簡易檢索 / 詳目顯示

研究生: 鄭嘉麒
Cheng, Chia-Chi
論文名稱: 登革病毒改變人類角質細胞中的脂質代謝並干擾第I型干擾素訊號傳遞
Dengue virus alters lipid metabolism and interferes type I interferon signaling in human keratinocytes
指導教授: 陳舜華
Chen, Shun-Hua
共同指導教授: 彭貴春
Perng, Guey-Chuen
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 43
中文關鍵詞: 登革病毒角質細胞脂質代謝干擾素-βUSP18
外文關鍵詞: Dengue virus, lipid metabolism, keratinocyte, IFN-β, USP18
相關次數: 點閱:106下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革熱病毒感染在熱帶與亞熱帶城鄉地區導致登革熱 (dengue fever) 的流行,大部分病例為無症狀或輕症,但發展為危及生命的登革出血熱 (dengue hemorrhagic fever ) 和登革休克綜合症 (dengue shock syndrome) 的可能性讓人無法忽視防治登革熱的重要性。角質細胞佔被登革病毒感染的皮膚細胞當中的60%,並被認為會被病毒當作感染其他細胞的橋樑。脂質代謝長年來僅被認為提供細胞能量來源。然而最近的研究開始重視脂質代謝物在調節細胞內訊號傳遞和數種疾病的發病機制中的重要性。據報導,多種黃病毒複製位置發現被脂滴 (lipid droplets) 所圍繞。脂滴主要由三酸甘油脂和膽固醇酯組成,負責中性脂質儲存和調節細胞間通訊。有研究發現,脂滴的累積受病毒感染信號控制,並且與第I型干擾素反應有關。因此,我們利用角質形成細胞株 (HaCaT) 作為我們的研究模型,研究登革病毒感染對角質形成細胞中脂質代謝以及抗病毒能力的影響。首先,我們使用登革病毒感染HaCaT細胞,收集不同時間點的細胞樣本,以油紅染色來測量脂滴大小,發現登革病毒感染後第一天脂滴增加,後兩天脂滴顯著減少。其次,通過進行三酸甘油酯和膽固醇脂熒光定量來測量脂質含量變化,結果顯示登革病毒感染後第三天,三酸甘油酯和膽固醇酯的含量均與病毒含量呈顯著負相關,表示受感染的HaCaT細胞中脂質的消耗提高,可能為病毒所用。在免疫反應與脂質的關聯性方面,有研究發現游離脂肪酸不利於干擾素的表達。接著我們測定了受登革病毒感染的HaCaT細胞中的第I型干擾素分泌水平。發現我們的感染模型中隨著時間增加,脂質消耗水平增加,並且IFN-β分泌水平減少,同時外加脂肪酸使IFN-β水平減少得更多,表明HaCaT細胞在登革病毒感染中的抗病毒功能受損,且外加脂肪酸會加重此現象。進一步我們檢測了IFNB1以及下游兩種干擾素刺激基因的基因表達,發現不論有無外加脂肪酸都呈現與IFN-β分泌水平相同的趨勢,同時我們也檢測了負責負調控第I型干擾素的USP18 (ubiquitin specific peptidase 18) 的基因表達,發現USP18在登革病毒感染HaCaT細胞後上調,並且在加入脂肪酸後上調趨勢更加明顯,說明外加脂肪酸除了能幫助登革病毒複製外,還可以強化透過USP18抑制宿主抗病毒能力的功能。

    Dengue virus (DENV) infection contributes to a great range of diseases from asymptomatic infections and self-limiting dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Skin cells are highly permissive to DENV, and DENV is able to infect other cell types through skin cells. Lipid metabolism has been considered a source that provides energy to cells. However, recent findings have highlighted the importance of lipid metabolites involved in the regulation of cellular responses and pathogeneses of several diseases. Moreover, lipid droplets (LDs) are reported to surround the viral replication site. LDs, composed of triglyceride (TG) and cholesterol ester (CE), are responsible for neutral lipid storage and cellular communication. Recently, the accumulation of LDs has become a hallmark of viral infections and is also associated with the type I interferon (IFN) response. However, it remains unclear whether lipid metabolism may affect the immune response in skin cells during DENV infection. We therefore utilized the keratinocyte cell line, HaCaT cell, as our research model to study the metabolic effect of DENV