簡易檢索 / 詳目顯示

研究生: 張仲勳
Jang, Chung-Hsun
論文名稱: 氮化鎵系列發光二極體靜電放電與光效率下降 特性改善之研究
The Improved ESD and Efficiency Droop Characteristics on GaN-Based LEDs
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 86
中文關鍵詞: 靜電放電光效率
外文關鍵詞: ESD, efficiency droop
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,提出一項關於具有不同厚度p型的氮化鋁鎵電子阻擋層的氮化鎵系列發光二極體的研究。該研究顯示,當氮化鋁鎵電子阻擋層的厚度增加,發光二極體可以承受更高的靜電放電水平。觀測到的靜電放電承受能力提高,可以歸結加厚p型氮化鋁鎵電子阻擋層的事實,可能在一定程度上填補氮化銦鎵-氮化鎵多量子阱表面上發生差排相關的坑洞,這是由於應變和低溫生長過程。如果這些差排相關的坑洞沒有一定程度的被抑制,他們最終將導致許多連同氮化銦鎵-氮化鎵多量子阱相交的穿線差排的表面坑洞,從而降低了靜電放電承受能力。
    氮化鎵系列藍光發光二極體,使用在n型氮化鎵被覆層與氮化銦鎵-氮化鎵多量子阱主動層之間插入一層氮化銦鎵來增進元件特性。相較於不包含這樣一層的控片,靜電放電承受電壓從1000伏特提升到6000伏特。這兩種元件在高偏壓電流下的動態量測,被證明的元件展現較高的調製速度。在動態與靜態性能的改善,主要是由於插入的氮化銦鎵層可以發揮電流擴散層的作用這一事實,這導致在正負電交匯處有特定的地點遭受大電流密度的可能性較低。
    圖案化藍寶石基板的U-氮化鎵底層成長壓力在氮化鎵系列的發光二極體的靜電放電承受能力的影響進行評估。當成長壓力從100托爾提升至500托爾時,靜電放電承受電壓從4000伏特提升至7000伏特。差的靜電放電承受能力,可以歸因於底層的相對較低的壓力下生長的GaN層,這條件導致顯著的表面凹坑。這可以進一步歸結為凸的藍寶石圖案上的晶體平面的不完全凝聚。凹坑相關差排作用如同漏電路徑而使元件電特性退化。
    關於氮化鎵系列藍光發光二極體不同能帶圖的研究,揭示發光二極管隨著量子阱能帶形貌的修改,可以減緩發光效率下降的行為。在觀察到的減緩光效率下降行為的改善,可以歸因於一個事實,就是壓電場可能有一定程度的減低和一種發生減弱電子溢流和歐傑過程的窄底部、寬頂部和兩側緩和的量子阱的形貌。壓電場如果沒有一定程度的抑制,他們最終將導致與歐傑過程相關的電子溢流,從而導致光效率下降的行為。

    In this dissertation, a study regarding GaN-based light-emitting diodes (LEDs) with p-type AlGaN electron blocking layers (EBLs) of different thicknesses is presented. The study revealed that the LEDs could endure higher electrostatic discharge (ESD) levels as the thickness of the AlGaN EBL increased. The observed improvement in the ESD endurance ability could be attributed to the fact that the thickened p-AlGaN EBL may partly fill the dislocation-related pits that occur on the surface of the InGaN–GaN multiple-quantum well (MQW) and that are due to the strain and the low-temperature-growth process. If these dislocation-related pits are not partly suppressed, they will eventually result in numerous surface pits associated with threading dislocations that intersect the InGaN–GaN MQW, thereby reducing the ESD endurance ability.
    GaN-based blue LEDs using an InGaN layer inserted between the n-type GaN cladding layer and the active layer (InGaN/GaN MQWs) to improve device performances is studied. Compared with the control device, which doesn’t incorporate such layer, the ESD endurance voltages increased from 1,000 V to 6,000 V. The dynamic measurement of both devices has also been performed and a higher modulation speed of demonstrated device (20 MHz vs. 57 MHz) can also be observed under high bias current (~100 mA). The improvement of both static and dynamic performance could be mainly due to the fact that the InGaN insertion layer can play a role of current spreading layer, which led to a lower possibility of junctions suffering a large current density in specific local site.
