanowires by heating the GaN/sapphire template. It was found that average length and average diameter of the nanowires all increased with the increase of the growth temperature. It was also found that β-Ga2O3 nanowires with good crystal quality could be achieved only at high temperatures (i.e., 1050 and 1100 ℃). With an incident light wavelength of 255 nm and an applied bias of 5 V, it was found that measured responsivity of the photodetector was 3.72×10-1 mA/W.
    Then, we report the β-Ga2O3 nanowires prepared with different oxygen flow and constant argon flow by the chemical vapor deposition method. It was found that the average length of nanowires increased with the decrease of the oxygen flow. However, the average diameter of the nanowires increased with the increase of the oxygen flow. With an applied bias of 5 V, it was found that the UV-to-visible rejection ratios of β-Ga2O3 nanowire photodetectors grown at 1, 2, 4, and 6 sccm oxygen flow were 315, 11742, 12258 and 12105, respectively. By varying the oxygen flow, we can make UV-to-visible rejection ratio increased by 2 orders of magnitude.
    Finally, we report the growth of β-Ga2O3 thin film by furnace oxidation of GaN epitaxial layer at high temperature in oxygen containing ambient. It was found that the roughness of β-Ga2O3 thin film increased with the increase of the growth temperature. With an applied bias of 5 V, it was found that the UV-to-visible rejection ratios of β-Ga2O3 thin film photodetectors grown at 1000, 1025, 1050, and 1100 ℃ were 35669, 79130, 2935 and 1250, respectively.

    摘要 i Abstract iii 誌謝 v Contents vi Table Captions viii Figure Captions ix Chapter 1 Introduction 1 1.1 Background 1 1.1.1 β-Ga2O3 1 1.1.2 Vapor-Liquid-Solid (VLS) Mechanism 2 1.2 Organization of the thesis 2 References 4 Chapter 2 Fabrication and Measurement Apparatus 6 2.1 Field Emission Scanning Electron Microscope (FESEM) 6 2.2 X-ray Diffraction (XRD) System 6 2.3 Current-Voltage Measurement System 7 Chapter 3 Growth of Ga2O3 Nanowires and the Fabrication of Solar -Blind Photodetectors 13 3.1 Experiments 14 3.2 Results and Discussion 16 3.3 Summary 20 References 21 Chapter 4 Solar-Blind β-Ga2O3 Nanowire Photodetectors Prepared with Oxygen Flow Variation 31 4.1 Experiments 32 4.2 Results and Discussion 34 4.3 Summary 36 References 38 Chapter 5 Growth of β-Ga2O3 Thin Film and the Fabrication of Solar-Blind Photodetectors 46 5.1 Experiments 47 5.2 Results and Discussion 49 5.3 Summary 52 References 54 Chapter 6 Conclusions and Future Works 61 6.1 Conclusions 61 References 64

    Chapter1
    [1] J.M. Wu, C.H. Kuo, “Ultraviolet photodetectors made from SnO2 nanowires”, Thin Solid Films 517, 3870 (2009)
    [2] Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction”, Appl. Phys. Lett. 93, 163501 (2008)
    [3] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan, and B. R. Huang, “ZnSe Nanowire Photodetector Prepared on Oxidized Silicon Substrate by Molecular-Beam Epitaxy”,
    Journal of The Electrochemical Society 156, J73 (2009)
    [4] A. D. Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S. T. Chou, Y. T. Lin, P. H. Tseng and L. W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles”, Nanotechnology 21, 315201 (2010)
    [5] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L.
    Beck, U. Chowdhury, R. D. Durpuis, and J. C. Campbell, “Low-noise
    back-illuminated AlxGa1-xN-based p-i-n solar-blind ultraviolet photodetectors”, IEEE J. Quantum Electron 37, 538 (2001)

    Chapter2
    [1] P. Ruterana, M. Albrecht and J. Neugebauer, “Nitride Semiconductors : handbook on materials and devices”, Wiley-VCH (2003)
    [2] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, “Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. 68, 643 (1996)
    [3] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers”, Appl. Phys. Lett. 77, 2557 (2000)
    [4] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy”, Appl. Phys. Lett. 86, 043108 (2005)