infection on keratinocyte function. First, we used DENV to infect the HaCaT cells, and the cell pellets were collected to measure LD sizes. Our results demonstrated that the LD sizes of DENV-infected cells decreased on days 2 and 3 post-infection. Second, we measured the lipid content by performing TG, total cholesterol, and CE fluorometric assays. The levels of TG and CE were decreased in a viral dose-dependent manner on day 3 after DENV infection, suggesting the high consumption of lipids in infected HaCaT cells. It has been shown that the induction of antiviral response affects lipid consumption. Third, we measured type I IFN concentrations in infected HaCaT cells and also examined the expression (mRNA levels) of type I IFN, interferon-stimulated genes (ISGs), and ubiquitin specific peptidase 18 (USP18) gene. Our results showed increased levels of lipid consumption and decreased levels of type I IFN secretion, type I IFN, and ISG gene expression, indicating the impaired antiviral function of HaCaT cells in late DENV infection. Lastly, our results indicate that the upregulation of USP 18 expression might control the decreased IFN levels and addition of fatty acid might enhance this phenomenon.

    目錄 中文摘要 II 英文延伸摘要 IV 致謝 VII 目錄 VIII 圖目錄 X 縮寫 XI 緒論 1 1. 登革熱流行病學 1 2. 登革熱致病機轉 1 3. 角質細胞 3 4. 脂質代謝 3 5. 脂滴 4 6. 病毒感染中的脂質代謝 4 7. 脂質代謝與先天免疫 5 8. 干擾素與干擾素調控相關基因 6 9. 研究主旨 7 實驗材料與方法 8 A. Materials 8 1. Cell lines and virus 8 2. Ingredients in buffer and medium 8 3. Kits 9 4. Medium and Reagents 10 5. Primer 10 B. Methods 10 1. Cell lines (HaCaT, BHK-21, and Vero cells) 10 2. Plaque assay 11 3. DENV infection 11 4. Cell viability assay 11 5. LD detection 12 6. Quantification of lipids content 12 7. Quantification type I IFN 13 8. Total RNA isolation and qRT-PCR assay 13 9. Statistical analysis 13 實驗結果 15 1. 登革病毒可以感染 HaCaT 細胞,在感染後第三天病毒量達到最高峰,並且與感染的病毒量呈現正相關。 15 2. 登革病毒可以改變 HaCaT細胞中脂滴的含量,在第三天時脂滴含量隨著感染病毒量的提升而顯著減少。 15 3. 登革病毒感染造成HaCaT細胞內脂質含量在第三天顯著減少。 16 4. 登革病毒感染干擾第I型干擾素分泌,可能與脂質含量變化有關。 16 5. 外加脂肪酸增進登革病毒複製且不利於HaCaT細胞抗病毒能力。 17 6. 外加脂肪酸影響第I型干擾素信號傳遞,可能與USP18上調有關。 18 討論 20 結論 26 參考文獻 27 附錄 35

    1. Kyle, J.L. and Harris, E., Global spread and persistence of dengue. Annu Rev Microbiol, 2008. 62: p. 71-92.
    2. Marques-Toledo, C.A., et al., Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, prevention and control. Parasites & Vectors, 2019. 12(1): p. 38.
    3. Johari, N.A., et al., Sylvatic dengue virus type 4 in Aedes aegypti and Aedes albopictus mosquitoes in an urban setting in Peninsular Malaysia. PLoS Negl Trop Dis, 2019. 13(11): p. e0007889.
