簡易檢索 / 詳目顯示

研究生: 詹政翰
Chan, Cheng-Han
論文名稱: 腦機介面控制機器人於中風病患手指復健及大腦聯結評估
Brain-Connectivity Assessment of Rehabilitation of Hands of Stroke Patients by BCI Controlled Robot
指導教授: 朱銘祥
Ju, Ming-Shaung
共同指導教授: 林宙晴
Lin, Chou-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 中風腦機介面大腦聯結複雜網絡分析
外文關鍵詞: stroke, brain computer interface, brain connectivity, complex network analysis
相關次數: 點閱:81下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據研究,人腦經過想像訓練後,其大腦結構會有重組(reorganization)之現象。故本研究使用多通道腦波(multi-channel electroencephalography)透過數位訊號處理進行大腦聯結之識別與分析,探討大腦聯結結構的變化,並藉此彌補功能性磁振照影(functional magnetic resonance imaging,fMRI)時間解析度不佳與成本昂貴之缺點。
    本研究共招募1位中風病患與2位常人,並使用實驗室前人發展的腦機介面(brain-computer-interface,BCI)控制復健機器人之復健系統,進行中風病患與常人受測者的腦部想像訓練。最後,將訓練過程中所擷取的多通道腦波,藉由相位斜率指標(phase-slope index,PSI),分析電極間之聯結與因果關係,建立大腦聯結結構,更透過R-square分析腦波能量變動與想像動作的相關性,評估大腦於想像時的活化區域,並進行受測者訓練前後大腦結構差異之分析與評估,以觀察大腦重組之現象。
    研究結果顯示,大腦聯結結構具有動態特性,並且於聯結結構與R-square的分析中,可以驗證大腦能藉由學習產生結構重組。

    According to previous research, researchers believe that brain could gradually learn to modulate its brain-connectivity structure in the motor imagery training. The common method to measure the brain-network is often by using functional magnetic resonance imaging (fMRI). However, the drawbacks of fMRI are high cost and low temporal resolution. On the contrary, EEG has the advantages of low cost and high temporal resolution and may be employed to overcome the drawbacks of fMRI. Therefore, the aim of this thesis is to explore and analyze the plasticity of brain using multi-channel electroencephalogram system.
    One stroke patient and two healthy subjects participated in this study using a brain-computer-interface (BCI) controlled robot system which has been developed in our previous study as a platform to train subjects to control 1-D cursor movement and orthotics through their motor imagery. Then an EEG-based brain network was constructed from the multi-channel EEG recorded during the BCI training. In addition, R-square originated from linear regression was employed to compute the correlation between EEG power variation and the motor imagery and to indicate the active region of brain stimulated from motor imagery. The quantitative analysis of the change of the brain was conducted through statistical analyses to explore the plasticity of brain. The results of this study showed the response of the brain-connectivity to rest and motor imagery is dynamic and brain could learn to reorganize itself during the BCI training.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 符號表 xii 第 一 章 緒論 1 1.1 研究背景 1 1.1.1 μ波與事件相關腦波 1 1.1.2 腦機介面與復健 2 1.1.3 大腦聯結的適應性 3 1.2 文獻回顧 4 1.2.1 以腦波為基礎之腦機介面 4 1.2.2 腦機介面應用於復健 5 1.2.3 大腦聯結 6 1.3 研究動機與目的 7 第 二 章 方法與實驗 9 2.1 實驗設計 9 2.1.1 資料收集與分析程序概述 9 2.1.2 受測者 12 2.1.3 實驗設備 13 2.1.4 fMRI實驗流程 14 2.2 腦機介面控制副手 16 2.2.1 腦波訊號處理 16 2.2.2 游標與復健副手之控制 18 2.3 大腦聯結分析 21 2.3.1 相位斜率指標 21 2.3.2 Jackknife標準差估測法 23 2.3.3 複雜網絡分析 24 2.4 R-square 35 2.5 極端值偵測方法 39 第 三 章 結果 40 3.1 腦機介面游標控制與控制復健副手 40 3.2 大腦聯結之量化指標 50 3.2.1 動態特性 50 3.2.2 長期變化 68 3.3 大腦聯結之流出端與流入端 71 3.4 事件相關腦波頻帶與電極 81 3.5 fMRI結果 88 第 四 章 討論 90 4.1 腦機介面訓練 90 4.2 大腦聯結量化指標動態特性 91 4.3 大腦聯結量化指標長期變化 93 4.4 主要流出端與流入端變化 94 4.5 事件相關腦波頻帶與電極變化 96 4.6 fMRI分析 96 第 五 章 結論 97 第 六 章 未來工作 98 附錄一 量化指標長期變化圖 99 參考文獻 104

    [1] 高材, 林康平, 林峰輝, 陳家進 編, 生物醫學工程導論, 滄海, 2008
    [2] Pfurtscheller, G., and da Silva, F. H. L., 1999, "Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles," Clin. Neurophysiol., 110(11), pp. 1842-1857.