    Chapter3
    [1] Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. 13, 9 (2003)
    [2] Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton and H. Terrones, “Generation of hollow crystalline tungsten oxide fibres”, Appl. Phys. A: Materials Science and Processing 70, 231 (2000)
    [3] Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong and S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett. 303, 311 (1999)
    [4] Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science 291, 1947 (2001)
    [5] J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater. 14, 215 (2002)
    [6] H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama and T. Kaneko, “Growth mechanism of vapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate”, J. Crystal Growth 203, 136 (1999)
    [7] V. Valcarcel, A. Souto and F. Guitian, “Development of single-crystal α-Al2O3 fibers by vapor-liquid-solid deposition (VLS) from aluminum and powdered silica”, Adv. Mater. 10, 138 (1999)
    [8] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors”, Sensors 9, 6504 (2009)
    [9] P. Feng, J. Y. Zhang, Q. H. Li and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors”, Appl. Phys. Lett. 88, 153107 (2006)
    [10] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron. 8, 744 (2002)
    [11] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron. 8, 278 (2002)
    [12] M. Paulose, O. K. Varghese and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth”, J. Nanoscience Nanotechnol. 3, 341 (2003)
    [13] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier and G. Dollinger, “Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition”, J. Vac. Sci. Technol. B 14, 3532 (1996)
    [14] J. A. Garrido, E. Monroy, I. Izpura and E. Munoz, “Photoconductive gain modelling of GaN photodetectors”, Semicond. Sci. Technol. 13, 563 (1998)
    [15] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain”, Nano Lett. 7, 1003 (2007)
    [16] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen and L. C. Chen, “High photocurrent gain in SnO2 nanowires”, Appl. Phys. Lett. 93, 112115 (2008)
    [17] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors”, Sensors 9, 6504 (2009)
    [18] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination”, Appl. Phys. Lett. 89, 112114 (2006)

    Chapter4
    [1] C. C. Huang, C. S. Yeh, “GaOOH, and β- and γ-Ga2O3 nanowires: preparation and photoluminescence”, New J. Chem. 34, 103 (2010)
    [2] R. Roy, V. G. Hill and E. F. Osborn, “Polymorphism of Ga2O3 and the System Ga2O3—H2O”, J. Am. Chem. Soc. 74, 719 (1952)
    [3] H. S. Qian, P. Gunawan, Y. X. Zhang, G. F. Lin, J. W. Zheng and R. Xu, “Template-Free Synthesis of Highly Uniform α-GaOOH Spindles and Conversion to α-Ga2O3 and β-Ga2O3”, Cryst. Growth Des. 8 , 1282 (2008)
    [4] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X.
    Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors
    with high internal gain”, Nano Lett. 7, 1003 (2007)
    [5] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J.
    Yang, C. H. Su, and C. R. Lin, “High-gain photoconductivity in semiconducting InN nanowires”, Appl. Phys. Lett. 95, 162112 (2009)
    [6] H. W. Kim, N. H. Kim, “Formation of amorphous and crystalline gallium oxide nanowires by metalorganic chemical vapor deposition”, Appl. Surf. Sci. 233, 294 (2004)
    [7] X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun ,and J. J. Du, “Crystalline gallium oxide nanowires: intensive blue light emitters”, Chem. Phys. Lett. 328, 5 (2000)
    [8] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes”, Acc. Chem. Res. 32, 435 (1999)
    [9] Y. Cui, C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science 291, 851 (2001)
    [10] X.M. Cai, A.B. Djurisic, M.H. Xie, “GaN nanowires: CVD synthesis and properties”, Thin Solid Films 515, 984 (2006).
    [11] K.W. Chang, J.J. Wu, “Temperature-controlled catalytic growth of one-dimensional gallium nitride nanostructures using a gallium organometallic precursor”, Appl. Phys. A 77, 769 (2003)
    [12] J.Y. Moon, H.Y. Kwon, Y.J. Choi, M.J. Shin, S.N. Yi, Y.J. Yun, S. Kim, D.H. Ha, J.Y.Sug, “Effects of temperature and HCl:NH3 flow ratio on the growth of GaN nanorods”, J. Alloys Compd. 480, 853 (2009)
    [13] R. Pampuch, G. Gorny, L. Stobierski, “Synthesis of one-dimensional nanostructured silicon carbide by chemical vapor deposition”, Glass Phys. Chem. 31, 370 (2005)
    [14] E Auer, A Lugstein, S L¨offler, Y J Hyun,W Brezna, E Bertagnolli and P Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires”, Nanotechnology 20, 434017 (2009)
    [15] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron. 8, 744 (2002)
    [16] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron. 8, 278 (2002)
    [17] M. Paulose, O. K. Varghese and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth”, J. Nanoscience Nanotechnol. 3, 341 (2003)