    4. Khetarpal, N. and Khanna, I., Dengue fever: causes, complications, and vaccine strategies. J Immunol Res, 2016. 2016: p. 6803098.
    5. Wang, W.H., et al., Dengue hemorrhagic fever - a systemic literature review of current perspectives on pathogenesis, prevention and control. J Microbiol Immunol Infect, 2020. 53(6): p. 963-978.
    6. Huy, N.T., et al., Factors associated with dengue shock syndrome: a systematic review and meta-analysis. PLoS Negl Trop Dis, 2013. 7(9): p. e2412.
    7. Ramos, C., H. García, and Villaseca, J.M., Hemorrhagic fever and the dengue shock syndrome. Salud Publica Mex, 1993. 35(1): p. 39-55.
    8. Thein, S., et al., Risk factors in dengue shock syndrome. Am J Trop Med Hyg, 1997. 56(5): p. 566-572.
    9. Xie, X., et al., Dengue NS2A protein orchestrates virus assembly. Cell Host & Microbe, 2019. 26(5): p. 606-622..
    10. Swarbrick, C.M.D., et al., NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Res, 2017. 45(22): p. 12904-12920.
    11. McLean, J.E., et al., Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem, 2011. 286(25): p. 22147-22159.
    12. Quirino-Teixeira, A.C., et al., Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv, 2020. 4(9): p. 2018-2031.
    13. Songprakhon, P., et al., Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Scientific Reports, 2020. 10(1): p. 12933.
    14. Campbell, S.L. and Wellen, K.E., Metabolic signaling to the nucleus in cancer. Mol Cell, 2018. 71(3): p. 398-408.
    15. Lorendeau, D., et al., Metabolic control of signalling pathways and metabolic auto-regulation. Biol Cell, 2015. 107(8): p. 251-272.
    16. Heaton, N.S. and Randall, G., Dengue virus-induced autophagy regulates lipid metabolism. Cell Host & Microbe, 2010. 8(5): p. 422-432.
    17. Singh, R., et al., Autophagy regulates lipid metabolism. Nature, 2009. 458(7242): p. 1131-1135.
    18. Zhang, J., Y. Lan, and Sanyal, S., Modulation of lipid droplet metabolism-a potential target for therapeutic intervention in flaviviridae infections. Front Microbiol, 2017. 8: p. 2286.
    19. Gan, E.S., et al., Dengue virus induces PCSK9 expression to alter antiviral responses and disease outcomes. J Clin Invest, 2020. 130(10): p. 5223-5234.
    20. Bouri, N., et al., Return of epidemic dengue in the United States: implications for the public health practitioner. Public Health Rep, 2012. 127(3): p. 259-266.
    21. Ebi, K.L. and Nealon, J., Dengue in a changing climate. Environ Res, 2016. 151: p. 115-123.
    22. Shope, R., Global climate change and infectious diseases. Environ Health Perspect, 1991. 96: p. 171-174.
    23. Tatem, A.J., Hay, S.I., and Rogers, D.J., Global traffic and disease vector dispersal. Proc Natl Acad Sci U S A, 2006. 103(16): p. 6242-6247.
    24. Wang, S.F., et al., Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect, 2016. 5(12): p. e123.
    25. Alvarez, D.E., et al., Structural and functional analysis of dengue virus RNA. Novartis Found Symp, 2006. 277: p. 120-132.
    26. Bäck, A.T. and Lundkvist, A., Dengue viruses - an overview. Infect Ecol Epidemiol, 2013. 3(1): p. 19839.
    27. Sim, S. and Hibberd, M.L., Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol, 2016. 17: p. 38.
    28. Perera, R. and Kuhn, R.J., Structural proteomics of dengue virus. Curr Opin Microbiol, 2008. 11(4): p. 369-377.
    29. Byk, L.A. and Gamarnik A.V., Properties and functions of the dengue virus cpsid protein. Annu Rev Virol, 2016. 3(1): p. 263-281.