    [3] Pfurtscheller, G., Flotzinger, D., and Neuper, C., 1994, "Differentiation between Finger, Toe and Tongue Movement in Man Based on 40 Hz EEG," Electroencephalography and Clinical Neurophysiology, 90(6), pp. 456-460.
    [4] Sanei, S., and Chambers, J. A., 2007, EEG Signal Processing, Wiley-Interscience.
    [5] Daly, J. J., and Wolpaw, J. R., 2008, "Brain-Computer Interfaces in Neurological Rehabilitation," Lancet Neurol., 7(11), pp. 1032-1043.
    [6] Lu, C. F., Teng, S., Hung, C. I., Tseng, P. J., Lin, L. T., Lee, P. L., and Wu, Y. T., 2011, "Reorganization of Functional Connectivity During the Motor Task Using EEG Time-Frequency Cross Mutual Information Analysis," Clin. Neurophysiol., 122(8), pp. 1569-1579.
    [7] Wolpaw, J. R., McFarland, D. J., and Vaughan, T. M., 2000, "Brain-Computer Interface Research at the Wadsworth Center," IEEE Trans. Rehabil. Eng., 8(2), pp. 222-226.
    [8] Wolpaw, J. R., and McFarland, D. J., 2004, "Control of a Two-Dimensional Movement Signal by a Noninvasive Brain-Computer Interface in Humans," Proc. Natl. Acad. Sci. U. S. A., 101(51), pp. 17849-17854.
    [9] Yang, R. H., Song, A. G., and Xu, B. G., 2010, "Feature Extraction of Motor Imagery EEG Based on Wavelet Transform and Higher-Order Statistics," Int. J. Wavelets Multiresolut. Inf. Process., 8(3), pp. 373-384.
    [10] Pfurtscheller, G., Muller-Putz, G. R., Schlogl, A., Graimann, B., Scherer, R., Leeb, R., Brunner, C., Keinrath, C., Lee, F., Townsend, G., Vidaurre, C., and Neuper, C., 2006, "15 Years of BCI Research at Graz University of Technology: Current Projects," IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), pp. 205-210.
    [11] Xu, Q., Zhou, H., Wang, Y. J., and Huang, J., 2009, "Fuzzy Support Vector Machine for Classification of EEG Signals Using Wavelet-Based Features," Med. Eng. Phys., 31(7), pp. 858-865.
    [12] Blankertz, B., Dornhege, G., Krauledat, M., Muller, K. R., Kunzmann, V., Losch, F., and Curio, G., 2006, "The Berlin Brain-Computer Interface: EEG-Based Communication without Subject Training," IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), pp. 147-152.
    [13] 陳志瑋, 2009, "以mu波為基礎之大腦電腦介面之實現與強化," 國立成功大學機械工程學系博士論文.
    [14] Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., and Birbaumer, N., 2008, "Think to Move: A Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke," Stroke; a Journal of Cerebral Circulation, 39(3), pp. 910-917.
    [15] Broetz, D., Braun, C., Weber, C., Soekadar, S. R., Caria, A., and Birbaumer, N., 2010, "Combination of Brain-Computer Interface Training and Goal-Directed Physical Therapy in Chronic Stroke: A Case Report," Neurorehabil. Neural Repair, 24(7), pp. 674-679.
    [16] Prasad, G., Herman, P., Coyle, D., McDonough, S., and Crosbie, J., 2010, "Applying a Brain-Computer Interface to Support Motor Imagery Practice in People with Stroke for Upper Limb Recovery: A Feasibility Study," Journal of Neuroengineering and Rehabilitation, 7, pp. 1-17.
    [17] Kai Keng, A., Cuntai, G., Chua, K. S. G., Beng Ti, A., Kuah, C., Chuanchu, W., Kok Soon, P., Zheng Yang, C., and Haihong, Z., "Clinical Study of Neurorehabilitation in Stroke Using EEG-Based Motor Imagery Brain-Computer Interface with Robotic Feedback," Proc. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 5549-5552.