    The effect of growth pressure of underlying undoped GaN(u-GaN) layer on the electrical properties of GaN-based LEDs grown on patterned sapphire substrates (PSS) is evaluated. The ESD endurance voltages could increase from 4000 to 7000 V when the growth pressure of u-GaN layers is increased from 100 to 500 torr. Poor ESD endurance ability could be attributed to the underlying GaN layer grown under relative low pressure, which leads to significant surface pits. This could be further attributed to the imperfect coalescence of crystal planes above the convex sapphire patterns. The pits are associated with TDs behaving as a leakage path to degrade electrical performance.
    A study regarding GaN-based LEDs with different band diagrams is revealed that the LEDs could mitigate the efficiency droop behavior as the band diagram of well modified. The observed improvement in the mitigation of droop behavior could be attributed to the fact that the piezoelectric field may partly be reduced and the shape is of narrow on well’s bottom and wide on well’s top and slop modified on both side that occurs on the alleviation of electron over flow and Auger process. If the piezoelectric field is not partly suppressed, they will result in electron over flow associated with Auger process, thereby resulting in the droop behavior.

    Contents Abstract (in Chinese) ------------------------------------ I Abstract (in English) ---------------------------------- III Acknowledgements ----------------------------------------- V Contents ------------------------------------------------ VI Table Captions -----------------------------------------VIII Figures Captions -----------------------------------------IX CHAPTER 1 Introduction ----------------------------------- 1 1-1 Background of GaN-Based LEDs ---------------------- 1 1-2 Proper Substrates---------------------------------- 2 1-3 The Growth Technology of Buffer Layer ------------- 3 1-4 The Growth Technology of LED Active Layer-----------4 1-5 The Growth Technology of P-type Ohmic Contact ----- 5 Ch1 References ------------------------------------------- 8 CHAPTER 2 Metalorganic Chemical Vapor Deposition Systems for Crystal Growth ------------------------------------- 12 2-1 Introduction of Key Progress ----------------------12 2-2 Metalorganic(MO) Compounds ----------------------- 12 2-3 Hydride Gases and Dopants --------------------------- 13 2-4 Reaction and Mechanism ------------------------------ 13 2-5 MOCVD Reactor Design and In-situ Monitoring --------- 14 2-6 Growth Results and Characterizations ---------------- 16 Ch2 References --------------------------------------- 18 CHAPTER 3 Studies of p-AlGaN Electron Blocking Layer on the Improvement of ESD Characteristics in GaN-Based LEDs -- 25 3-1 Introduction ---------------------------------------- 25 3-2 Effect of Thickness of the p-AlGaN Electron Blocking Layer on the Improvement of ESD Characteristics in GaN-Based LEDs --------------------------------------------- 26 3-3 Effect of the Hydrogen–Atmosphere-Grown p-AlGaN Electron Blocking Layer on the Improvement of ESD Characteristics in GaN-Based LEDs------------------------ 29 3-4 Summary ------------------------------------------ 30 Ch3 References --------------------------------------- 31 CHAPTER 4 Studies of GaN-Based Blue LEDs with the InGaN Insertion Layer between the MQW Active Layer and the n-GaN Cladding Layer 38 4-1 Introduction ------------------------------------ 38 4-2 Experiment -------------------------------------- 39 4-3 Results and Discussion ------------------------40 4-4 Summary --------------------------------------------- 44 Ch4 References -------------------------------------- 45 CHAPTER 5 Effect of Growth Pressure of Undoped GaN Layer on the ESD Characteristics of GaN-Based LEDs Grown on Patterned Sapphire ---------------------------------------55 5-1 Introduction-------------------------------------- 55 5-2 Experiments -------------------------------------- 56 5-3 Results and Discussion ------------------------------ 57 5-4 Summary --------------------------------------------- 59 Ch5 References --------------------------------------- 60 CHAPTER 6 Efficiency Droop Rate of GaN-Based Light-Emitting Diodes Mitigated by Shaping InGaN