    30. Nemésio, H. and Villalaín, J., Membranotropic regions of the dengue virus prM protein. Biochemistry, 2014. 53(32): p. 5280-5289.
    31. Lozach, P.Y., et al., Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem, 2005. 280(25): p. 23698-23708.
    32. Miller, J.L., et al., The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog, 2008. 4(2): p. e17.
    33. Hasan, S.S., et al., Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol, 2018. 25(1): p. 13-20.
    34. Louten, J., Emerging and reemerging viral diseases. Essential Human Virology. 2016: p. 291-310.
    35. Lescar, J., et al., The dengue virus replication complex: From RNA replication to protein-protein interactions to evasion of innateimmunity. Adv Exp Med Biol, 2018. 1062: p. 115-129.
    36. Bartenschlager, R. and Miller, S., Molecular aspects of Dengue virus replication. Future Microbiol, 2008. 3(2): p. 155-165.
    37. Zaitseva, E., et al., Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog, 2010. 6(10): p. e1001131.
    38. van der Schaar, H.M., et al., Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol, 2007. 81(21): p. 12019-12028.
    39. van der Schaar, H.M., et al., Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog, 2008. 4(12): p. e1000244.
    40. Nour, A.M., et al., Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog, 2013. 9(9): p. e1003585.
    41. Merz, A., et al., Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem, 2011. 286(4): p. 3018-3032.
    42. Welsch, S., et al., Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host & Microbe, 2009. 5(4): p. 365-375.
    43. Perera, R., et al., Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog, 2012. 8(3): p. e1002584.
    44. Grief, C., et al., Intracellular localisation of dengue-2 RNA in mosquito cell culture using electron microscopic in situ hybridisation. Arch Virol, 1997. 142(12): p. 2347-2357.
    45. Martins, I.C., et al., The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J, 2012. 444(3): p. 405-15.
    46. Menzel, N., et al., MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles. PLoS Pathog, 2012. 8(7): p. e1002829.
    47. Duangkhae, P., et al., Interplay between keratinocytes and myeloid cells drives dengue virus spread in human skin. J Invest Dermatol, 2018. 138(3): p. 618-626.
    48. Lei, V., et al., Skin viral infections: Host antiviral innate immunity and viral immune evasion. Front Immunol, 2020. 11: p. 593901.
    49. Rathore, A.P.S. and St John, A.L., Immune responses to dengue virus in the skin. Open Biol, 2018. 8(8): p. 180087.
    50. Cerny, D., et al., Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection. PLoS Pathog, 2014. 10(12): p. e1004548.
    51. Chung, K.W., Advances in understanding of the role of lipid metabolism in aging. Cells, 2021. 10(4): p. 880.
    52. Yoon, H., et al., Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell, 2021. 81(18): p. 3708-3730.
    53. Balla, T., N. Sengupta, and Kim, Y.J., Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids, 2020. 1865(1): p. 158461.
    54. Cockcroft, S., Mammalian lipids: structure, synthesis and function. Essays Biochem, 2021. 65(5): p. 813-845.
    55. Fernández-Murray, J.P. and McMaster, C.R., Lipid synthesis and membrane contact sites: a crossroads for cellular physiology. J Lipid Res, 2016. 57(10): p. 1789-1805.
    56. Miyazaki, M., et al., The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem, 2000. 275(39): p. 30132-30138.
    57. Liu, K. and Czaja, M.J., Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 2013. 20(1): p. 3-11.
    58. Meçe, O., et al., Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nat Commun, 2022. 13(1): p. 2760.
    59. Olzmann, J.A. and Carvalho, P., Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol, 2019. 20(3): p. 137-155.
    60. Walther, T.C., Chung, J., and Jr. Farese, R.V., , Lipid droplet biogenesis. Annu Rev Cell Dev Biol, 2017. 33: p. 491-510.