    [18] Pichiorri, F., and et al., 2011, "Sensorimotor Rhythm-Based Brain–Computer Interface Training: The Impact on Motor Cortical Responsiveness," Journal of Neural Engineering, 8(2), p. 025020.
    [19] Daly, J. J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., and Dohring, M., 2009, "Feasibility of a New Application of Noninvasive Brain Computer Interface (BCI): A Case Study of Training for Recovery of Volitional Motor Control after Stroke," Journal of Neurologic Physical Therapy, 33(4), pp. 203-211.
    [20] Rubinov, M., and Sporns, O., 2010, "Complex Network Measures of Brain Connectivity: Uses and Interpretations," NeuroImage, 52(3), pp. 1059-1069.
    [21] Granger, C. W. J., 1969, "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, 37(3), pp. 424-438.
    [22] Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccala, L. A., Fallani, F. D., Salinari, S., Ursino, M., Zavaglia, M., Ding, L., Edgar, J. C., Miller, G. A., He, B., and Babiloni, F., 2007, "Comparison of Different Cortical Connectivity Estimators for High-Resolution EEG Recordings," Hum. Brain Mapp., 28(2), pp. 143-157.
    [23] Schreiber, T., 2000, "Measuring Information Transfer," Physical Review Letters, 85(2), pp. 461-464.
    [24] Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N., Brismar, T., and Müller, K.-R., 2008, "Robustly Estimating the Flow Direction of Information in Complex Physical Systems," Physical Review Letters, 100(23), p. 234101.
    [25] Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., and Hallett, M., 2004, "Identifying True Brain Interaction from EEG Data Using the Imaginary Part of Coherency," Clin. Neurophysiol., 115(10), pp. 2292-2307.
    [26] 李阮曜, 2011, "腦機介面控制復健機械手於中風病患手部復健及功能性磁振造影評估," 國立成功大學機械工程學系碩士論文.
    [27] "Wadsworth BCI Dataset,"
    http://www.bbci.de/competition/ii/albany_desc/albany_desc_i.html.
    [28] Chen, C. W., Lin, C. C. K., and Ju, M. S., 2009, "Hand Orthosis Controlled Using Brain-Computer Interface," J. Med. Biol. Eng., 29(5), pp. 234-241.
    [29] Chen, C.-W., Ju, M.-S., Sun, Y.-N., and Lin, C.-C., 2009, "Model Analyses of Visual Biofeedback Training for EEG-Based Brain-Computer Interface," Journal of Computational Neuroscience, 27(3), pp. 357-368.
    [30] Fagiolo, G., 2007, "Clustering in Complex Directed Networks," Physical Review E, 76(2), p. 026107.
    [31] Latora, V., and Marchiori, M., 2001, "Efficient Behavior of Small-World Networks," Physical Review Letters, 87(19), p. 198701.
    [32] Achard, S., and Bullmore, E., 2007, "Efficiency and Cost of Economical Brain Functional Networks," PLoS Computational Biology, 3(2), pp. 174-183.
    [33] Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Astolfi, L., De Vico Fallani, F., Tocci, A., Bianchi, L., Marciani, M. G., Gao, S., Millan, J., and Babiloni, F., 2008, "High-Resolution EEG Techniques for Brain-Computer Interface Applications," Journal of Neuroscience Methods, 167(1), pp. 31-42.
    [34] McFarland, D. J., and Wolpaw, J. R., 2005, "Sensorimotor Rhythm-Based Brain-Computer Interface (BCI): Feature Selection by Regression Improves Performance," IEEE Trans. Neural Syst. Rehabil. Eng., 13(3), pp. 372-379.
    [35] Steel, R. G. D., Torrie, J. H., and Dickey, D. A., 1997, Principles and Procedures of Statistics: A Biometrical Approach, McGraw-Hill.
    [36] Montgomery, D. C., 2005, Design and Analysis of Experiments, John Wiley & Sons.
    [37] Delorme, A., and Makeig, S., 2004, "EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis," Journal of Neuroscience Methods, 134(1), pp. 9-21.
    [38] Wilcox, R. R., 2003, Applying Contemporary Statistical Techniques, Academic Press.
    [39] "Psych Web,"
    http://www.intropsych.com/ch02_human_nervous_system/homunculus.html.

    下載圖示 校內:2017-08-23公開
    校外:2017-08-23公開
    QR CODE