    Chapter5
    [1] L. Binet, D. Gourier, “ORIGIN OF THE BLUE LUMINESCENCE OF β-Ga2O3”, J. Phys. Chem. Solids 59, 1241 (1998)
    [2] H. H. Tippins, “Optical Absorption and Photoconductivity in the Band Edge of β-Ga2O3”, Phys. Rev. 140, A316 (1965)
    [3] K. W. Chang and J. J. Wu, “Low-Temperature Growth of Well-Aligned β-Ga2O3 Nanowires from a Single-Source Organometallic Precursor”, Adv. Mater. 16, 545 (2004)
    [4] T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on
    c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors”, Jpn. J. Appl. Phys., 46, 7217 (2007)
    [5] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on
    silicon by the metal organic chemical vapor deposition method”, Mater.
    Sci. Eng. B, 110, 34 (2004)
    [6] C. L. Dezelah, IV, J. Niinisto, K. Arstila, L. Niinisto, and C. H.Winter, “Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor”, Chem. Mater., 18, 471 (2006)
    [7] K. Matsuzaki, H. Hiramatsu, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor”, Thin Solid Films, 496, 37 (2006)
    [8] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh,
    “Investigation of the oxygen gas sensing performance of Ga2O3 thin
    films with different dopants”, Sens. Actuators B, 93, 431(2003)
    [9] A. C. Lang, M. Fleischer, and H. Meixner, “Surface modification of
    Ga2O3 thin film sensors with Rh, Ru and Ir clusters”, Sens. Actuators B, 66, 80 (2000)
    [10] C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical
    oxidation using He-Cd laser”, J. Electron. Mater., 34, 282 (2005)
    [11] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor
    devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett.,82, 4304 (2003)

    Chapter6
    [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56 (1991)
    [2] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector”, IEEE PHOTONICS TECHNOLOGY LETTERS 22, 709 (2010)
    [3] S. P. Arnold, S. M. Prokes, F. K. Perkins, M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor”, Appl. Phys. Lett. 95,103102 (2009)
    [4] J. Li, L. An, C.G. Lu, and Jie Liu, “Conversion between Hexagonal GaN and β- Ga2O3 Nanowires and Their Electrical Transport Properties”, Nano Lett. 6,148 (2006)
    [5] C.H. Hsieh, L.J. Chou, G.R. Lin, Y. Bando, D. Golberg, “Nanophotonic Switch: Gold-in- Ga2O3 Peapod Nanowires”, Nano Lett. 8, 3081(2008)
    [6] J. Zhu, H. Peng, C. K. Chan, K. Jarausch, X .F. Zhang, Y. Ciu, “Hyperbranched Lead Selenide Nanowire Networks”, Nano Lett. 7, 1095 (2007)
    [7] Y. Jung, D. Ko, R. Agarwal, “Synthesis and Structural Characterization of Single-Crystalline Branched Nanowire Heterostructures”, Nano Lett. 7, 264 (2007)
    [8] K. L. Hull, J. W. Grebinski, T. H. Kosel, M. Kuno, “Induced Branching in Confined PbSe Nanowires”, Chem. Mater. 17, 4416 (2005)
    [9] M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, T. H. Kosel, “Solution-Based Straight and Branched CdTe Nanowires”, Chem. Mater. 18, 5722 (2006)
    [10] D. Wang, F. Qian, C. Yang, Z. Zhong and C. M. Lieber, “Rational Growth of Branched and Hyperbranched Nanowire Structures”, Nano Lett. 4, 871 (2004)
    [11] K. Jun, J. M. Jacobson, “Programmable Growth of Branched Silicon Nanowires Using a Focused Ion Beam”, Nano Lett. 10, 2777 (2010)
    [12] G. S. Doerk, N. Ferralis, C. Carraro and R. Maboudian, “Growth of branching Si nanowires seeded by Au–Si surface migration”, J. Mater. Chem., 18, 5376 (2008)
    [13] K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, “Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events”, Nature Mater. 3, 380 (2004)
    [14] Dong, R. Tang and W. E. Buhro, “Solution-Based Growth and Structural Characterization of Homo- and Heterobranched Semiconductor Nanowires”, J.Am. Chem. Soc. 129, 12254 (2007)
    [15] Y. Jung, D. K. Ko and R. Agarwal, “Synthesis and Structural Characterization of Single-Crystalline Branched Nanowire Heterostructures”, Nano Lett. 7, 264 (2007)

    下載圖示 校內:2016-07-15公開
    校外:2016-07-15公開
    QR CODE