    61. Yang, H., et al., Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol, 2012. 24(4): p. 509-516.
    62. Monson, E.A., et al., Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat Commun, 2021. 12(1): p. 4303.
    63. Das, S., Chakraborty, S., and Basu, A., Critical role of lipid rafts in virus entry and activation of phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. J Neurochem, 2010. 115(2): p. 537-549.
    64. Lee, C.J., et al., Cholesterol effectively blocks entry of flavivirus. J Virol, 2008. 82(13): p. 6470-6480.
    65. Ripa, I., et al., Membrane rafts: portals for viral entry. Front Microbiol, 2021. 12: p. 631274.
    66. Adrain, C., Systemic and cellular metabolism: the cause of and remedy for disease? FEBS J, 2021. 288(12): p. 3624-3627.
    67. Altan-Bonnet, N., Lipid tales of viral replication and transmission. Trends Cell Biol, 2017. 27(3): p. 201-213.
    68. Romagnolo, A.G. and Carvalho, K.I., Dengue and metabolomics in humans. Metabolomics, 2021. 17(3): p. 34.
    69. Shen, T. and Wang, T., Metabolic reprogramming in COVID-19. Int J Mol Sci, 2021. 22(21): p. 11475.
    70. Theken, K.N., et al., The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res, 2021. 62: p. 100129.
    71. Mackenzie, J.M., Khromykh, A.A., and Parton, R.G., Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host & Microbe, 2007. 2(4): p. 229-239.
    72. Zhivaki, D. and Kagan, J.C., Innate immune detection of lipid oxidation as a threat assessment strategy. Nat Rev Immunol, 2022. 22(5): p. 322-330.
    73. Weismann, D. and Binder, C.J., The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta, 2012. 1818(10): p. 2465-2475.
    74. Moser, T.S., Schieffer, D., and Cherry, S., AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog, 2012. 8(4): p. e1002661.
    75. York, A.G., et al., Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cells, 2015. 163(7): p. 1716-1729.
    76. Gold, E.S., et al., 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci U S A, 2014. 111(29): p. 10666-10671.
    77. Li, C., et al., 25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model. Immunity, 2017. 46(3): p. 446-456.
    78. Zang, R., et al., Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci U S A, 2020. 117(50): p. 32105-32113.
    79. Schoggins, J.W., Interferon-stimulated genes: What do they all do? Annu Rev Virol, 2019. 6(1): p. 567-584.
    80. Imanishi, J., Interferon-alpha, beta, gamma. Gan To Kagaku Ryoho, 1994. 21(16): p. 2853-2858.
    81. Castro, F., et al., Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol, 2018. 9: p. 847.
    82. Diamond, M.S., IFIT1: A dual sensor and effector molecule that detects non-2'-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev, 2014. 25(5): p. 543-550.
    83. Lin, R.J., et al., Distinct antiviral roles for human 2',5'-oligoadenylate synthetase family members against dengue virus infection. J Immunol, 2009. 183(12): p. 8035-8043.
    84. Li, L., et al., Suppression of USP18 potentiates the anti-HBV activity of interferon alpha in HepG2.2.15 cells via JAK/STAT signaling. PLoS One, 2016. 11(5): p. e0156496.
    85. Randall, G., et al., Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology, 2006. 131(5): p. 1584-1591.
    86. Ye, H., et al., USP18 mediates interferon resistance of dengue virus infection. Front Microbiol, 2021. 12: p. 682380.
    87. Reyes-Ruiz, J.M., et al., The regulation of flavivirus infection by hijacking exosome-mediated cell-cell communication: New insights on virus-host interactions. Viruses, 2020. 12(7): p. 765.
    88. Monson, E.A., et al., Lipid droplet density alters the early innate immune response to viral infection. PLoS One, 2018. 13(1): p. e0190597.
    89. Limsuwat, N., et al., Influence of cellular lipid content on influenza A virus replication. Arch Virol, 2020. 165(5): p. 1151-1161.