Quantum Wells --------- 70 6-1 Introduction ---------------------------------------- 70 6-2 Experiments -------------------------------------- 71 6-3 Results and Discussion --------------------------- 72 6-4 Summary ------------------------------------------ 73 Ch6 References --------------------------------------- 75 CHAPTER 7 Conclusions and Future Works ------------------ 83 7-1 Conclusions ----------------------------------------- 83 7-2 Future works ------------------------------------- 85 Publication List ---------------------------------------- 86 Table Captions Chapter 1 Table 1-1 Materials properties of the III-V nitrides and various materials. -------------------------------------- 11 Figures Captions Chapter 2 Figure 2-1 Schematic reactor of high speed vertical rotating system Schematic reactor of high speed vertical rotating system ----------------------------------------- 19 Figure 2-2 Schematic diagram of closed space rotating disc type reactor ------------------- 20 Figure 2-3 Schematic reactor of planetary rotating with radical horizontal flow system -------------------------- 21 Figure 2-4 Typical AFM and SEM morphology. SEM shows pits’ density is 5×108/cm2.. --------------------------------------------------------- 22 Figure 2-5 Typical PL peak mapping diagram taken from GaN/InGaN MQW LED ------ 23 Figure 2-6 Typical double crystal XRD rocking curve. ---- 24 Chapter 3 Figure 3-1 Schematic layer structure of GaN-based LEDs with p-AlGaN electron blocking layer ------------------------- 33 Figure 3-2 Measured ESD results as function of stress voltages and light output power as function of forward currents for the LEDs. The values shown in the right-hand vertical axis mean the total tested device numbers(100 devices) divided by the non-failed device numbers for a given reverse stress voltage. ----------------- 34 Figure 3-3 Top-view SEM images of the LEDs (a)LED-III (b)LED-I. AFM images taken from the surface of p-AlGaN EBL without the LTG p-GaN top layer corresponding to the LED-I and LED-III are also shown in the inset of Fig.3(a) and Fig.3 (b), respectively. -------------------------------- 35 Figure 3-4 Typical current-voltage characteristics of the LEDs. -------------------------- 36 Figure 3-5 Top-view SEM images of the LEDs Experimental growth condition with H2-flow rate of 5slm. AFM images taken from the surface of p-AlGaN EBL without the LTG p-GaN top layer is also shown in the inset of Fig.7. --------- 37 Chapter 4 Figure 4-1 Schematic structure of a GaN/sapphire-based LED with a Si-doped In0.06Ga0.94N insertion layer. ---------- 46 Figure 4-2 Measured light output power as function of injection currents for the experimental LEDs. ----------- 47 Figure 4-3 Measured ESD results as function of stress voltages. The values shown in the left-hand vertical axis mean the total tested device numbers(100 devices) divided by the non-failed device numbers for a given reverse stress voltage.------------------------------------------------ 48 Figure 4-4 Typical (0002) XRD spectra taken from the sample A and B. ------------------- 49 Figure 4-5 (a) and (b) typical atomic force microscopy (AFM) images taken from the sample A and B, respectively. ------------------------------------------------------- 50 Figure 4-6 Typical PL spectra taken from the sample A and B. ----------------------------------- 51 Figure 4-7 Typical I-V characteristics and dynamic resistances of the LED-I and LED-II. The inset shows the forward I-V characteristics. ---------------------------- 52 Figure 4-8 (a) a typical photograph of LED-I without current driving (b) and (c) show the typical near-field emission images of the LED-I and the LED-II, respectively. ---------------------------------------------------------- 53 Figure 4-9 The measured E-O frequency responses of LED-I and –II under (a) low (20mA) and (b) high bias current (100mA). -------------------------------------------------54 Chapter 5 Figure 5-1 Schematic layer structure of GaN-based LEDs on pattern sapphire substrate.----------------------------61 Figure 5-2 ESD results as function of stress voltages and light output power as function of forward currents for the LEDs. The values shown in the right-hand vertical axis mean the total tested device numbers(100 devices) divided by the non-failed device numbers for a given reverse stress voltage. ------------------------------- 62 Figure 5-3 (a) and (b) top-view, SEM images taken from surface the LED-I and LED-II. The insets show the enlarged images taken from local area for each corresponding image. ---------------------------------------------------------- 63 Figure 5-3 (c) and (d) cross-section-view SEM images taken from surface the LED-I and LED-II. The insets show the enlarged images taken from local area for each corresponding image. ------------------------------------ 64 Figure 5-4 (a) and (b) show the SEM of u-GaN bulk layers grown with condition the same as the u-GaN layers in the LED I and LED II, respectively. ------------------ 65 Figure 5-4 (c) and (d) show the cross-section-view SEM images of u-GaN bulk layers grown with condition the same as the u-GaN layers in the LED I and LED II, respectively. ------------------------------------------- 66 Figure 5-5 (a) (0002)XRD spectra of u-GaN bulk layers grown with condition the same as the u-GaN layers in the LED I and LED II, respectively.--------------------- 67 Figure 5-5 (b) (10 2)XRD spectra of u-GaN bulk layers grown with condition the same as the u-GaN layers in the LED I and LED II, respectively. --------------------- 67 Figure 5-5 (c) (0002) XRD spectra taken from LED I and LED II. -------------------------- 68 Figure 5-5 (d) (10 2) XRD spectra taken from LED I and LED II. ------------------------- 68 Figure 5-6 Typical I-V characteristics of LED I and LED II. -------------------------------- 69 Chapter 6 Figure 6-1 Schematic layer structure of GaN-based LEDs with motification on last 2 QWs.-------------------------------77 Figure 6-2 Schematic band diagrams of the last quantum well for the reference and experiment LEDs. ---------------- 78 Figure 6-3 Typical output power as a function of injection current for LED-I, LED-II, LED-III and LED-IV. ---------- 79 Figure 6-4 Wall plug efficiency (WPE) as function of injection current density for the fabricated LEDs ------- 80 Figure 6-5 Normalized wall plug efficiency (WPE) as function of injection current density for the fabricated LEDs.-----------------------------------------------------81 Figure 6-6 Typical current-voltage characteristics of the LEDs.------------------------------82

    Chapter 1:
    References
    [1] Y.-F. Wu, B.P. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars, and U.K. Mishra,
    Appl. Phys. Lett. 69, 1438 (1996).
    [2] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 234, 282 (1994)
    [3] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327(1969)
    [4] J. Pankove, E. Miller, D. Richmann, and J. Berkeyhesiser, J. Lumin. 4, 63 (1971)
    [5] S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992)
    [6] D.L. Barton, M. Osinski, C.J. Helms, N.H. Berg, B.S. Phillips, SPIE-Int. Soc. Opt.
    Eng 2694, 64 (1996).
    [7] A.T. Ping, Q. Chen, J.W. Yang, M.A. Khan, I. Adesida, IEEE Electron Device
    Letters 19, 54 (1998).
    [8] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)
    [9] T. Egawa, B. Zhang, N. Nishikawa, H. Ishikawa, T. Jimbo, and M. Umeno, J. Appl. Phys. 91, 528 (2002).
    [10] A. Dadgar., A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, Phys. Stat. Sol. (c). 6, 1583 (2003).
    [11] Chung-Lin Wu, Jhih-Chun Wang, Meng-Hsuan Chan, Tom T. Chen, and Shangjr Gwo, Appl. Phys. Lett. 83, 4530 (2003).
    [12] T. Detchprohm, H. Amano, K. Hiramatsu, and I. Akasaki, J. Cryst. Growth 128, 384 (1993).
    [13] J. E. Jaffe and A. C. Hess, Phys. Rev. B. 48, 7903 (1993).
    [14] S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, Rev, Adv. Mater. Sci. 17, 2 (2008).
    [15] A. P. Grzegorczyk, GaN Growth on Sapphire by MOCVD, (2006) 4
    [16] S. Nakamura, S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, (2000) 351
    [17] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
    [18] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
    [19] S. D. Lester, F. A. Ponce, M. G. Graford, and D. A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995).
    [20] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H.
    Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl Phys. Lett. 72 211 (1998).
    [21] C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, C. J. Pan and G. C. Chi, Appl. Phys. Lett. 90, 212109 (2007).
    [22] S. Nakamura, G. Fasol. The Blue Laser Diode, (1997) 150
    [23] J. C. Harris, H. Brisset, Takao Someya, Yasuhiko Arakawa, Jpn. J. Appl. Phys. 38, 2613 (1999).
    [24] S. Keller, B. P. Keller, D. Kapolnek, U. K. Mishra, S. P. DenBaars, I. K. Shmagin, R. M. Kolbas, S. Krishnankutty, J. Crystal Growth 170, 349 (1997).
    [25] C. Krysko and M. Leszczynski, Appl. Phys. Lett. 91, 061915 (2007).
    [26] E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, Appl. Phys. Lett. 70, 461 (1997).
    [27] S. Suihkonena, T. Langa, O. Svenska, J. Sormunena, P.T. To¨ rma¨ a, M. Sopanena,
    H. Lipsanena, M.A. Odnoblyudovb, V.E. Bougrovb, Journal of Crystal Growth 300, 324 (2007)
    [28] Muthusamy Senthil Kumar, Jae Young Park, Yong Seok Lee, Sang Jo Chung,
    Chang-Hee Hong, and Eun-Kyung Suh, Jpn. J. Appl. Phys. No. 2, 47, 839 (2008)
    [29] Hung-Cheng Lin,1 Ruo-Syuan Lin,1 and Jen-Inn Chyi, Appl. Phys. Lett. 92, 161113
    (2008)
    [30] T. Deguchi, A. Shikanai, K. Torii, and T. Sotaa,S. Nakamura, Appl. Phys. Lett. 72,
    2522 (1998)
    [31] J.-H. Ryou, W. Lee,1 J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu,
    A. M. Fischer, and F. A. Ponce, Appl. Phys. Lett. 92, 101113(2008)
    [32] H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawak, K. Ikeda and Y. Ishi,
    J. Lumin. 40-41, 121 (1988).
    [33] H. Amano M. Kito, K. Hiramatsu, and I Akasaki, Jpn. J. Appl. Phys. 28, L2112
    (1989).
    [34] H. Amano, M. Kito, K. Hriamatsu, and I Akasaki, Inst. Phys. Conf. Ser. 106, 725
    (1989).
    [35] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. Part 2 31,
    L139 (1992).
    [36] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [37] M. Schauler, C. Kirchner, M. Mayer, A. Pelzmann, F. Eberhard, M. Kamp, P. Unger, and K. J. Ebeling, MRS Internet J. Nitride Semicond. 2, 44 (1997).
    [38] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umeazki, M. Koike, and M. Murakami, J. Appl. Phys. 81, 1315 (1997).
    [39] K. V. Vassilevski, M. G. Rastegaeva, A. I. Babanin, I. P. Nikitina, and V. A. Dmitriev, MRS Internet J. Nitride Semicond. 1, 38 (1996).
    [40] D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and L. F. Lester, Mater. Res. Soc. Symp. Proc. 468, 421 (1997).
    [41] L. F. Lester, D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and J. C. Zolper, Proc. Electrochem. Soc. 97-1, 171 (1997).
    [42] T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, Appl. Phys. Lett, 69, 3537 (1996).
    [43] T. Kim, J. Kim, S. Chae, and T. Kim, Mater. Res. Soc. Symp. Proc. 468, 427 (1997).
    [44] J. T. Trexler, S. J. Pearton, P. H. Holloway, H. G. Mier, K. R. Evans, and R. F. Karlicek, Mater. Res. Soc. Symp. Proc. 449, 1091 (1997).
    [45] L. L. Smith, M. D. Bremser, E. P. Carlson, T. W, Weeks, Jr., T. Huang, M. J. Kim, R. W. Carpenter, and R. F. Davis, Mater. Res. Soc. Symp. Proc. 395, 861 (1996).
    [46] J. T. Trexler, S. J. Miller, P. H. Holloway, and M. A. Khan, Mater. Res. Soc. Symp. Proc. 395, 819 (1996).
    [47] T. Kim, M. C. Yoo, and T. Kim, Mater. Res. Soc. Symp. Proc. 449, 1061 (1997).
    Chapter 2:
    [1] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
    [2] J. I. Pankove, E. Miller, D. Richmann, and J. E. Berkeyhesiser, J. Lumin. 4, 63 (1971)
    [3] J. I. Pankove, E. Miller, and J. E. Berkeyhesiser, RCA Review 32, 383 (1971)
    [4] H. M. Manasevit, W. I. Simpson, Electrochem. Soc., 116, 1725 (1969).
    [5] H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc. 118, 1864 (1971). [6] S. Nakamura, Y. Harada, M. Seno, Appl. Phys. Lett. 58, 2021 (1991).
    [7] S. Nakamura, T. Muksi, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [8] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, J. Cryst. Growth. 77, 188 (1986).
    [9] K. F. Jensen, E. O. Einset, and D. I. Fotiadis, Ann. Rev. Fluid Mech. 23, 197(1991)
    [10] C. R. Biber, C. A. Wang, and D. Motakef, J. Cryst. Growth, 123, 545(1992)
    [11] S. Nakamura, Jpn. J. Appl. Phys. 30, 1348 (1991).
    [12] S. L. Wright, T. N. Jackson, and R. F. Marks, J. Vac. Sci. & Technol. B8, 288(1990).
    [13] S. Nakamura, S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, (2000) 17
    Chapter 3:
    [1] E. F. Schubert, Light Emitting Diodes , Cambridge University Press, (2003) 185
    [2] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei and W.C.Lai, Appl. Phys. Lett. 88, 113505 (2006)
    [3] Y.K. Su, S.J. Chang, S. C. Wei, Shi-Ming Chen and Wen-Liang Li, IEEE Transactions on Device and Materials Reliability 5, 277 (2005)
    [4] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C.H.Kuo, C.W.Kuo and Y. K. Su, IEEE Photon. Technol. Lett. 18 No.11, 1213 (2006)
    [5] Jinn-Kong Sheu, Y.S.Lu, Min-Lum Lee, W.C.Lai, C.H.Kuo and Chun-Ju Tun, Applied Physics Letters 90, 263511 (2007)
    [6] C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, C.C. Lin, Materials Science & Engineering B 112, 10 (2004)
    [7] G. Franssen, P. Perlin, and T. Suski, Phys. Rev. B 69, 045310 (2004)
    [8] Chang-Cheng Chuo, Chia-Ming Lee and Jen-Inn Chyi, Appl. Phys. Lett. 80, 7 (2002)
    [9] T. S. Kim, J. Y. Park, T. V. Cuong, H. G. Kim, H. J. Lee, E-K. Suh and C-H. Hong,
    Journal of the Korean Physical Society 47, 5 (2005)
    [10] W.-H. Lee, K. S. Kim, G. M. Yang_, C.-H. Hong, K. Y. Lim, E.-K. Suh and H. J. Lee,
    Journal of the Korean Physical Society 39, 1 (2001)
    [11] Tetssuya Takeuchi, Shigetoshi Sota, Maki Katsuragawa, Mio Komori, Hideo Takeuchi, HiroshiAmono and Isamu Akasaji, J.J. Appl. Phys. 36 Part 2, No. 4A, 1 (1997)
    [12] Hung-Wen Huang, C. F. Lai, W. C. Wang, T. C. Lu, H. C. Kuo, S. C. Wang, R. J. Tsai, and C. C. Yu, Electrochemical and Solid-State Letters, 10(2) H59-H62 (2007)
    [13] Shuichiro Yamamoto, Yuji Zhao, Chih-Chien Pan, Roy B. Chung, Kenji Fujito,
    Junichi Sonoda, Steven P. DenBaars, and Shuji Nakamura, Applied Physics Express 3 122102 (2010)
    [14] W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsul’nikov, Semiconductors, 42, No. 2, 232 (2008)
    [15] O. Svenska, S. Suihkonen, T. Lang, H. Lipsanen, M. Sopanen, M.A. Odnoblyudov,
    V.E. Bougrov, Journal of Crystal Growth, 298, 811 (2007)
    [16] A. V. Kondratyev, R. A. Talalaev, A. S. Segal, E. V. Yakovlev, W. V. Lundin, E. E. Zavarin, M. A. Sinitsyn, A. F. Tsatsulnikov, and A.E. Nikolaev, p hys. stat. sol. (c) 5, No. 6, 1691–1694 (2008)
    [17] E.V. Yakovlev, R.A.Talalaev, A.S.Segal, A.V.Lobanova, W.V.Lundin, E.E.Zavarin,
    M.A.Sinitsyn, A.F.Tsatsulnikov, A.E.Nikolaev, Journal of Crystal Growth, 310, 4862(2008)
    [18] Chung-Hsun Jang, J. K. Sheu, C. M. Tsai, S. C. Shei, W. C. Lai, and S. J. Chang,
    IEEE Photon. Technol. Lett. 20, No. 13, 1142 (2008)
    Chapter 4:
    [1] E. F. Schubert, Light-emitting diodes, Second Edition, Cambridge University Press,
    Cambridge, U.K., (2006.) 150
    [2] Z. Chen, N. Fichtenbaum, D. Brown, S. Keller,U. K. Mishra, S. P. Denbaars and S. Nakamura, J. of Electronic Materials 37, 546 (2008)
    [3] Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Soo-Kun Jeon, Jae-Gu Lim, Jun-Serk Lee, Cheol-Hoi Kim, and Joong-Seo Park, Appl. Phys. Lett. 93, 101112 (2008)
    [4] H. Hung, K. T. Lam, S. J. Chang, C. H. Chen, H. Kuan, and Y. X. Sun, J. of The Electrochemical Soc. 155, H455 (2008)
    [5] S.J. Chang L.W. Wu Y.K. Su Y.P. Hsu W.C. Lai J.M. Tsai J.K. Sheu C.T. Lee, IEEE Photonics Technol. Lett. 16, 1447 (2004)
    [6] Chung-Hsun Jang, J. K. Sheu, C. M. Tsai, S. C. Shei W.C. Lai and S. J. Chang, IEEE Photonics Technol. Lett. 20, 1142 (2008)
    [7] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C.W.Kuo and Y. K. Su, IEEE. Photon. Technol. Lett. 18, 1213 (2006)
    [8] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron Device Lett. 22, 460(2001)
    [9] M. L. Lee, J. K. Sheu and C. C. Hu, 2007, Appl. Phys. Lett. 91, 182106(2007)
    [10] Takashi Mukai and Shuji Nakamura, Jpn. J. Appl. Phys. 38, 5735 (1999)
    [11] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, IEEE Trans. on Electron Devices 51, 1743 (2004)
    [12] Chung-Hsun Jang, Jinn-Kong Sheu, C. M. Tsai, Shoou-Jinn Chang, Wei-Chih Lai, Ming-Lun Lee, T. K. Ko, C. F. Shen, and S. C. Shei, IEEE J. Quantum Elec. 46, No. 4, 513 (2010)
    [13] Jin-Wei Shi, H. –W. Huang, F. –M. Kuo, J. K. Sheu, W.–C. Lai, M. L. Lee, IEEE IEEE Photo. Technol. Lett. 22, No. 14, 1033 (2010) and references therein.
    Chapter 5:
    [1] E. F. Schubert, Light-Emitting Diodes, Second Edition, Cambridge University Press, Cambridge, U.K., (2006.) 150
    [2] R.J. Shul, L. Zhang, A.G. Baca, C.G. Willison, J. Han, S.J. Pearton, F. Ren, J.C. Zolper and L.F. Lester, Mat. Res. Soc. Symp. Proc. 573, 271 (1999)
    [3] X. A. Cao, S.J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul and L. Zhang, Appl. Phys. Lett. 75, 2569 (1999)
    [4] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C.H.Kuo, C.W.Kuo and Y. K. Su, IEEE Photon. Technol. Lett. 18, 1213 (2006)
    [5] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei and W.C.Lai, Appl. Phys. Lett. 88, 113505 (2006)
    [6] D.S. Wuu; W.K. Wang; W.C. Shih; R.H. Horng; C.E. Lee; W.Y. Lin; J.S. Fang, IEEE Photonics Technol. Lett. 17, 288 (2005)
    [7] Hung-Cheng Lin Ruo-Syuan Lin Jen-Inn Chyi Chia-Ming Lee , IEEE Photonics Technol. Lett. 20, 1621 (2008)
    [8] Shih Chun Yang, Pang Lin, Han Kuei Fu, Chien Ping Wang, Tzung Te Chen, An Tse Lee, Sheng Bang Huang, and Mu Tao Chu, Jpn. J. Appl. Phys. 49, 056602 (2010)
    [9] Yi-Jung Liu Der-Feng Guo Li-Yang Chen Tsung-Han Tsai Chien-Chang Huang Tai-You Chen Chi-Hsiang Hsu Wen-Chau Liu, IEEE Trans. on Electron Devices 57, 2155 (2010)
    [10] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron Device Lett. 22, 460 (2001)
    [11] C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, C.C. Lin, Materials Science & Engineering B 112 10 (2004)
    [12] J. K. Sheu, M. L. Lee, and W. C. Lai , Appl. Phys. Lett. 86, 052103 (2005)
    [13] C. H. Jang, J. K. Sheu, S. J. Chang, M. L. Lee, C. C. Yang, S. J. Tu, F. W. Huang, and C. K. Hsu , IEEE Photonics Technol. Lett. 23, No. 14 968 (2011)
    Chapter 6:
    [1] I. V. Rozhansky and D. A. Zakheim, Semiconductors 40, 839 (2006)
    [2] I. V. Rozhansky and D. A. Zakheim, Phys. Status Sol. A 204, 227 (2007)
    [3] I. A. Pope, P. M. Smowton, P. Blood,J. D. Thomson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003)
    [4] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 1835071 (2007)
    [5] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert,M. H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, and Y. Park, Appl. Phys. Lett. 93, 0411021 (2008)
    [6] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91 1411011 (2007)
    [7] N. F. Gardner, G. O. Mu¨ller, Y. C. Shen,G. Chen, S. Watanabe, W. Go¨tz, and M. R. Krames, Appl. Phys. Lett. 91, 2435061 (2007)
    [8] K. T. Delaney, P. Rinkem, and C. G. Van de Walle, Appl. Phys. Lett. 94, 1911091 (2009)
    [9] M. Peter, A. Laubsch,W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, and B. Hahn, Phys. Stat. Sol.A 206, 1125 (2009)
    [10] A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, and S. W. Koch, Phys. Stat. Sol. C 6, S913 (2009)
    [11] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, Semiconductors 40, 605 (2006)
    [12] S. Fujita, J. Choi, M. Terazima, and T. Mukai, J. Appl. Phys. 98, 0645031 (2005)
    [13] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Nat.Mater. 5, 810 (2006)
    [14] A. R. Beattie and P. T. Landsberg, Proc. R. Soc. London, Ser. A, 249, 16 (1958)
    [15] A. S. Polkovnikov and G. G. Zegrya, Phys. Rev. B 58, 4039 (1998).
    [16] Kharchenko, V. A.; Rosen, M. J. Lumin., 70, 158 (1996)
    [17] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, Appl. Phys. Lett. 91, 181113 (2007)
    [18] N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007)
    [19] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei and W.C.Lai, Appl. Phys. Lett. 88, 113505 (2006)
    [20] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C.H.Kuo, C.W.Kuo and Y. K. Su, IEEE Photon. Technol. Lett. 18, 1213 (2006)
    [21] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron Device Lett. 22, 460 (2001)
    [22] M. L. Lee, J. K. Sheu and C. C. Hu, Appl. Phys. Lett. 91, 182106 (2007)
    [23] J. K. Sheu, I-Hsiu Hung, W. C. Lai, S. C. Shei, and M. L. Lee, Appl. Phys. Lett. 93, 103507 (2008)

    下載圖示 校內:2016-01-21公開
    校外:2016-01-21公開
    QR CODE