    90. Ramphan, S., et al., Oleic acid enhances dengue virus but not dengue virus-like particle production from mammalian cells. Mol Biotechnol, 2017. 59(9-10): p. 385-393.
    91. Schneider, W.M., Chevillotte, M.D., and Rice, C.M., Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-545.
    92. Lu, P., et al., Wolbachia inhibits binding of dengue and zika viruses to mosquito cells. Front Microbiol, 2020. 11: p. 1750
    93. Jordan, T.X. and Randall, G., Flavivirus modulation of cellular metabolism. Curr Opin Virol, 2016. 19: p. 7-10.
    94. Jiménez de Oya, N., et al., Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect, 2019. 8(1): p. 624-636.
    95. Tongluan, N., et al., Involvement of fatty acid synthase in dengue virus infection. Virol J., 2017. 14(1): p. 28.
    96. Grunkemeyer, T.J., et al., The antiviral enzyme viperin inhibits cholesterol biosynthesis. J Biol Chem, 2021. 297(1): p. 100824.
    97. Sun, H.-Y., et al., Sterol O-acyltransferase 2 chaperoned by apolipoprotein J facilitates hepatic lipid accumulation following viral and nutrient stresses. Commun Biol, 2021. 4(1): p. 564.
    98. Wu, Y.T., et al., Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 2010. 285(14): p. 10850-10861.
    99. Santana-Román, M.E., et al., Monitoring mitochondrial function in Aedes albopictus C6/36 cell line during dengue virus infection. Insects, 2021. 12(10): p. 934.
    100. Teng, C.-F., et al., Activation of ATP citrate lyase by mTOR signal induces disturbed lipid metabolism in hepatitis B vrus pre-S2 mutant tumorigenesis. J Virol, 2015. 89(1): p. 605-614.
    101. Chitraju, C., et al., Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab, 2017. 26(2): p. 407-418.
    102. Chitraju, C., Walther, T.C., and Farese, R.V., Jr., The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res, 2019. 60(6): p. 1112-1120.
    103. Meiner, V.L., et al., Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc Natl Acad Sci U S A, 1996. 93(24): p. 14041-14046.
    104. De Andrea, M., et al., The interferon system: an overview. Eur J Paediatr Neurol, 2002. 6 Suppl A: p. A41-A58
    105. Shresta, S., et al., Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol, 2004. 78(6): p. 2701-2710.
    106. Jones, M., et al., Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol, 2005. 79(9): p. 5414-5420.
    107. Muñoz-Jordán, J.L., et al., Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A, 2003. 100(24): p. 14333-14338.
    108. Zhang, J., Lan, Y., and Sanyal, S., Modulation of lipid droplet metabolism—a potential target for therapeutic intervention in flaviviridae infections. Front Microbiol, 2017. 8: p. 2286.
    109. Gunduz, F., et al., Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture. Virol J, 2012. 9: p. 143.
    110. Aliyari, S.R., et al., Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharm Sin B, 2022. 12(4): p. 1624-1635.
    111. Hidmark, A.S., et al., Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. J Virol, 2005. 79(16): p. 10376-10385.
    112. Marcus, P.I., Rojek, J.M., and Sekellick, M.J., Interferon induction and/or production and its suppression by influenza A viruses. J Virol, 2005. 79(5): p. 2880-2890.
    113. Buchan, A. and Burke, D.C., Interferon production in chick-embryo cells. The effect of puromycin and p-fluorophenylalanine. Biochem J, 1966. 98(2): p. 530-536.
    114. Honke, N., et al., Multiple functions of USP18. Cell Death & Disease, 2016. 7(11): p. e2444-e2444.
    115. Liu, X., et al., The ubiquitin-specific peptidase USP18 promotes lipolysis, fatty acid oxidation, and lung cancer growth. Mol Cancer Res, 2021. 19(4): p. 667-677.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE